EDA093 Operating Systems John Croft
January 5, 2021 Lab 3 Report Anna-Maria Unterberger

Introduction

The assignment in the lab was to implement a bus using synchronization primitives such that it
satisfies certain requirements when tasks are batch-scheduled onto it. The tasks are transmitted
over a half-duplex bus that has constraints on the maximum number of concurrent tasks, and
must allow high-priority tasks to be transmitted before normal-priority ones. The tasks also have
a variable transmission latency.

Data Structures

We have instantiated synchronisation primitives along with pointers to them, as well as a few
supporting counters and flags. We have also typedef’d locks and condition variables:

typedef struct lock Lock;
typedef struct condition Condition;

Lock lock_mutex; // Universal lock for both condition variables.
Lock * lock_mutex_p = &lock_mutex;

Condition waitingToGoNP[2]; // Condition Variable for Normal-Priority tasks.
Condition * waitingToGoNP_p = waitingToGoNP;

Condition waitingToGoHP[2]; // Condition Variable for High-Priority tasks.
Condition * waitingToGoHP_p = waitingToGoHP;

static int bus_usage = 0; // Current number of tasks on bus.

static int bus_enable = 1; // Flag determines if bus will accept new tasks.
static int waitersNP[2]; // Number of Normal-Priority tasks waiting in each dir.
static int waitersHP[2]; // Number of High-Priority tasks waiting in each dir.
static int currentDirection = SENDER; // Current direction of flow.

Algorithms
The problem in this assignment maps almost completely onto the narrow bridge problem, with
the exception of priority levels.

For priority levels, we make sure that high-priority tasks going in the current direction are sent
first. If there are no waiting high-priority tasks in the current direction, but high-priority tasks
waiting to go in the opposite direction, the bus will be emptied and the direction reversed. The
exact mechanism will be described further down.

getSlot Simply, each thread tries to get a slot on the bus in getSlot () by attempting to acquire
the lock. If acquired, a condition must be met, or else the thread will block, releasing the lock so
that another thread may enter and attempt to satisfy the requirement. The condition for getting
a slot is:

e the bus is not full
e if the bus is not full but in use, the flow must be in the same direction as the thread task

e if the thread task is of normal priority, it may not proceed if thread tasks of high priority
are waiting.

e the bus has not been disabled.

If the condition is not met, the thread task will proceed to wait (suspend) on a condition variable
unique to its priority level.

Page 1



EDA093 Operating Systems John Croft
January 5, 2021 Lab 3 Report Anna-Maria Unterberger

On successfully satisfying the condition and acquiring the bus, the global bus direction is set to
the direction of the task.

transferData Once on the bus, a thread task simply sleeps for a random number of ticks, using
timer_sleep(). This is done to simulate various data transfer latencies.

leaveSlot When leaving the bus, in leaveSlot (), the thread again attempts to acquire the lock
and enter the critical section. Once it has acquired it, it will attempt to signal tasks waiting to go
in the same direction as itself. If high-priority tasks are waiting to go in the current direction, it
will signal them. If, however, there are high-prioriy tasks waiting to go in the opposite direction,
the bus_enable flag will be toggled off and no new tasks will be signalled. This will cause the
bus to empty over time.

If no high-priority tasks are waiting on either side, it will try to signal normal-priority tasks
waiting to go in the current direction. If no tasks are waiting to go in the current direction, then
it will not signal at all.

If the bus is empty, it will re-enable the bus_enable flag (if necessary), then it will signal to a
maximum of three tasks waiting to go in the opposite direction in order to fill the bus. The bus
direction will also be reversed. Since separate queues exist for high- and normal-priority tasks,
they will be signalled to in order of priority.

Synchronisation

Two Condition Variables (similar to Monitors) are used in conjunction with a lock that ensures
mutual exclusion in critical sections.

In this case the critical sections are those that grant access to, and exit from the bus. The is to
say, the entire getSlot() and leaveSlot() functions, as they manipulate variables critical for
gaining access to the bus.

As explained in the rationale, condition variables easily allow threads to block until a particular
condition is reached.

Rationale

Since we want to execute certain operations dependent on the state of the bus at a given time,
mutual exclusion is not sufficient. The task could have been solved with either semaphores or
the slightly higher-level condition variables (which use semaphores internally). The latter was
chosen as it can broadcast, waking all threads blocked on that particular condition variable, which
is convenient. They also allow threads acquire a lock, and then release it and block from within
a critical section, if a certain condition is not met. They reacquire the lock upon being signalled
(or broadcasted to).

This solution outlined in the algorithm section is more efficient than the more naive approached
of broadcasting to normal and high-priority waiters alike each time a task leaves the bus and then
letting them compete, as it reduces the chance of waking threads unnecessarily.

Addendum

The testfile batch-scheduler.c had to be modified with a timer_sleep() statement at the end,
or it would simply exit and terminate the emulation prematurely, before any threads had time to
traverse the bus.

Page 2



