
EDA093 Operating Systems
September 24, 2020 Lab 1 Report

John Croft
Anna-Maria Unterberger

Introduction
The goal of this lab is the development of a shell with given specifications. In each section we will
describe a specification and our approach of implementing it.

Execution of Simple Commands
In order to be able to execute commands, the input received via the command line is parsed and
then handled by RunCommand() function.

The general method is to fork the current process into a parent and child, the latter of which
executes a binary, replacing its core image but keeping it’s file descriptors, among other things.

The execvp system call is used for execution as it is PATH-aware, meaning that the absolute
path to binaries need not be specified, if they are on the PATH. Additionally, a pointer to a list
of arguments is taken as input, meaning that the arguments do not need to be known at compile
time.

The parent process wait to reap the child processes, suspending its own process.

pid_t pid = fork();
if (pid == -1)

exit(EXIT_FAILURE);

if (pid == 0){ // Child code
char **execArgs = getArgs(..., cmd->pgm); // Acquire list of arg strings.
execvp(execArgs[0], execArgs);

}
else if (pid > 0) // Parent code

waitpid(pid, NULL, 0);

Executing a command in the shell yields the following output:

0w0~$ date
Thu Sep 24 23:48:13 CEST 2020

Background Processes
Enabling the execution of background processes is vital because they handle important tasks such
as scheduling, system monitoring and user notification.

The signal handler (sigHandler) is taking care of SIGCHLD and is enabled in child processes on the
condition that the current command is executed as a background processes (or multiple processes
thereof). The parent process, in this case, does not wait() for these processes, but instead saves
their individual PIDs in a global buffer. Upon terminating, child processes will send a SIGCHLD
signal to the parent, invoking the signal handler. The handler will iterate through aforementioned
global buffer and waitpid() for each specific process, but in a non-blocking fashion, using the
WNOHANG option. This ensures that it iterates through the list, reaping those processes that have
terminated, but not suspending on those that have not.

This is perhaps a suboptimal solution, but seemingly works in practice.

top shows a process executing while the shell is not suspended, and does not leave a zombie
process behind.

Page 1

EDA093 Operating Systems
September 24, 2020 Lab 1 Report

John Croft
Anna-Maria Unterberger

Pipes

Figure 1: Pipes between individual processes. Standard stream or file descriptor redirections on
first and last processes.

A pipe is created just before forking; once the next child process is about to be spawned, the
output from the previous one is passed as argument to the next pipe. The input to the first child
is the standard input (unless it has been redirected from a file), and the last child’s output pipe
is connected to the standard output, or the file it can be redirected to if desired.

Pipes are generally implemented by redirecting the file-descriptors normally associated with
STDIN and STDOUT, the standard streams, to the read and write ends of a pipe, respectively.

This is illustrated in fig. 2.

Figure 2: Pipe implementation using file-descriptor duplication and redirection.

/* Set up all pipes that we need */
int pipefd[noOfChildren][2];
int n;
int pipeRet;
for(n = 0; n < noOfChildren-1; n++){

if(DEBUG)printf("Creating pipe %d\n", n);
if (pipe(pipefd[n]) == -1){

printf("%s\n", strerror(errno));
}

}

All required processes and pipes are created when a command is run, and parameters such as
file-descriptors and redirections are set by iterating through the processes before execing them in
turn.

Page 2

EDA093 Operating Systems
September 24, 2020 Lab 1 Report

John Croft
Anna-Maria Unterberger

Redirection of Standard Input and Output
Redirection was achieved by duplicating file-descriptors using dup2, taking advantage of the fact
that programs usually read from STDIN and write to STDOUT. By mapping open files to these
standard stream file-descriptors, redirection is implemented.

The general method is outlined in fig. 2.

cd and exit as Built-in Functions.
In order to use the commands cd to change the directory, and exit to exit the shell as built-in
functions, we added the following lines to our code.

if(!strcmp(cmd.pgm->pgmlist[0], "exit")) exit(0);
if(!strcmp(cmd.pgm->pgmlist[0], "cd")) chdir(cmd.pgm->pgmlist[1]);

Changing the directory only works with an absolute path; exit terminates the shell.

Ctrl-C Functionality
The Ctrl-C key combination is supposed to end foreground processes, but nothing else: back-
ground processes should continue with their execution and the shell should not terminate.

To this end, a system call for the parent process to ignore SIGINT signals was implemented in the
following way.

signal(SIGINT, SIG_IGN);

Whenever a foreground command is run, however, the signal handler for SIGINT is re-enabled in
the child processes using

if (cmd->background == FALSE)
signal(SIGINT, sigHandler);

Page 3

