Exercise Session

Synchronization / Resource allocation
Operating Systems, EDA093 - DIT400

Hannaneh Najdataei

Exercise Session 1




Question 1

We have three threads A, B, and C taking care of operations opA, opB, and opC
respectively. The threads use three semaphores with the following initial value:
semA=1, semB=1, and semC=0.

Thread A: Thread B: Thread C:
wait(semC); wait(semA); wait(semA);
wait(semB); wait(semB); wait(semB);
opA; // some operation opB; //some operation opC; //some operation
signal(semB); signal(semB); signal(semB);
signal(semA); signal(semA);

signal(semC);

Are the following executions possible or not and why?
(i) opA opB opC (ii) opB opC opA
(iii) opC opA opB (iv) opB opA opC

Exercise Session p




Question 1 - Solution

Initial values: semA=1, semB=1, semC=0

Thread A: Thread B: Thread C:
wait(semC); wait(semA); wait(semA);
wait(semB); wait(semB); wait(semB);
opA; // some operation opB; //some operation opC; //some operation
signal(semB); signal(semB); signal(semB);
signal(semA); signal(semA);

signal(semC);

Are the following executions possible or not and why?
(i) opA opB opC

no: A blocks at semC until C has executed opC

Exercise Session 3




Question 1 - Solution

Initial values: semA=1, semB=1, semC=0

Thread A: Thread B: Thread C:
wait(semC); wait(semA); wait(semA);
wait(semB); wait(semB); wait(semB);
opA; // some operation opB; //some operation opC; //some operation
signal(semB); signal(semB); signal(semB);
signal(semA); signal(semA);

signal(semC);

Are the following executions possible or not and why?
(ii) opB opC opA

no: B "consumes" from semA but does not produce in it, hence C will block

Exercise Session 4




Question 1 - Solution

Initial values: semA=1, semB=1, semC=0

Thread A: Thread B: Thread C:
wait(semC); wait(semA); wait(semA);
wait(semB); wait(semB); wait(semB);
opA; // some operation opB; //some operation opC; //some operation
signal(semB); signal(semB); signal(semB);
signal(semA); signal(semA);

signal(semC);

Are the following executions possible or not and why?
(iii) opC opA opB

Yes, it is possible.

Exercise Session 5




Question 1 - Solution

Initial values: semA=1, semB=1, semC=0

Thread A: Thread B: Thread C:
wait(semC); wait(semA); wait(semA);
wait(semB); wait(semB); wait(semB);
opA; // some operation opB; //some operation opC; //some operation
signal(semB); signal(semB); signal(semB);
signal(semA); signal(semA);

signal(semC);

Are the following executions possible or not and why?
(iv) opB opA opC

no: same as (ii), now A blocks at semC until C has executed opC; ie if B executes
first, no other thread can proceed.

Exercise Session 6




Question 2

(a) Consider two threads, A and B. Thread B must execute operation opB only
after thread A has completed operation opA. How can you guarantee this
synchronization using semaphores?

(b) Consider two threads, A and B which must forever take turns executing
operation opA and operation opB, respectively. Thread A must be the one that
executes opA first. How can you guarantee that using semaphores?

Exercise Session 7




Question 2 - Solution

(a) Consider two threads, A and B. Thread B must execute operation opB only
after thread A has completed operation opA. How can you guarantee this
synchronization using semaphores?

Use semaphore flag, initialized to O

Thread A: Thread B:
opA wait(flag)
signal(flag) opB

Thread B will be able to proceed from wait(flag) only after signal(flag) is executed
by thread A

Exercise Session 8




Question 2 - Solution

(a) Consider two threads, A and B. Thread B must execute operation opB only
after thread A has completed operation opA. How can you guarantee this
synchronization using semaphores?

(b) Consider two threads, A and B which must forever take turns executing
operation opA and operation opB, respectively. Thread A must be the one that
executes opA first. How can you guarantee that using semaphores?

Now the threads work in a loop, using semaphores SA and SB. Thread A must wait
for opB, except the first time, hence SB is initialized to 1. Thread B must wait for
opA with SA initialized to 0. After opA (resp opB), A executes signal(SA) (resp B
executes signal(SB), to generate the required signal to enable the other one to
proceed.

Thread A: Thread B:
Initial values: while(true): while(true):
SA=0,SB=1 wait(SB) wait(SA)
OpA opB
signal(SA) signal(SB)

Exercise Session 9




Question 3

Servers can be designed to limit the number of open connections. For example, a
server may wish to have only N active socket connections at any point in time. As
soon as N connections are made, the server will not accept a new connection
until an existing one is released. With pseudocode, describe how semaphores can
be used to limit the number of concurrent connections.

Exercise Session




Question 3 - Solution

Servers can be designed to limit the number of open connections. For example, a
server may wish to have only N active socket connections at any point in time. As
soon as N connections are made, the server will not accept a new connection
until an existing one is released. With pseudocode, describe how semaphores can
be used to limit the number of concurrent connections.

General semaphore S, initialized to N; execute wait(S) and signal(s) before and
after the connection between each client (socket) and server.

Exercise Session




Question 4

Show a method that solves the critical section problem for arbitrary number of
threads using the atomic TestAndSet instruction that is available in several
processor architectures. Use pseudocode in the description and argue about the
properties of the solution, with respect to mutual exclusion, progress and
fairness. (It is not necessary to describe a solution that guarantees fairness in this
guestion, but if you can, of course it is ok).

Exercise Session




Question 4 - Solution

Show a method that solves the critical section problem for arbitrary number of
threads using the atomic TestAndSet instruction that is available in several
processor architectures. Use pseudocode in the description and argue about the
properties of the solution, with respect to mutual exclusion, progress and
fairness. (It is not necessary to describe a solution that guarantees fairness in this
guestion, but if you can, of course it is ok).

Without fairness:
Shared Boolean variable lock initialized to false

boolean TAS(Boolean *target) Threads:
{ repeat
boolean rv = *target; while (TAS(&lock)); //busywait
*target =true; [critical section]
return rv; lock = false;
}
forever

Exercise Session




Question 4 - Solution

With fairness:

Shared Boolean variable lock, initialized to false
Shared Boolean array waiting[0...n-1], initialized to false

Threads:
repeat
waiting|i] = true;
while (TAS(&lock) && waiting[i]); //busywait
waiting]i] = false;
[critical section]
j = (i+1)%n;
while(j!=i && !waiting[j]) //find the next one waiting to hand over the lock
j=(j+1)%n;
if (i==j)
lock = false; //completed one round without handing over; release lock
else
waiting[j] = false; //handover the lock
forever

Exercise Session




Question 5

A two way east-west road contains a narrow bridge with only one lane. An
eastbound (or westbound) car can pass over the bridge only if there is no
oncoming car on the bridge. Traffic may only cross the bridge in one direction at a
time, and if there are ever more than 3 vehicles on the bridge at one time, it will
collapse under their weight. In this system, each car is represented by one
thread, which executes the procedure OneVehicle when it arrives at the bridge.

OneVehicle(Direction direc) {

ArriveBridge(direc); \K% direc gives the direction in which

CrossBridge(direc); the vehicle will cross the bridge

ExitBridge(direc); }

Write the procedures ArriveBridge and ExitBridge. ArriveBridge must not return
until it safe for the car to cross the bridge in the given direction (it must guarantee
that there will be no head-on collisions or bridge collapses). ExitBridge is called to
indicate that the caller has finished crossing the bridge; ExitBridge should take
steps to let additional cars cross the bridge.

Exercise Session




Question 5 - Solution

Semaphore space(3); // limit 3 cars

Semaphore mutex(1); // for critical section

enum Direction {EAST, WEST};

Direction currentDir = EAST;

Semaphore direction[Direction]; // init to 0

int activeCars = 0; // number of cars on the bridge

int waitingCars = 0; // number of cars waiting to go on the bridge

Direction reverse(Direction myDir) {
if(myDir == EAST) return WEST;
else return EAST,;

Exercise Session




Question 5 - Solution

void ArriveBridge (Direction myDir) {
wait(mutex);
if (currentDir = myDir && activeCars > 0){
waitingCars++; // need to wait
signal(mutex);
wait(direction[myDir]); //when wake up, ready to go!
}else {// ok to go ahead
currentDir = myDir;
activeCars++;
signal(mutex);
}

wait(space); // make sure there is space on bridge

Exercise Session




Question 5 - Solution

void ExitBridge (Direction myDir) {
signal(space); // space for others to go
wait(mutex);
if (--activeCars ==0) { //switch directions
while (waitingCars > 0) {
waitingCars--;
activeCars++;
currentDir = reverse(myDir);
signal(direction[reverse(myDir)]);

}

signal(mutex);

Exercise Session




