Lecture 9: Virtual Memory
Operating Systems — EDA093/DIT401

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

UNIVERSITY OF
GOTHENBURG

Reading instructions

* Chapter 3.3 to 3.6

(extra facultative reading: 9.1-9.4.5, 9.5 to 9.7.1 from Silberschatz
Operating System Concepts)

Objectives

* To describe the benefits of a virtual memory system

* To explain the concepts of demand paging, page-replacement
algorithms, and allocation of page frames

* To discuss the principle of the working-set model

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation of Frames

* Thrashing
° Memory—Mapped files [Self-reading]

Agenda

* Recap / Introduction

* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation ot Frames

* Thrashing

* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

... we discussed paging!

page O

page 1

page 2

page 3

logical
memory

frame
number

0

1

2

Vincenzo Gulisano

page O

R
s 4

page O
page 1
page 2
page 3

page 2

page 1

page 3

physical
memory

new process
L

Logical and physical
memory more and
more separated

[

* Split logical memory in pages
* Split physical memory in frames

* Keep a program (disk)
organized 1n pages

Page size = Frame size!

Protection

Faster loading
/ swapping

Operating Systems - Lecture 9 - Virtual Memory 6

The intuition behind Virtual Memory

frame
number
' d
page O 0 .
E What would happen if the OS does
1 1 0 :
i 1[4 . not load page 3 in frame 77
213 . .
page 2 - 2 (does not load at all, not in a different frame)
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

The intuition behind Virtual Memory

frame
number
' d
page 0 0 .
o[What would happen if the OS does
1 1 0 :
i dE B not load page 3 in frame 7?
2|3 . .
page 2 o 2 (does not load at all, not in a different frame)
page 3 page table 3| page 2
e
logical 4| page 1 -'
memory When would that be a problem?
5
6
7| page 3
physical
memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

The intuition behind Virtual Memory

frame
number
' d
page 0 0 .
o[What would happen if the OS does
1 1 0 :
i dE B not load page 3 in frame 7?
2[3 . .
page 2 N 2 (does not load at all, not in a different frame)
page 3 page table 3| page 2
' d
logical 4| page 1
memory i When would that be a problem?
5
6
7| page 3 S
physical Q) Let’s wait until the process tries
memory

to access page 3... It it does,
then we will load it into frame 7!

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

Virtual Memory in a Nutshell (1)

frame

number * Code needs to be in memory to execute,
page 0 0 but entire program rarely used
O .
page 1 1[4 flpage0 o FEntire program code not needed at same
213 ’
2 2 time
page -
page 3 page table 3| page2 o Jf we manage to execute partially-loaded
logical T rams:
e 4| page 1 p Oograms | o
| 5 * Program no longer constrained by limits of
Unusual routines physical memory
6 .
Error code * Fach program takes less memory while
7| pages running -> more programs run at the same
physical time
memory

* Less I/O needed to load or swap programs
into memory -> each user program runs
faster

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 10

Virtual Memory 1n a Nutshell (11)

* What are the costs / trade-offs / complications when executing partially-
loaded programs:

* Need a mechanism to check if a page 1s
actually in the frame or not

* Because of this mechanism, sometimes
accessing a page might require more time
than expected

e .. and more ...

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 11

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation ot Frames

* Thrashing
* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 12

Demand Paging

* Could bring entire process into memory at load time

* Or bring a page into memory only when it 1s needed
* Less I/O needed

* Less memory needed

* More users

* Page is needed = reference to it

* not-in-memory = bring to memory

* Lazy swapper / pager — never swaps a page into memory unless page

will be needed

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

13

Basic Concepts

* Pager brings in only those pages into memory
* Need new MMU functionality to implement demand paging

* If pages needed are already memory resident

* No difference from non demand-paging

* If page needed and not memory resident

* Need to detect and load the page into memory from storage
* Without changing program behavior

* Without programmer needing to change code

Valid-Invalid Bit

* With each page table entry a valid—invalid bit is
associated
(v = in-memory — memory resident, 1 = not-in- S
memorw Frame # valid-invalid bit

* Initially valid—invalid bit is set to 1 on all entries
* Example of a page table snapshot:

< <<

page table
* During MMU address translation, if valid—invalid bit in
page table entry is 1 = page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 15

Page Table When Some Pages Are Not in Main Memory

Vincenzo Gulisano

~N o o B~ W N

G (SR R (S (e (e

H

logical
memory

valid—i_nvalid
frame bit

A
4 |v

~N o o1~ W N = O

i
Vv
i
i
Vv
i
i

page table

0
1
2
3 <
S L. 4
5
6 C A B
! C D E
8
ol F F| |G| [H
10
11

-l w
12
13
14
15

physical memory

Operating Systems - Lecture 9 - Virtual Memory

16

Page Fault

* It there is a reference to a page, first reference to that page will
trap to operating system:

page fault
1.Operating system looks at another table to decide:

e Invalid reference = abort

* Just not in memory
2.Find free frame
3.Swap page into frame via scheduled disk operation

4.Reset tables to indicate page now in memory
Set validation bit = v

5.Restart the instruction that caused the page fault

Steps 1n Handling a Page Fault

load M

page is on
backing store

operating
system

reference

®

N

Vincenzo Gulisano

©

restart page table

@

trap

free frame

Instruction

reset page
table

\v

o

physical
memory

_—
bring in
missing page

Operating Systems - Lecture 9 - Virtual Memory

18

Aspects ot Demand Paging

* Pure demand paging — start process with 7o pages 1n memory

* OS sets instruction pointer to first instruction of process, non-memory-resident ->

page fault

* And for every other process pages on first access

* Hardware support needed for demand paging
* Page table with valid / invalid bit
* Secondary memory (swap device with swap space)

* Instruction restart

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

19

Performance of Demand Paging

* Stages in Demand Paging (worse case)

Trap to the operating system
Save the user registers and process state

Determine that the interrupt was a page fault

Check that the page reference was legal and determine the location of the page on the disk

AR o

Issue a read from the disk to a free frame:
1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time

3. Begin the transfer of the page to a free frame
While waiting, allocate the CPU to some other user
Receive an interrupt from the disk I/O subsystem (I/O completed)

Save the registers and process state for the other user

o o e

Determine that the interrupt was from the disk
10.Correct the page table and other tables to show page 1s now in memory
11.Wait for the CPU to be allocated to this process again

12.Restore the user registers, process state, and new page table, and then resume the interrupted instruction

Performance of Demand Paging (Cont.)

* Three major activities
* Service the interrupt — careful coding means just several hundred instructions needed
* Read the page — lots of time
* Restart the process — again just a small amount of time

* Page Fault Rate 0 < p <1
* if p = 0 no page faults

* if p =1, every reference 1s a fault

* Ettective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page 1n)

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation of Frames

* Thrashing
* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 22

Copy-on-Write

* Example of optimization enabled by separation of Logical from Physical
memory and by demand paging

¢ Copy-on-Write (COW) allows both parent and child processes to initially share the

same pages in memory

* If either process modifies a shared page, only then 1s the page copied

* COW allows more efficient process creation as only modified pages are copied

 viork () variation on fork () system call has parent suspend and child using copy-
on-write address space of parent

* Designed to have child call exec ()
* Very etficient

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 23

Before Process 1 Modifies Page C

physical
process, memory

> pageA [«

Process,

L—> page B |«

L—» pageC j«—

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

24

After Process 1 Modifies Page C

physical
process, memory

pProcess,

— page A R—

- page B «—

page C —]

— Copy of page C

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

25

DIRTY COW

Vincenzo Gulisano

Why is it called the Dirty COW bug?

"A race condition was found in the way the Linux
kernel's memory subsystem handled the copy-on-
write (COW) breakage of private read-only memory
mappings. An unprivileged local user could use
this flaw to gain write access to otherwise read-
only memory mappings and thus increase their
privileges on the system." (RH)

Dirty COW (Dirty copy-on-write) is a computer security
vulnerability for the Linux kernel that affects all Linux-based
operating systems including Android. It is a local privilege
escalation bug that exploits a race condition in the
implementation of the copy-on-write mechanism.!1!2] The bug
has been lurking in the Linux kernel since version 2.6.22
(released ir@ember 2007),and has been actively exploited
atfeast since OctoberZ(N% The bug has been patched in
Linux kernel versions 4.8.3, 4.7.9, 4.4.26 and newer.

Operating Systems - Lecture 9 - Virtual Memory 26

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation ot Frames

* Thrashing
* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 27

Suppose we end up in a situation like the tollowing one

valid—invalid
0 H frame bit 0| monitor
1| load M & J 1 l
0a
PC —> 8 |v
ol U allli 2| D
5 |v
Y i 3| H
logical memory page table 4| load M
for process 1 for process 1
5 J
6 A
valid—invalid 7 E
o A frame bit
N ¥ physical
1 B 6 |v memory
2| D |
2 |v
3 = 7|V
logical memorv page table

for process 2 for Process 2

Process 1 needs a free frame (but 0 available!)

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

)

9

 What to do now?

* Can we replace an existing page?

* Should it be from process 1 or can it
also be from process 2¢

* Is there any page that is faster to
swap out than others?

* Is there any page that has lower
Dprobability of being needed later on?

* Could have we prevented this
situation?

* How many page should we have
allocate to the OS and to processes 1
and 2 to prevent this?

28

Vincenzo Gulisano

Page and Frame Replacement Algorithms

* What to do now?
* Can we replace an existing page?

* Should it be from process 1 or can it
also be from process 2¢

o Is there any page that is faster to
swap out than others?

o Is there any page that has lower
probability of being needed later on?

* Conld have we prevented this
situation?

* How many page should we have
allocate to the OS and to processes 1
and 2 to prevent this?

Frame-allocation algorithm
determines how many frames to give each
process

Page-replacement algorithm

Which page to replace? Want lowest
page-fault rate on both first access

and re-access

Operating Systems - Lecture 9 - Virtual Memory 29

Page Replacement

* Prevent over-allocation of memory by modifying page-fault
service routine to include page replacement

* Use modify (dirty) bit to reduce overhead of page transfers —
only modified pages are written to disk

* Page replacement completes separation between logical memory
and physical memory — large virtual memory can be provided on a
smaller physical memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 30

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there 1s a free frame, use it
- It there 1s no free frame, use a page replacement algorithm to
select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the
page and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transters for page fault — increasing EAT

Page replacement algorithms

* We are going to take into account:

* FIFO (First-In-First-Out)

* Optimal algorithm

* Least Recently Used (I.LRU)
* Approximated LRU

Page Replacement

frame valid—invalid bit

N Y

P N
N

swap out
0 | i to invalid @ Page
t v /
@ #| victim
reset page
table for
page table new page @ swap
desired
page in

¥

physical
memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

How to evaluate a page replacement algorithm?

* Run it on a particular string of memory references
(reference string) and computing the number of page faults
on that string

* String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault

* Results depend on number of frames available

* In all our examples, the reference string of referenced page
numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

34

What do we expect?
(Graph of Page Faults Versus The Number of Frames)

—
(0))

oo
NN
e

—
(A}

—
o

number of page faults

N A~ OO 0

1 2 3 4 5 6
number of frames

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 35

First-In-First-Out (FIFO) Algorithm

* If all frames are used, free the one containing the page loaded more time ago
* Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0321 2 017 0 1

Page needed: 7 Page faults: O

Status of frames: -

Is it there? NO
Do we have a free frame? YES
If YES, load the page

+1 page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 36

First-In-First-Out (FIFO) Algorithm

* If all frames are used, free the one containing the page loaded more time ago
* Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0321 2 017 0 1

Page needed: O Page faults: 1

Status of frames:

Is it there? NO
Do we have a free frame? YES
If YES, load the page

+1 page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 37

First-In-First-Out (FIFO) Algorithm

* If all frames are used, free the one containing the page loaded more time ago
* Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0321 2 017 0 1

Page needed: 1 Page faults: 2

Status of frames:

Is it there? NO
Do we have a free frame? YES
If YES, load the page

+1 page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 38

First-In-First-Out (FIFO) Algorithm

* If all frames are used, free the one containing the page loaded more time ago
* Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0321 2 017 0 1

Page needed: 2 Page faults: 3

Status of frames: | © I

Is it there? NO
Do we have a free frame? NO
If NO, substitute the page loaded more time ago (7)

+1 page fault

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 39

First-In-First-Out (FIFO) Algorithm

* If all frames are used, free the one containing the page loaded more time ago
* Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
* 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0321 2 017 0 1

Page needed: O Page faults: 4

Status of frames: | 2 1

Is it there? YES

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 40

First-In-First-Out (FIFO) Algorithm

* Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

* 3 frames (3 pages can be in memory at a time per process)

reference string
7 012 0 3 0 4 2 3 03 21 2 017 0 1
7| 7] [7] [2] [2] [2] [4] [4] [4] [0 0| [0 7] [7] [7]
|19 100 19 B[13 18] 2] 2] |2 il 8
O @ (9 9 19] 18] 18] 3 |2 2] 2] 1]
page frames

15 page faults

* Can vary by reference string: consider 1,2,3,4,1,2.5,1,2,3,4,5

* Adding more frames can cause more page faults!
* Belady’s Anomaly

* How to track ages of pages?
* Just use a FIFO queue

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

41

FIFO Illustrating Belady’s Anomaly

—i
o

number of page faults

nNn B~ O 00

1 2 3 4 5 6
number of frames

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

42

Optimal Algorithm

* Replace page that will not be used for longest period of time

* 9 1s optimal for the example

* How do you know this?

e Can’t read the future

* Used for measuring how well your algorithm performs

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 01 7 0 1

7| [7] [7] [2] [2 2 2 2 [H
0| (0 0 4 0 0 0
1] (1 3 3 3 1 1

page frames

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

Least Recently Used (LRU) Algorithm

* Use past knowledge rather than future
* Replace page that has not been used in the most amount of time

* Associate time of last use with each page

reference string
/ 0 1 2 0 38 0 4 2 3 0 3 2 1 2 0 1 7 0 A1

i N N 2 4 (4] (4| |0 1 1 1
O 10| [0 O 0] (3| |3 3 0 0
| 3 3| 12| (2 (2 2 2 7

page frames

* 12 faults — better than FIFO but worse than OPT
* Generally good algorithm and frequently used

* But how to implement?

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

LLRU Algorithm (Cont.)

* Counter implementation

* Every page entry has a counter; every time page is referenced through
this entry, copy the clock into the counter

* When a page needs to be changed, look at the counters to find
smallest value

* Search through table needed

* Stack implementation
* Keep a stack of page numbers in a double link form:
* Page referenced = move it to the top
* Fach update more expensive

* No search for replacement (page to replace at the bottom of the stack)

Use Of A Stack to Record Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

46

LLRU Approximation Algorithms

* LRU needs special hardware and still slow

* Reference bit
* With each page associate a bit, initially = 0
* When page is referenced bit set to 1

* Replace any with reference bit = 0 (if one exists)

* We do not know the order, however
* Second-chance algorithm

* Generally FIFO, plus hardware-provided reference bit
* Clock replacement
* If page to be replaced has

* Reference bit = 0 -> replace it

* reference bit = 1 then:

* set reference bit 0, leave page in memory

* replace next page, subject to same rules

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

47

Second-Chance (clock) Page-Replacement Algorithm

Vincenzo Gulisano

next
victim

reference
bits

0

—

pages

~

< & | |

v

N

circular queue of pages

(a)

reference pages

bits m

0
v

0
v

0
v

0
v

=) 0

]
v

1

N

circular queue of pages

(b)

Operating Systems - Lecture 9 - Virtual Memory

48

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation of Frames

* Thrashing
* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 49

Page and Frame Replacement Algorithms

9 . What to do now?

* Can we replace an existing page?

* Should it be from process 1 or can it
also be from process 2¢

o Is there any page that is faster to
swap out than others?

o Is there any page that has lower
probability of being needed later on?

* Conld have we prevented this
situation?

* How many page should we have
allocate to the OS and to processes 1
and 2 to prevent this?

— o o o
- -~~
- ~

< ~
Frame-allocation algorithm B
determines how many frames to give each ‘,
process /
7/
~ //
~ -

~~- i
- e s e o -

Page-replacement algorithm

Which page to replace? Want lowest
page-fault rate on both first access

and re-access

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 50

Allocation of Frames

* Each process needs minimum number of frames

* Maximum ot course is total frames in the system

* Two major allocation schemes
* fixed allocation

* priority allocation

* Many variations

Fixed Allocation

* Equal allocation — For example, if there are 100 frames

(after allocating frames for the OS) and 5 processes, give
each process 20 frames

* Keep some as free frame buffer pool

* Proportional allocation — Allocate according to the size of
process

* Dynamic as degree of multiprogramming, process sizes change

m =64
— §; = size of process p; 61 =10
—S =S s, =127
— m = total number of frames a =20 62~4
137
— a; = allocation for p; = Siem 127
i ! a,=——x62=57

137

Priority Allocation

* Use a proportional allocation scheme using priorities
rather than size

* If process P;generates a page fault,
* select for replacement one of its frames

* select for replacement a frame from a process with lower
priority number

Global vs. Local Allocation

* Global replacement — process selects a replacement
frame from the set of all frames; one process can take a
frame from another

* But then process execution time can vary greatly

* But greater throughput so more common

* Local replacement — each process selects from only its
own set of allocated frames

* More consistent per-process performance

* But possibly underutilized memory

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

54

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation of Frames

* Thrashing
* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 55

Thrashing

* If a process does not have “enough” pages, the page-fault
rate is very high
* Page fault to get page
* Replace existing frame
* But quickly need replaced frame back

e This leads to:

 Low CPU utilization

* Operating system thinking that it needs to increase the degree of
multiprogramming
* Another process added to the system

* Thrashing = a process 1s busy swapping pages in and out

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

56

Thrashing (cont.)

Process needs frames

(global page replacement)

~)

“steals’ frames from

other processes

~

Paging device queue grows
Ready queue decreases

~

OS increases degree of

multiprogramming

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 57

Thrashing (Cont.)

thrashing

"

CPU utilization

-

degree of multiprogramming

Sometimes the OS needs to reduce degree of
parallelism to increase CPU utilization

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

58

Demand Paging and Thrashing

* Why does demand paging work?
Locality model
* Process migrates from one locality to another

* Localities may overlap

* Why does thrashing occur?
2 size of locality > total memory size

* Limit effects by using local or priority page replacement

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

59

Locality In A Memory-Reference Pattern

Vincenzo Gulisano

LULLLLLL IIIIl L

34 b W H— ‘ H“WHH
) IH‘Hj‘l Ml “H\HHH‘::H“”W it ““‘T”“"”\” L] "
o
: ‘ A | |
32 i "" \\\\\\\\\\\\\\\\\\\\\\\\\\\\ HH\I ||:|HIH\ }H ‘ }l‘ Pl
- _‘ R H ||“ ‘ ‘ H‘I‘ \‘ IH \“ ‘|i|l N‘H ||' I T
\“‘“H T] } ;\jj i IHIII!.‘{I 1. MH" “““ %'”M
il Il ! '
i) ‘ u|..y”jHH | ‘ \Ih I | m‘ l” ‘\ llm\ I ‘m‘ M‘ HIN ‘
30 % Jl H IH g MHH - ‘ l‘ ' J‘I=] \h “\ H‘H H‘H ““““ —
HHJ\.HW'M e, T ::!'t"!tr'*wslt‘w Al
e
2 i
g)) N ‘\II H
o) \
S ‘ e
8 1‘.“.”. M Lo 1
> 26 !
o . L
I : |
Q y —) It
" Ul I
e i j S
04 |l Nl ‘i L HH”L‘M[{ i T lit
T R
g l | | P
1. .
T i ‘ il
\'IHEH \H!Hm““a\‘H“umm 1}“’\‘. !HMMHHHH \WIHH ! H“ H .HH W H {M‘
29 Hupdis , mnm nnHJ U ,
T muumm”rwunmmmmwulll H L Hl m HHW e \
HHHHHH HHM JH“'““”HHWMI “ - \mlllh lmmlmw Hlmuullllm g
I 1 A A O T HPRT I |
: W I o
2 ‘ |‘ L e ifiiiiiii(((‘iiiiiifffmmmwsm |
§ 1w m111:1:::::ziiiifff???”flhi?llll'ilim“ll! {— S ml ll‘TTT*ﬂfU
o) TR i o m mun 0 e ‘?' M
g H ‘) uumm I HHH e s o HW
S 4| i HHIHH i Hhm\\“w\um\mmumumiH\HnnH T

execution time ——

Operating Systems - Lecture 9 - Virtual Memory

60

How could the OS avoid trashing?

o

2

Working-Set Model

page reference table

...2615777751623412344434344413234443444...

4

-

2 Ly

WS(t,) ={1,2,5,6,7} WS(t,) = {3,4}

A = working-set window = a fixed number of page references

Example: 10,000 instructions

WSS; (Working Set Size ot Process 1) =

total number of pages referenced in the most recent A (varies in time)

* if A too small will not encompass entire locality

* if A too large will encompass several localities

* if A=o00= will encompass entire program

D (Total demand for frames) = 2 WSSi

* Approximation of locality

it D > available frames m = Thrashing

How to keep track of the
Working Set?

Policy if D > m, then suspend or swap out one of the processes

Vincenzo Gulisano

Operating Systems - Lecture 9 - Virtual Memory

62

Page-Fault Frequency

* More direct approach than WSS

* Establish “acceptable” page-fault frequency (PFF)
rate and use local replacement policy

* If actual rate too low, process loses frame
* If actual rate too high, process gains frame

A

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

\ 4

number of frames

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

63

Working Sets and Page Fault Rates

B Direct relationship between working set of a process and its page-fault rate
B Working set changes over time

B Peaks and valleys over time

working set
1
page
fault
rate
0
time

By looking at the Page Fault Rate you can observe the
working set variations over time

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory

64

Agenda

* Recap / Introduction
* Demand Paging

* Copy-on-Write

* Page Replacement

* Allocation of Frames

* Thrashing
* Memory-Mapped files [Self-reading]

Vincenzo Gulisano Operating Systems - Lecture 9 - Virtual Memory 65

Memory-Mapped Files

* Memory-mapped file I/O allows file I/O to be treated as
routine memory access by mapping a disk block to a page in
memory

* A file 1s initially read using demand paging

* A page-sized portion of the file 1s read from the file system into a
physical page

* Subsequent reads/writes to/from the file are treated as ordinary
MmMemory accesses

* Simplifies and speeds file access by driving file I/O through
memory rather than read () and write () system calls

* Also allows several processes to map the same file allowing the
pages in memory to be shared

* But when does written data make it to disk?
* Periodically and / or at file close () time
* For example, when the pager scans for dirty pages

67

]
2
3
4
5
6
process B
virtual memory

disk file

213[4[5|6

3

6

1

5

4

2
physical memory

Operating Systems - Lecture 9 - Virtual Memory

]
2
3
4
5
6
process A
virtual memory

Memory Mapped Files

Vincenzo Gulisano

Shared Memory via Memory-Mapped 1/0O

Process;

shared
memory

Vincenzo Gulisano

S .l memory-mapped
TN .l file
-~ . shared
T e memory

Operating Systems - Lecture 9 - Virtual Memory

Process,

shared
memory

68

Thank you tor your attention!

Please evaluate the lecture!

https://forms.gle/EKVCNbxYsCf16eiGA

https://forms.gle/EKVCNbxYsCf16eiGA

