
Introduction to Security

Magnus Almgren

Security Quiz

Connect to kahoot.it

Enter Pin: xxxx (will come when I start the quiz)

FAQ

Questions appear on full screen

You press the answer (based on color, symbol) on your device

The faster you press the correct answer, the more points

Sometimes, several answers may be correct

Good luck!

Why
security?

• De misstänker
att det beror på
en över-
belastnings-
attack mot IT-
systemen.

https://www.youtube.com/watch?v=fpGR1J4prfs&t=38s
Democratic processes attacked …

https://www.youtube.com/watch?v=fpGR1J4prfs&t=38s

Story: The Morris Worm

http://www.washingtonpost.com/blogs/the-switch/wp/2013/11/01/how-a-grad-student-
trying-to-build-the-first-botnet-brought-the-internet-to-its-knees/

November 3, 1988: launch of worm

→ 6,000 computers shut down (in the U.S. only)

Internet like a small town – 100,000 computers (?)

where people knew and trusted each other.

Many features not built with security in mind.

”doors left unlocked”

Internet security – mostly theoretical problem

What was there to protect?

The worm changed the landscape!

Wakeup call that security is important!

Creation of CERT:s, demand for security experts (academia, industry)

Over 25 years later, some of the same strategies still work …

Robert T. Morris

The Morris Worm – Steps

Principle for function

A. Intrusion

B. Transfer of main

program

C. Settling down and

establishing

(cracking accounts,

hiding, etc)

D. Continued intrusions

Details (4 well-known attacks)

1. finding trust relations

2. guess/crack passwords

3. use debug facility in the

sendmail mail handler

4. exploit bug in finger

program

(buffer overflow)

Stop! What is Security?

What is security?

Breakout
rooms

Courses

Chalmers/GU

1. Computer

Security

2. Cryptography

3. Language-based

Security

4. Network security

5. ICT Support for

Adaptiveness and

(Cyber)security in

the Smart Grid

Design
vs

Reality

Courses

Chalmers/GU

1. Computer

Security

2. Cryptography

3. Language-based

Security

4. Network security

5. ICT Support for

Adaptiveness and

(Cyber)security in

the Smart Grid

Explanation of Attacks

Treasure

Chat!

Security is the lack of insecurity!

The Challenges of Computer Security

1. Security is not as simple as it may appear to the novice.

Possible to attack the security mechanism?

Security is not done in isolation from the rest of the system.

2. Security is a “chess game” between the attacker and the security
administrator:

The attacker only needs to find a single vulnerability to penetrate the
system, while the administrator needs to patch all holes to ensure
system security.

3. Natural tendency to disregard security problems until a security failure
occurs.

4. Security is a process ➔ constant monitoring, long-term perspective.

5. Security is often an afterthought – added after the system has been
designed.

6. Some users think security is restricting them in their job.

See Stallings & Brown: Computer Security, Pearson 2008, ISBN: 978-0-13-513711-6, page 11

And even lamps need security

http://www.meethue.com/en-US

http://www.youtube.com/watch?feature=player_embedded&v=LoQj08SluXo

Security of Data – “CIA”

Data Data Data

Confidentiality AvailabilityIntegrity

Data

Secure Data

Many other
definitions exist!

Reproduced with permission. Please visit www.SecurityCartoon.com for more material.

The Morris Worm – Steps

Principle for function

A. Intrusion (99 lines)

B. Transfer of main

program

C. Settling down and

establishing

(cracking accounts,

hiding, etc)

D. Continued intrusions

Details (4 well-known attacks)

1. finding trust relations

2. guess/crack passwords

3. use debug facility in the

sendmail mail handler

4. exploit bug in finger

program

(buffer overflow)

The Morris Internet Worm

Finding trust relations

The worm obtains host addresses by examining

the system tables /etc/hosts.equiv and

/.rhosts,

user files like .forward

dynamic routing information produced by the netstat, and finally

randomly generated host addresses on local networks.

It ranks these by order of preference, but what does it mean?

The /etc/hosts.equiv File

The /etc/hosts.equiv file contains

a list of trusted hosts for a remote system.

If a user attempts to log in remotely (using rlogin) from

one of the hosts listed in this file, and if the remote

system can access the user's password entry, the

remote system allows the user to log in

without a password.

Finding trust relations

The worm obtains host addresses by examining

the system tables /etc/hosts.equiv and

/.rhosts,

user files like .forward

dynamic routing information produced by the netstat, and finally

randomly generated host addresses on local networks.

It ranks these by order of preference, but what does it mean?

It contains names of local machines that are likely to permit

unauthenticated connections.

Can you setup the same trust
relations with modern programs?

The Morris Worm – Steps

Principle for function

A. Intrusion (99 lines)

B. Transfer of main

program

C. Settling down and

establishing

(cracking accounts,

hiding, etc)

D. Continued intrusions

Details (4 well-known attacks)

1. finding trust relations

2. guess/crack passwords

3. use debug facility in the

sendmail mail handler

4. exploit bug in finger

program

(buffer overflow)

Guess/crack passwords

Assumption: A user is using the same passwords on all systems

Crack local password file

Each user’s account name and simple permutations of it

A list of 432 built-in passwords that Morris thought would be likely

aaa cornelius guntis noxious simon academia couscous hacker

nutrition simple aerobics creation hamlet nyquist singer airplane

creosote handily oceanography single albany cretin happening

ocelot smile

All the words in the local system dictionary

So are people better today with their passwords?

Breakout
rooms

Guess/crack passwords

s 1487

123456 1290

hejhej 671

hejsan 580

fotboll 389

123456789 368

bajskorv 328

sommar 322

blomma 285

123123 248

mamma 239

dinmamma 220

johanna 188

1234 169

12345 164

amanda 161

smulan 154

hejhejhej 145

bajs 143

kalleanka 143

qwerty 142

hemligt 136

abc123 136

sverige 135

Thanks to Martin Holst Swende

Guess/crack passwords

s 1487

123456 1290

hejhej 671

hejsan 580

fotboll 389

123456789 368

bajskorv 328

sommar 322

blomma 285

123123 248

mamma 239

dinmamma 220

johanna 188

1234 169

12345 164

amanda 161

smulan 154

hejhejhej 145

bajs 143

kalleanka 143

qwerty 142

hemligt 136

abc123 136

sverige 135

Thanks to Martin Holst Swende

hundar (133) > katter (110)

mammamia (118)

sommarlov (103)

amanda, linnea, sandra, andersson, emelie, matilda

Rainbow table

A rainbow table is a precomputed table for

reversing cryptographic hash functions, usually

for cracking password hashes. Tables are

usually used in recovering a plaintext password

up to a certain length consisting of a limited set

of characters.

Rainbow table - Wikipedia, the free

encyclopedia

en.wikipedia.org/wiki/Rainbow_table

http://en.wikipedia.org/wiki/Rainbow_table

h
tt

p
s:

//
xk

cd
.c

o
m

/9
3

6
/

--
--

Pa
ss

w
o

rd
 m

an
ag

er
s

https://xkcd.com/936/

h
tt

p
s:

//
xk

cd
.c

o
m

/9
3

6
/

--
--

Pa
ss

w
o

rd
 m

an
ag

er
s

Making them more secure:
Exercise!

https://xkcd.com/936/

The Morris Worm – Steps

Principle for function

A. Intrusion (99 lines)

B. Transfer of main

program

C. Settling down and

establishing

(cracking accounts,

hiding, etc)

D. Continued intrusions

Details (4 well-known attacks)

1. finding trust relations

2. guess/crack passwords

3. use debug facility in the

sendmail mail handler

4. exploit bug in finger

program

(buffer overflow)

Use debug facility in the sendmail

"trap door" in the sendmail SMTP mail service,

A bug in debugging code allows the daemon to to execute a command

interpreter and download code across a mail connection.

Exploit bug in finger program

Buffer Overflow

Herbert Bos
VU University Amsterdam

A (really) simple introduction to
buffer overflows

Herbert Bos

Vrije Universiteit Amsterdam

course repository

Exploits

• program has a security hole

• exploit = input that abuses the vulnerability

• In this module we will discuss an example:

the Buffer overflow

software

• sequence of instructions in memory
• logically divided in functions that call

each other
– function ‘IE’ calls function ‘getURL’ to read

the corresponding page

• in CPU, the program counter contains
the address in memory of the next
instruction to execute
– normally this is the next address

(instruction 100 is followed by instruction
101, etc)

– not so with function call

200

201

202

203

204

100

101

102

103

IE
g
e
tU

R
L

104

call getURL

return result

software

• so how does our CPU know
where to return?

– it keeps administration

– on a ‘stack’
200

201

202

203

204

100

101

102

103

104

s
ta

c
k

1020

1021

1022

1023

1024

PC

PC

call readURL

return result

PC

103

PC

PC

PC

PC

PC

PC

PC

IE
g
e
tU

R
L

real functions
have variables

200

201

202

203

100

101

102

103

IE
re

a
d
 U

R
L

104

call readURL

return result

getURL ()

{

char Buf[10];

read(keyboard,Buf,128);

get_webpage (Buf);

}

IE ()

{

getURL ();

}

s
ta

c
k

103

1022

1023

1024

1019

1021

1020

1018

1017

1016

1015

1014

1013

1012

1011

1010

real functions
have variables

200

201

202

203

100

101

102

103

IE
re

a
d
 U

R
L

104

call readURL

return result

s
ta

c
k

103

1022

1023

1024

1019

1021

1020

1018

B
u
f

1017

1016

1015

1014

1013

1012

1011

1010

getURL ()

{

char Buf[10];

read(keyboard,Buf,128);

get_webpage (Buf);

}

IE ()

{

getURL ();

}

what is next?

• we have learned a lot

• but where are the vulnerabilities?

• and how do we exploit them?

Exploit 103

1022

1023

1024

1019

1021

1020

1018

B
u
f

1017

1016

1015

1014

1013

1012

1011

1010

getURL ()

{

char Buf[10];

read(keyboard,Buf,128);

get_webpage (Buf);

}

IE ()

{

getURL ();

}

1014

That is it, really

• all we need to do is stick our program in the
buffer

The Morris Worm – Steps

Principle for function

A. Intrusion (99 lines)

B. Transfer of main

program

C. Settling down and

establishing

(cracking accounts,

hiding, etc)

D. Continued intrusions

Details (4 well-known attacks)

1. finding trust relations

2. guess/crack passwords

3. use debug facility in the

sendmail mail handler

4. exploit bug in finger

program

(buffer overflow)

Internet Worm – Establishing

(B) Program transfer

After the intrusion the program (~200 Kbytes) was transferred in a

secure way (!)

(C) Establishing

guess/crack passwords (root password was not utilised!)

camouflage activities (fork, simple EOR-encryption, no copy left on disk)

Compare with: stealth viruses

one-time password for program transfer

(D) Continued Intrusions

New machines were infected. There were facilities in the code to avoid

multiple infections, but they did not work.

There can also be bugs in malware…

Thus, the main result was that the computers/network were overloaded.

CIA – an availability failure

Protection

Access Control

Overview of Access Control

Central element to

computer security

Prevent unauthorized users

from gaining access to a

resource

Prevent authorized users

from accessing a resource

in an unauthorized manner

Enable legitimate users to

access resources in an

authorized manner

CIA-model

Data Confidentiality

Data Availability

Data Integrity

Actors

Subjects→ Generalization to domains

Users, processes, etc

Objects

Files, Memory locations, users, processes [different modules / type]

access control matrix

Access Rights

Read, write, execute, delete, create, search

Transfer rights, grant rights, create / destroy object

Authentication KEY for access control to work

Garbage in, garbage out

Properties of access control

Reliable input

A user needs to be authentic! → Authentication needed

Least Privilege (similar to ”need to know”)

Only grant minimum authorization to do the job

Programs, users and systems should be given just enough privileges

to perform their tasks

Limits damage if entity has a bug, gets abused

Can be static (during life of system, during life of process)

Or dynamic (changed by process as needed) – domain switching,

privilege escalation

Separation of duty

Divide steps in a process so that no single individual can subvert a

process.

Support for fine-grained, course-grained specifications

Principles of Protection (Cont.)

Must consider “grain” aspect

Rough-grained privilege management easier, simpler,

but least privilege now done in large chunks

 For example, traditional Unix processes either have

abilities of the associated user, or of root

Fine-grained management more complex, more

overhead, but more protective

 File ACL lists, RBAC

Domain can be user, process, procedure

Domain Structure

Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can

be performed on the object

Domain = set of access-rights

Domain Implementation (UNIX)

Domain = user-id

Domain switch accomplished via file system

 Each file has associated with it a domain bit (setuid bit)

 When file is executed and setuid = on, then user-id is

set to owner of the file being executed

 When execution completes user-id is reset

Domain switch accomplished via passwords

su command temporarily switches to another user’s

domain when other domain’s password provided

Domain switching via commands

sudo command prefix executes specified command in

another domain (if original domain has privilege or

password given)

Access Matrix

View protection as a matrix (access matrix)

Rows represent domains

Columns represent objects

Access(i,j)

the set of operations that a process executing in Domaini
can invoke on Objectj

Access Matrix

If a process in Domain Di tries to do “op” on object Oj, then “op”
must be in the access matrix

User who creates object can define access column for that object

Can be expanded to dynamic protection

Operations to add, delete access rights

Special access rights:

 owner of Oi

 copy op from Oi to Oj (“*”)

 control – Di can modify Dj access rights

 transfer – switch from domain Di to Dj

Access Matrix of Figure A with Domains as Objects

Access Matrix With Copy/Owner Rights

Use of Access Matrix (Cont.)

Access matrix design separates mechanism from policy

Mechanism

 Operating system provides access-matrix + rules

 If ensures that the matrix is only manipulated by

authorized agents and that rules are strictly enforced

Policy

 User dictates policy

 Who can access what object and in what mode

Implementation of Access Matrix

Generally, a sparse matrix

Option 1 – Global table

Store ordered triples <domain, object, rights-set> in
table

A requested operation M on object Oj within domain Di

-> search table for < Di, Oj, Rk >

 with M ∈ Rk

But table could be large -> will not fit in main memory

Difficult to group objects
(consider an object that all domains can read)

Implementation of Access Matrix (Cont.)

Option 2 – Access lists for objects

Each column implemented as an access list for one object

Resulting per-object list consists of ordered pairs

<domain, rights-set>

defining all domains with non-empty set of access rights for the object

Easily extended to contain default set
-> If M ∈ default set, also allow access

Implementation of Access Matrix (Cont.)

Option 3 – Capability list for domains

Instead of object-based, list is domain based

Capability list for domain is list of objects together with operations

allows on them

Object represented by its name or address, called a capability

Execute operation M on object Oj, process requests operation and

specifies capability as parameter

 Possession of capability means access is allowed

Capability list associated with domain but never directly accessible

by domain

 Rather, protected object, maintained by OS and accessed

indirectly

 Like a “secure pointer”

 Idea can be extended up to applications

Implementation of Access Matrix (Cont.)

Each column = Access-control list for one object
Defines who can perform what operation

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

Each Row = Capability List (like a key)
For each domain, what operations allowed on what objects

Object F1 – Read

Object F4 – Read, Write, Execute

Object F5 – Read, Write, Delete, Copy

Comparison of Implementations

Many trade-offs to consider

Global table is simple, but can be large

Access lists correspond to needs of users

 Determining set of access rights for domain non-

localized so difficult

 Every access to an object must be checked

– Many objects and access rights -> slow

Capability lists useful for localizing information for a given

process

 But revocation capabilities can be inefficient

Comparison of Implementations (Cont.)

Most systems use combination of access lists and

capabilities

First access to an object -> access list searched

 If allowed, capability created and attached to

process

– Additional accesses need not be checked

 After last access, capability destroyed

 Consider file system with ACLs per file

Courses

Chalmers/GU

1. Computer

Security

2. Cryptography

3. Language-based

Security

4. Network security

5. ICT Support for

Adaptiveness and

(Cyber)security in

the Smart Grid

http://www.cse.chalmers.se/edu/master/secspec/

Where to go from here?

