EDA093 Operating Systems John Croft
October 11, 2020 Lab 2 Report Anna-Maria Unterberger

Introduction

The goal of this lab is the implementation of the timer function. Instead of busy-waiting, a thread
is blocking and put to sleep for a certain amount of time (ticks).

Data Structures

The only data structure added to the unmodified codebase is a counter variable sleep_counter
in the thread struct in thread.h. This simply contains the remaining number of ticks to sleep
for at any given time.

Algorithms

In timer_sleep, the number of ticks to sleep is saved in the current thread struct and the thread
is suspended using thread_block. Invalid ticks values are rejected, terminating the function.
This is shown in fig.

Start

Y

timer_sleep(ticks)

Thread suspended.
) ) Scheduler executes
intr_disable(); different thread.

Y

thread_block()

Y

schedule()

intr_enable();

\ 4

End

Figure 1: timer_sleep called by programs in userspace. The thread will suspend execution and
the scheduler will activate a different thread.

The timer_interrupt interrupt handler function is invoked on every tick. This calls thread_forall()
to iterate over all threads in the system and, in each thread context run a predefined function,
which we have created and called wakeup. wakeup checks if the current thread is blocked, and if

so either decrements the thread’s sleep_counter or, if it has reached zero, unblocks the thread
using thread_unblock(). This is shown in more detail in fig.

Synchronisation

Since two or more threads are not accessing or operating on the same data when being put to sleep,
no additional synchronisation methods were required to ensure the correctness of the program.

There is no shared data as such, but interrupts are disabled when threads must not be preempted,
such as when calling thread_block().

The thread_block() recommends the use of synchronization primitives when invoking, though
it is unclear how this would be of improvement.

Page 1



EDAO093 Operating Systems

John Croft
October 11, 2020 Lab 2 Report Anna-Maria Unterberger
Start i=0
>
Y
Y
timer_interrupt
B Pt i_ MAX?
i++
A
Y No
thread_foreach(wakeup) X
No / thread]i]
A ?
v blocked?
End
Yes
| -
sleepCnt v
A

No sleepCnt
==07?

Yes

Y

thread_unblock()

A

A

End

Figure 2: The timer interrupt handler iterates over all threads, checks if they are blocked and
unblocks them if enough time has elapsed.

Page 2



EDA093 Operating Systems John Croft
October 11, 2020 Lab 2 Report Anna-Maria Unterberger

Rationale

The algorithm performs a comparison and decrements a sleep counter on each tick. A different
approach might have been to compare elapsed time with the starting time (when timer_sleep was
called), though the simplicity of the first approach was preferred since it executes in an interrupt
context. The latter approach calls additional functions which is undesirable.

Addendum

No effort was made to make the system pass the batch-scheduler test. Of note is that, after
modification of the timer code, that particular test times out. This may be indicative of undesired
behaviour.

Page 3



