
[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Course Operating Systems
Lecture 7:

a. Landmarks on Synchronization
b. RA with OS as arbitrator (avoid/recover from deadlocks)

EDA093, DIT 401
Study Period 1

1

Ack: several figures in the slides are from the books
- Modern Operating Systems by A. Tanenbaum, H. Bos
- The art of multiprogramming, by M. Herlihy, Shavit
- OS Concepts by Silberschatz et-al
- Operating systems by W. Stallings

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Roadmap

Understanding Synchronization better: some landmark methods/problems
• Lamport’s Bakery algorithm

2

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 3

Critical Section for n threads

One idea: Before entering its critical section, each thread gets a number. Holder of the
smallest number enters the critical section.

Understanding synchronization better

http://www.google.se/imgres?imgurl=http://www.lio.se/upload/bildarkiv/Arsredovisning/2002/Verksamheten/Nummerlapp180.jpg&imgrefurl=http://www.lio.se/Planering-och-uppfoljning/Arsredovisning/Arsredovisning-2002/Verksamheten/Halso-och-sjukvard/Halso-och-sjukvarden-utvecklas-och-fornyas/Insatser-for-att-forbattra-tillgangligheten/Vantetider-i-primarvarden/&usg=__4llquq-XDJKNuQQwyfH_g244eSs=&h=180&w=180&sz=13&hl=sv&start=1&zoom=1&itbs=1&tbnid=Er2s4m-UC-jbIM:&tbnh=101&tbnw=101&prev=/images?q=nummerlapp&hl=sv&gbv=2&tbs=isch:1&ei=ncJLTfHqL9KEswbezbCeDw

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Lamport’s Bakery Algorithm
Critical section for n threads using R/W variables

Idea: Implement “nummerlappar” using read/write variables only:
– De-centralized numbering scheme:

• Each thread: read the others’ numbers and choose the max+1 as your “nummerlapp”
• Wait for the smaller numbers and then enter CS

That simple?! Can it work?

4

Note: the decentralized scheme may generate numbers in non-decreasing order of enumeration;
i.e., 1,2,3,3,3,3,4,5

If threads Pi and Pj choose the same number:
if i <j, then Pi goes first; else Pj goes first.

I.e. we need to use thread_id’s to break ties

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 5

Lamport’s Bakery Algorithm
pseudocode thread i

Shared var choosing: array [0..n – 1] of boolean (init fasle);
number: array [0..n – 1] of integer (init 0);

repeat
choosing[i] := true;
number[i] := max(number[0], number[1], …, number [n – 1])+1;
choosing[i] := false;
for j := 0 to n – 1 do begin

while choosing[j] do [nothing]; //spin
while number[j] ≠ 0 and (number[j],j) < (number[i], i) do [nothing]; //spin

end;
critical section

number[i] := 0;
remainder section

until false;

This is a more decentralized method than e.g. Peterson’s:
no variable is “writ-able” by all threads

Why does it satisfy the 3 conditions:
Mutex (no 2 threads A and B in CS
concurrectly): Consider the time
between A’s decision step and A’s
entry to CS; A decided to move
because:
• B had higher number: when B checks ,

it will wait for A since A has smaller
number

• or B was not interested; when B gets
interested, it will choose a number >
A’s number, hence it will wait

Progress: the thread with the smaller
number can proceed
Fairness: If A waits for B and B exits
and wants to enter CS again, if A still
waits, B will choose a number > A’s,
number, hence B cannot bypass A

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

To elaborate/think: homework
• Explain why Bakery algorithm satisfies the 3 conditions for critical section problem,

following the diagrams and the description as we did for Peterson’s algo

• Bakery algorithm idea not tied with atomic R/W variables, can work with weaker primitives:
– Read/watch Lamport’s Turing award talk (links @ reading instructions)

• Bakery algo + concurrent readers/writers gave rise to the research for lock-free synchronization

Practice further on synchronization constructs, e.g write algorithms for implementing:
– counting semaphores from binary ones
– semaphores using mutual exclusion solutions e.g. Peterson’s, Lamport’s methods, the TAS

or CAS methods
– a ticket-based (a la Bakery) method using TAS, CAS, …

6

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
• Lamport’s Bakery algorithm
• Readers-Writers problem

7

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Readers-writers problem

Solve this synch problem using semaphores; we require
1. the safety properties mentioned here; 2. progress

8

Writers write;
must wait if some writer or reader
is accessing the shared data object

(ie only one writer is allowed to write at a time)

Readers read;
must wait if some writer
is accessing the shared data object

(ie multiple readers are allowed to read at a time
but not concurrently with any writer)

Shared data object, e.g a file

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Reader

if I am first in a batch of
readers to check

wait until no one accesses the
object
(else others read, hence go on)

// READ

inform: no longer accessing the
object
(… + if I am last in a batch of

readers who read,
tell that no one accesses the
object …)

Writer

wait until no
one accesses
the object

// WRITE

no longer / no
one accessing
the object

9

Writers write;
must wait if some writer or
reader
is accessing the shared data
object

(ie only one writer is allowed
to write at a time)

Readers read;
must wait if some writer
is accessing the shared data object

(ie multiple readers are allowed to
read at a time
but not when some writer writes)

Shared data object, e.g a file

Readers-writers problem

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

A solution for readers-writers

10

Homework:
1. argue about correctness wrt
requirements (safety, progress);
2. What about fairness?

Show that the solution
enforces that readers have
“priority”…

Reader

repeat
wait(protect_check); // CS to change and check rc variable
if rc++ == 1 then wait(noone_accesses) fi

// “first” reader: block writers or wait if some of them writes
signal(protect_check);

// READ

wait(protect_check); // CS to change and check rc
if rc-- == 0 then signal(noone_accesses) fi

// “last” reader: signals
signal(protect_check)

forever

Writer

Repeat
wait(noone_accesses);

//WRITE

signal(noone_accesses)
forever

shared var:
noone_accesses, protect_check: binary semaphore; // initially 1
rc: int ; //active readers counter, init 0

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

The Readers/Writers Problem …

… paved the way to research on lock/wait-free synchronization -- concurrent
reading while writing (see also ptrs in Reading Instructions)

11

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
• Lamport’s Bakery algorithm
• Readers-Writers problem
• A touch of lock-free synchronization

12

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Shared counter problem

13

Increment
must increase the value of
the counter by one

Shared counter

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Shared counter problem: lock—based method (Critical Section)

14

Increment
must increase the value of
the counter by one

Shared counter

Standard CS-based method
shared var: mutex: binary semaphore //
init 1
A: int // holds counter’s value, init eg 0

Increment(A)
wait(mutex)

tmp := A
tmp++
A := tmp

signal(mutex)

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Shared counter problem – can we do without locking?

15

Increment
must increase the value of
the counter by one

Shared counter

Lock-free (no CS-based) method
shared var:
A: int // holds counter’s value

Increment(A)
repeat

tmp := A
until CAS(&A, tmp, tmp+1)

Standard CS-based method
shared var: mutex: binary semaphore
// init 1
A: int // holds counter value, init eg 0

Increment(A)
wait(mutex)

tmp := A
tmp++
A := tmp

signal(mutex) Recall:
CompareAndSwap (aka CAS) Instruction
Definition:
int CompareAndSwap(int *V, int exp_v, int

new_v) {

boolean effect := false ;

if (*V == exp_v) then

*V := new_v; effect := true; fi

return effect} // Executed atomically in HW

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Lock-free synchronization

16

Non-blocking stack [Treiber ’86]

Goal:
- allow more parallelization AND
- achieve the same consistency as if CS of different threads are not overlapping in time
- Possible through fine-grain synchronization, allowing a fail-retry-loop, indicated here using this symbol :

Another example:

Fig based on related figure from
The Art of Multiprocessor Programming,
by Herlihy & Shavit

new

old

old

new

https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming
https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Whys and hows?

How to argue about correctness?
• Safety condition: Linearizability [Herlihy&Wing 81]
• Progress: no livelock
• Fairness: starvation possible; tougher here to argue about fairness; ongoing research

– Work by our group shows that lock-free methods balance throughput/fairness trade-offs
[A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D.
Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas,
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html]

17

• Why lock-free synchronization?
– Efficiency, free from: convoy effects, deadlocks, priority inversion
– Better utilization of parallel HW

• cf TBB, Boost libraries

http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

To elaborate/think:
• Bakery algorithm idea not tied with atomic R/W variables, can work with even weaker primitives:

– Read/watch Lamport’s Turing award talk
• Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951
• Bakery algo + concurrent readers/writers and related work gave rise to the research for lock-

free synchronization

• Remember ”helping” from dining philosophers ”prevent the hold&wait” method?
– ”Helping” is used a lot in lock-free methods

• Large variety of synch methods: how to think/decide? Cf also eg:
- M. Herlihy&Shavit, The Art of Multiprocessor Programming (ebook),

- Lectures: http://cs.brown.edu/courses/cs176/lectures.shtml
– TBB, Boost libraries
– A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman et-al., 27th

IEEE International Parallel & Distributed Processing Symposium,
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

18

http://dx.doi.org/10.1145/2771951
https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming
http://cs.brown.edu/courses/cs176/lectures.shtml
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
• Lamport’s Bakery algorithm
• Readers-Writers problem
• A touch of lock-free synchronization

Encore about resource allocation and deadlocks:
(last lecture we discussed deadlock prevention, i.e. methods for how threads
request&acquire resources so that deadlock cannot occur)
Now: using the OS as arbitrator … Deadlock avoidance: Dijkstra’s Banker algo

19

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 20

Deadlock avoidance using the OS as arbitrator

Resource request & allocation is managed by the OS

Deadlock avoidance:
• deadlock might possible if resources are granted arbitrarily,
• but OS uses extra info to grant requests and schedule processes

s.t. it avoids deadlock
• Banker’s algorithm[Dijkstra]

icon-library.com

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 21

Graphs are useful tools: System Model

• Resource types R1, R2, . . ., Rm

– e.g. CPU, memory space, I/O devices, files
– each resource type Ri has Wi instances.

Resource-Allocation Bipartite Graph G(V,E)
• nodes:

– P = {P1, P2, …, Pn} the set of processes
– R = {R1, R2, …, Rm} the set of resources types

• edges:
– request edge: Pi → Rj

– assignment edge: Rj → Pi

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 22

Resource Allocation with Deadlock Avoidance

Deadlock-avoidance algo, run by OS:
• examines the resource-allocation state…

– Available, allocated resources
– maximum possible demands of the processes.

• …to ensure there is no potential deadlock:
– unsafe state ⇒ deadlock might occur (i.e. later, if all procs request

their maximun and no-one can be granted)

• Avoidance = ensure that system will not enter an unsafe state, by
suspending processes with risky requests, until enough resources are
freed.

Resource request & allocation is managed by the OS
Requires a priori information available.
• e.g.: each process declares maximum number of resources of each type that it may need (e.g memory/disk pages).

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 23

Enhanced Resource-Allocation Graph
For Deadlock Avoidance:

Example Safe State
Example Unsafe State:
ie granting the P2-R2 request should
not be made until P1 finishes

Claim (dashed) edge Pi
→ Rj : Pj may request Rj

Safe State

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 24

Banker’s Algorithm for Resource Allocation with
Deadlock Avoidance [Dijkstra]

Allocation[i,j] = k:
Pi holds k instances of Rj

Max [i,j] = k:
Pi may request max k instances
of Rj. Available [j] = k :

k instances of Rj are still available.

Avoidance = ensure that system will not enter an unsafe state.
Idea:

If potentially satisfying a request can result in an unsafe state // i.e. bank will have not enough to let its
customers finish and return their loans in case someone requests its max needs

then the requesting process is suspended // temporarily frozen, not scheduled
until enough resources are free-ed // by processes that will terminate in the meanwhile

How to do the safety check efficiently?
Banker’s algo gives criterion that can be checked in linear time using the Max, Allocation, Available matrices

(check the algo data structures @book and @extra-slides, as homework)

icon-library.com

http://www.google.se/imgres?imgurl=http://www.bmcfs.net/Pics/safe.jpg&imgrefurl=http://www.bmcfs.net/safe.asp&usg=__puaWCFktXkHPCgcUF4Krc8Zy6FY=&h=1160&w=1188&sz=89&hl=sv&start=10&zoom=1&itbs=1&tbnid=Xo_-yz8Q1MRKkM:&tbnh=146&tbnw=150&prev=/images?q%3Dsafe%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=BxttTcaiEsfMtAbKxeG6BQ

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Roadmap

Understanding Synchronization better: some milestone steps /landmark methods
• Lamport’s Bakery algorithm
• Readers-Writers problem
• A touch of lock-free synchronization

Encore about resource allocation and deadlocks:
(last lecture we discussed deadlock prevention, i.e. methods for how threads
request&acquire resources so that deadlock cannot occur)
• using the OS as arbitrator… Deadlock avoidance: Dijkstra’s Banker algo
• Deadlock detection and recovery

25

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 26

Deadlock detection and recovery

• If OS grants requests without checking safety upon every
request

• It can allow a deadlock state and when detected (eg through
detection of cyclical waits), recover

GO BACK
YOU HAVE COME

WRONG WAY

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 27

Recovery from Deadlock

(1) Process Termination: Abort all or some deadlocked processes until deadlock
is eliminated.

(2) Resource Preemption: Select victim and rollback – return to some safe state,
restart process from that state

Must decide on selection criteria (cost, starvation risks, …)

Recovery is pretty expensive as a method ….

http://www.google.se/imgres?imgurl=http://www.articulate.com/rapid-elearning/wp-content/uploads/2007/07/lost_job.gif&imgrefurl=http://www.jtanddale.com/?p%3D113&usg=__zmJWhSvaaNMxdcU7SHufYfdt_rU=&h=331&w=350&sz=19&hl=sv&start=7&zoom=1&itbs=1&tbnid=9jvHmArkoTCbdM:&tbnh=113&tbnw=120&prev=/images?q%3Dtermination%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=dxZtTdbXH8W1tAaJ5-jCBQ
http://www.google.se/imgres?imgurl=http://www.lazerloan.com/wp-content/uploads/2009/02/irs-tax-loans.jpg&imgrefurl=http://www.lazerloan.com/tax-refund-loans-how-they-work/&usg=__giIGEr7bbW0w68Jr8bAG_t50raA=&h=396&w=318&sz=21&hl=sv&start=9&zoom=1&itbs=1&tbnid=lc4RzbUHOkwKSM:&tbnh=124&tbnw=100&prev=/images?q%3Dreturn%2Bloan%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=3hdtTa7EBMPesgbWhoDABQ

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Summary
• Landmarks on synchronization problems: Bakery algo, Readers-writers, a glimpse on lock-

free synchronization
• Resource-allocation&deadlocks

– Avoiding or recovering from deadlock with OS as arbitrator
• We saw a lot of synchronization methods and examples

– and a lot of homework tips
• Lab 2-3: holistic training on scheduling & synchronization together

28

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Reading instructions (on all the synchronization topics we discuss)

29

Modern OS by Tanenbaum-Bos:
- careful study of sections 2.3.1-2.3.6, 2.5.2
- Complement (Bakery alg.) through

http://web.cs.iastate.edu/~chaudhur/cs611/Sp09/notes/lec03.pdf
- Quicker reading, for awareness, of sections 2.3.7-2.3.10
Alt. from OS Concepts: Silberschatz-et-al: Sections 6.1-6.7, 6.9
-Matching review questions at e.g.

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

Optional reading, other sources:
1. Leslie Lamport (recipient of ACM Turing award 2013). Turing lecture: The computer science of concurrency (with special mention to the

Bakery algo)
Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951

2. Large variety of synch methods: how to think/decide? Cf also eg:
A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman et-al 27th IPDPS.
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

3.M. Herlihy&Shavit, The Art of Multiprocessor Programming,
– ”The art of Multiprogramming, By Herlihy & Shavit) (http://cs.brown.edu/courses/cs176/lectures.shtml)

4. P. Fatourou: Graduate course lecture: Spin Locks and Contention https://www.csd.uoc.gr/~hy586/material/lectures/cs586-Section3.pdf
5. Efficient Data Streaming Multiway Aggregation through Concurrent Algorithmic Designs and New Abstract Data Types. ACM Trans. Parallel
Comput. 4, 2017 https://doi.org/10.1145/3131272

http://web.cs.iastate.edu/%7Echaudhur/cs611/Sp09/notes/lec03.pdf
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html
http://dx.doi.org/10.1145/2771951
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html
https://www.globalspec.com/reference/41115/203279/the-art-of-multiprocessor-programming
http://cs.brown.edu/courses/cs176/lectures.shtml
https://www.csd.uoc.gr/%7Ehy586/material/lectures/cs586-Section3.pdf
https://doi.org/10.1145/3131272

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

Reading instructions (include all deadlock-related parts of our discussions):

30

- From Modern OS by Tanenbaum et-al:
Careful study 2.5.1, 6.1-6.2, 6.5-6.6, 6.7.3-6.7.4; quick reading 6.2-6.3

- Alt. from OS Concepts by Silberschatz et-al:
Careful study 7.1-7.5, 7.8; quick reading 7.6-7.7

- In addition to the above:
- Practice on the dining philosopher solutions described in the notes;

understand why they work, try to argue about correctness as we did for
Peterson’s algo

- Practice on homework hintsin the notes and on the exercises that will be
discussed in class (several of them have been basis for exam questions)

-Matching review questions at
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

EXTRA SLIDES/NOTES

• Part 1: Complement: Banker’s algo for deadlock avoidance: data
structures and safety check

• Part 2: Use of Banker’s algo idea to do deadlock detection

31

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 32

Enhanced Resource-Allocation Graph
For Deadlock Avoidance:

• Claim (dashed) edge Pi →
Rj : Pj may request Rj

• Claim edge converts to
request edge when the
process requests the
resource.

• When the resource is
released by the process,
assignment edge
reconverts to a claim
edge.

Example Safe State

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 33

Example Resource-Allocation Graph For Deadlock Avoidance:

Q: What if P2 makes
that request and the
system allocates it?

A: Resulting is unsafe
(not deadlocked; it will
be deadlocked if P1 also
makes the other request)
To avoid deadlock, better
postpone that allocation

Example UNsafe State

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 34

Banker’s Algorithm for Resource Allocation with
Deadlock Avoidance [Dijkstra]

Allocation[i,j] = k:
Pi holds k instances of Rj

Max [i,j] = k:
Pi may request max k instances
of Rj.

Available [j] = k :
k instances of
Rj are available.

Need [i,j] =
Max[i,j] – Allocation[i,j]:
potential max request by Pi
for Rj

RECALL: (1) Avoidance = ensure that system will not enter an unsafe state.)
(2) Idea:
If satisfying a request result in an unsafe state,
then the requesting process is suspended
until enough resources are free-ed by processes that will terminate in the meanwhile.

icon-library.com

http://www.google.se/imgres?imgurl=http://www.bmcfs.net/Pics/safe.jpg&imgrefurl=http://www.bmcfs.net/safe.asp&usg=__puaWCFktXkHPCgcUF4Krc8Zy6FY=&h=1160&w=1188&sz=89&hl=sv&start=10&zoom=1&itbs=1&tbnid=Xo_-yz8Q1MRKkM:&tbnh=146&tbnw=150&prev=/images?q%3Dsafe%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=BxttTcaiEsfMtAbKxeG6BQ
http://www.google.se/imgres?imgurl=http://images.mylot.com/userImages/images/postphotos/2258044.jpg&imgrefurl=http://www.mylot.com/w/photokeywords/lending.aspx&usg=__7lg9H7X1OTH4kdaSUWoUnp53d14=&h=333&w=500&sz=16&hl=sv&start=7&zoom=1&itbs=1&tbnid=3RoezBQMGc_PFM:&tbnh=87&tbnw=130&prev=/images?q%3Dmoney%2Bborrowed%26hl%3Dsv%26gbv%3D2%26tbs%3Disch:1&ei=kxttTajOJI-Wswbu17i4BQ

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 35

Safety checking: More about Safe State

safe state = there exists a safe sequence <P1, P2, …, Pn> of terminating all processes:
for each Pi, the max requests that it can still make can be granted by available

resources + those held by P1, P2, …, Pi-1

i.e. the system (OS, imaginary banker) could safely
allocate as follows:

– if Pi ‘s resource needs are not immediately
available, then it can

• wait until all P1, P2, …, Pi-1 have finished
• obtain needed resources, execute, release

resources, terminate.
– then the next process can obtain its needed

resources, and so on.

icon-library.com

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 36

Banker’s algorithm: Resource Allocation

For each new Requesti do Requesti [j] = k:

old resource-allocation state :=current resource-allocation state;
Available := Available - Requesti;
Allocationi := Allocationi + Requesti;
Needi := Needi – Requesti;;

If safety-check (S) OK ⇒ the resources are allocated to Pi.
Else (unsafe) ⇒

Pi must wait (be blocked/suspended) and
old resource-allocation state is restored;

// State S: tentative
changes, to check if safe
i.e what might happen //

// Pi wants k instances of Rj.
Check consequence
if request would be granted //

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 37

Banker’s Algorithm: safety check

Work and Finish: auxiliary vectors of length m and n,
respectively.
• Init: Work := Available

Finish [i] = false for i = 1,2, …, n.

• While there exists i such that both do
Work := Work + Allocationi

Finish[i] := true

• If Finish [i] = true for all i, then the state S in question (cf prev
slide) is a safe one; else state is unsafe

(a) Finish [i] = false
(b) Needi ≤ Work

// “simulate” Pi’s
execution &
termination //

//“work” has
enough for proc i
to get the max
it might need//

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 38

Very simple example execution of Bankers Algo (snapshot 1)

Allocation Max Need Available
R1 R2 R1 R2 R1 R2 R1 R2

P1 1 0 1 1 0 1 0 1
P2 0 0 1 1 1 1

• The system is in a safe state since the sequence < P1, P2> satisfies safety criteria.

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 39

Very simple example execution of Bankers Algo (snapshot 2)

Allocation Max Need Available
R1 R2 R1 R2 R1 R2 R1 R2

P1 1 0 1 1 0 1 0 0
P2 0 1 1 1 1 0

• Allocating B to P2 leaves the system in an unsafe state since there is no sequence that
satisfies safety criteria (no need can be satisfied, since Available vector is 0).

• Hence OS must suspend P2 until P1 has finished and then allocate the resources to P2

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator

EXTRA SLIDES/NOTES

• Part 1: Complement: Banker’s algo for deadlock avoidance: data
structures and safety check

• Part 2: Use of Banker’s algo idea to do deadlock detection

40

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 41

Another example of a Resource Allocation Graph With A Deadlock

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 42

Observe for deadlock detection:

Recall Unsafe State
in the enhanced RA graph (for deadlock avoidance)?

In the actual RA graph it is …..
… deadlocked!!

Detection algorithm:
what we can do for checking safety in enhanced
graph, can serve for checking no-deadlock in the
resource allocation graph

Eg Using Banker’s algo idea

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 43

Deadlock Detection

Note:
• similar as detecting unsafe states using Banker’s algo
• Q: if they cost the same, why not use avoidance instead of detection&recovery?

– Hint: think trade-off between checking cost and recovery cost

Data structures:
• Available: vector of length m: number of available resources of each type.
• Allocation: n x m matrix: number of resources of each type currently allocated to

each process.
• Request: n x m matrix: current request of each process. Request [ij] = k: Pi is

requesting k more instances of resource type Rj.

[MP] OS 07 – a. Landmarks on synchronization; b. RA with OS as arbitrator 44

Detection-Algorithm Usage

• When, and how often, to invoke:
• We don’t want to be too late to detect; think

– How often a deadlock is likely to occur?
– How many processes will need to be rolled back?

• Reason: If algorithm is invoked arbitrarily rarely,
– there may be many cycles in the resource graph ⇒

we would not be able to tell which of the many
deadlocked processes “caused” the deadlock.

http://mcs109.bu.edu/site/files/deadlock/citydeadlock.jpg

	Course Operating Systems��Lecture 7: �a. Landmarks on Synchronization �b. RA with OS as arbitrator (avoid/recover from deadlocks)
	Roadmap
	Critical Section for n threads
	Lamport’s Bakery Algorithm �Critical section for n threads using R/W variables
	�Lamport’s Bakery Algorithm �pseudocode thread i�
	To elaborate/think: homework
	Roadmap
	Readers-writers problem
	Readers-writers problem
	A solution for readers-writers
	The Readers/Writers Problem …
	Roadmap
	Shared counter problem
	Shared counter problem: lock—based method (Critical Section)
	Shared counter problem – can we do without locking?
	Lock-free synchronization
	Whys and hows?
	To elaborate/think:
	Roadmap
	Deadlock avoidance using the OS as arbitrator
	Graphs are useful tools: System Model
	Resource Allocation with Deadlock Avoidance
	Enhanced Resource-Allocation Graph �For Deadlock Avoidance:
	Banker’s Algorithm for Resource Allocation with Deadlock Avoidance [Dijkstra]
	Roadmap
	Deadlock detection and recovery
	Recovery from Deadlock �
	Summary
	Reading instructions (on all the synchronization topics we discuss)
	Reading instructions (include all deadlock-related parts of our discussions):
	EXTRA SLIDES/NOTES
	Enhanced Resource-Allocation Graph �For Deadlock Avoidance:
	Example Resource-Allocation Graph For Deadlock Avoidance:
	Banker’s Algorithm for Resource Allocation with Deadlock Avoidance [Dijkstra]
	Safety checking: More about Safe State
	Banker’s algorithm: Resource Allocation
	Banker’s Algorithm: safety check
	Very simple example execution of Bankers Algo (snapshot 1)
	Very simple example execution of Bankers Algo (snapshot 2)
	EXTRA SLIDES/NOTES
	Another example of a Resource Allocation Graph With A Deadlock
	Observe for deadlock detection:
	Deadlock Detection
	Detection-Algorithm Usage

