
[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Course Operating Systems
Lecture 6:

Classic Synchronization Problems and Resource Allocation
with emphasis on Deadlock Prevention

EDA093, DIT 401
Study Period 1

1

Ack: several figures in the slides are from the books
- Modern Operating Systems by A. Tanenbaum, H. Bos
- The art of multiprogramming, by M. Herlihy, Shavit
- OS Concepts by Silberschatz et-al
- Operating systems by W. Stallings

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 2

Classic Problems of Synchronization

• Bounded-Buffer (producer-consumer) today
• Dining-Philosophers (Resource allocation: we will use it as running example problem,

to study deadlock prevention): today
• Narrow Bridge (in Synchronization Exercise session: will be needed for your upcoming

labs; synchronization&scheduling problem): today, with Hannah
• Readers and Writers (paved the way to lock-free/wait-free synch) next lecture
• Sleeping barber, and more such fun 

practice these: it is useful and fun!

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reflect: this is what we are doing …

Using: primitives
• R/W variables
• RMW variables
• Transactions
• Semaphores, etc
• …

Construct: objects / solve specific synchronization problems
• 2 thread CS, n-thread-CS
• Semaphores, mutex-locks, …
• Producer-consumer (bounded buffer)
• Dining philosophers
• Transactions
• …

3

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

4

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: requirements

Solve this synch problem using semaphores

5

Producer inserts items;
must wait if buffer full

Consumer removes items;
must wait if buffer empty

Buffer with space for N items;
accessing common entries is a critical section

A X B Y U K

1 2 … N

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: what synch do we need?

- Producer inserts items; must wait if buffer full
- Consumer removes items; must wait if buffer empty
- Accessing the buffer is a critical section

6

fig C.K. Shene
http://www.cs.mtu.edu/~shene/NSF-3/e-Book/

Wait until buffer
has space;

Wait until buffer
has items;

buffer
has items;

buffer
has space;

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

consumer
do {

wait (buffer-has-items)
wait (mutex_sem);

// remove item from buffer

signal (mutex_sem);
signal (buffer-has-space);

// use the item
} while (TRUE);

Bounded producer-consumer buffer: a solution

producer
do {

// produce item

wait (buffer-has-space);
wait (mutex_sem);

// add item to buffer

signal (mutex_sem);
signal (buffer-has-items);

} while (TRUE);

Synchronization variables:
• Binary semaphore mutex_sem initialized to 1
• General semaphore buffer-has-items initialized to 0
• General semaphore buffer-has-space initialized to N

7

wait(buffer-has-space); wait (buffer-has-items)Wait until buffer
has space;

Wait until buffer
has items;

Homework: write arguments
about correctness, i.e.to
show that the solution meets
the requirements

buffer
has items;

buffer
has space;

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

8

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

What is resource allocation?
Processes/threads need resources (eg memory pages, printer, access

to parts of shared data structure, etc)
- Our focus: reusable resources:

Eg. a human analogy: process = go fishing; needed resources: boat,
fishing-rod

9

To solve the problem: provide the method for each process to
acquire all its needed resources and release them, and
guarantee (as in the Critical Section problem):

1. Mutual exclusion: each resource is used by only one process at a
time

2. Progress: no deadlock
3. Fairness: FCFS, or no starvation, or other fairness formulation

Process/thread P structure
do

// use them

// remainder section
forever

request resources (i.e. entry section)

release resources (i.e. exit section)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

10

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

What is a deadlock?

11

A set of processes/threads blocking each-other s.t. none of them can proceed:
How can it occur?

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 12

4 necessary conditions for Deadlock [Coffman et al 1971]

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding some resource can request
additional resources and wait for them if they are held by other
processes.

3. No preemption: a resource can only be released by the process
holding it, after that process has completed its task.

4. Circular wait: there exists a circular chain of 2 or more blocked
processes, each waiting for a resource held by the next proc. in
the chain

Theorem: all 4 conditions hold simultaneously when a deadlock occurs:

Boat ok, i
need the rod

Rod ok; i
need the boat

A
B

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 13

let’s think together: (ie as in)

Q: What does the theorem imply wrt deadlock prevention?

A: see next slide

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 14

Resource Allocation with Deadlock Prevention

Eliminate Mutual Exclusion – (cannot do much here …)

Eliminate Circular Wait – how? E.g. impose that resources are acquired
in a certain order
• e.g always first the boat, then the rod

Eliminate No-Preemption – how? a process holding some resources &
requesting another that is occupied, it releases the held resources and
has to request them again.
• Eg be polite: B releases the boat for A to proceed (after which A

releases both and B can proceed)

Eliminate Hold and Wait – how? E.g. process requests and gets all its
resources at once
• Eg book both the boat and the rod through the same “agent”

How can a solution to RA be RESPONSIBLE AND PREVENT?

Restrain the ways requests can be made; eliminate at least one of the 4 conditions, so that deadlocks are impossible to
happen. How?

Boat ok, i
need the rod

Rod ok; i
need the boat

A
B

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

15

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Consider the dining philosophers problem [Dijkstra65]

n philosophers (processes); each philosopher P_i,
when hungry, needs : both left & right fork, in
order to eat

16

Pic: wikipedia

Process P_i structure
do

// eat

// think
forever

get resources (i.e. entry section)

leave resources (i.e. exit section)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

17

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Trying to solving the dining philosophers problem:
pick-left-pick-right-fork
Shared var f[0..n-1]: bin-semaphore

// one for each fork; init all 1
P_i:
do

Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork

// Eat
Signal f[i]; // leave left fork
Signal f[(i+1) mod n]; leave right fork

// Think
forever

18

Does it solve the problem?

let’s think together: (ie as in)

Recall the requirements:
1. Mutual exclusion: each resource is used by only one process at a time
2. Progress: no deadlock
3. Fairness: FCFS, or no starvation, or other fairness formulation

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Does the ”pick-left-then-pick-right-fork” method satisfy
the mutual exclusion property?
• Can it violate it? I.e. Can it happen that there is a point in time s.t. some

proceses A and B concurrently access the same resource (i.e concurrently
eat)?

• Assume it can and w.l.o.g. consider the decision step by A to eat; Can B
(which must be A’s neighbour) decide to eat after A’s decision step and
before A finishes?

Homework: fill in the details that lead to contradiction, in the figure and in
text, using ”->” as we did when studying Peterson’s 2-CS algo

19

A eating

B eating

Time

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1

P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork

// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork

// Think
forever

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 20

Does the “pick-left-pick-right-fork” method satisfy the progress property?

f0

f1

P0 P1

Think of:
• Mutual exclusion
• Hold&wait
• No preemption
• Cyclical waitYes, example deadlock with 2 philosophers and 2 forks

Can it deadlock? Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1

P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork

// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork

// Think
forever

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

21

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 22

Pick one fork at a time, & fight the circular wait:

Shared var f[0..n-1]: bin-semaphore //init all 1

Pi: (i ≠n-1)
do

Wait(f[i]);
Wait(f[(i+1)mod n]);

// Eat
Signal(f[(i+1)mod n])
Signal(f[i])

// Think
forever

Pn-1

do
Wait(f[(i+1)mod n]) //ie wait(f[0])
Wait(f[i]) //ie wait(f[n-1])
// Eat
Signal(f[i])
Signal(f[(i+1)mod n])
// Think

forever

Idea:
• use ordering of resources

• Proc’s request their needed
resources in increasing order

Does it solve the problem?
Does it fight the circular
wait?

Key idea: Follow the waiting chains
(directed paths in the RA graph): always
the requested resource with max-id is the
end of it, thus preventing circle

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 23

Correctness argument:
How is circular wait prevented with the “request-in-resource-order” algo?

f[0]

f[1]

P0 P1

Without loss of generality (wlog), consider P0:
Case 1: if P0 waits for f[0]:
- P1 must have it, hence it can get f[1] (i.e.

max-id resource) and eat; i.e. no circle (i.e.
contradiction of the assumption that the
wrong thing can happen, in case 1)

Start simple, consider 2 processes (P0, P1)
Assume, towards a contradicton that deadlock can happen,
i.e. there exists a circle…

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 24

Correctness argument:
How is circular wait prevented with the “request-in-resource-order” algo? (cont)

f[0]

f[1]

P0 P1

Case2: if P0 waits for f[1]:
- P0 must have f[0], hence f[1]
(i.e. max-id resource) is available and P0 can
eat; i.e. again no circle (i.e. contradiction of the
assumption that the wrong thing can happen, in
case 2)

- If we have more processes and resources, follow the
waiting chain: always the max-id resource is the end of
the waiting chain, thus preventing the circle, QED

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 25

Fairness property of the “request-in-resource-order” algo?

It depends directly on the fairness guarantees of the underlying semaphore’s implementation.

@home: Show in timelines that:
if the semaphores do not guarantee fairness, then the “request-in-resource-order” algo can be unfair
e.g given 2 threads A and B, A can by-pass B many times while B is not able to go beyond the wait of
their common-fork’s semaphore. You may consider a simple system with just 2 philosophers.

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

26

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 27

Fight the no-preemption
shared var f[0..n-1]: of type fork_structure { // one for each fork

s: bin-semaphore //init 1
available: boolean //init true

}

P_i:
local var holding_both_forks: boolean;
repeat

while (not holding_both_forks){
lock(f[i])
if !trylock(f[(i+1)modn]) then release(f[i])
else holding_both_forks := true }

// Eat
release(f[i])
release(f[(i+1)modn])
holding_both_forks := false
// Think

forever

trylock(fork: fork_structure):
wait(fork.s)
if fork.available then { fork.available := false ;

ret:= true;
}
else ret:= false;
signal(fork.s)
return(ret)

lock(fork : fork_structure):
repeat
until (trylock(fork))

release(fork : fork_structure):
wait(fork.s)
fork.available := true
signal(fork.s)

Idea: when the second resource is not
available, release the first one and retry

Properties?

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Fight the no-preemption algo of the prev. slide: properties:

• Mutual exclusion: ok
• Progress: no deadlock …
• Fairness: a process can starve…

• Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

28

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

29

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 30

Fighting the hold and wait

shared var semaphore S[0 .. n-1] // init all 0
shared var semaphore mutex // init 1
shared var state[0 .. n-1] in {HUNGRY, THINKING,EATING}
Pi:
do

// think
enterCS(i) // ie get both forks
// eat
exitCS(i) // ie leave bothforks

forever

enterCS(i)
wait(mutex)
state(i) := HUNGRY
help(i)
signal(mutex)
wait(S[i])

exitCS(i)
wait(mutex)
state(i) := THINKING
help((i-1) mod n)
help((i+1) mod n)
signal(mutex)

help(k)
if state[k] ==HUNGRY && state[(k-1) mod n] != EATING && state[(k+1) mod n] != EATING
then {state(k) := EATING ; signal(S[k]) }

Idea: ”eat” is mutually exclusive (ie CS) among each P_i
and its neighbours, hence:
apply a CS algo in each neighbourhood, instead of for
each fork (i.e. as if philosopher picks both forks at once)

Properties?

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Fight the no-hold-and-wait algo of the prev slide: properties:

• Mutual exclusion: ok
• Progress: no deadlock
• Fairness: a process can starve

• Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

31

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Link to solutions to the problem with fairness guarantees as well

Eugene Styer and Gary L. Peterson. 1988. Improved algorithms for
distributed resource allocation. In Proceedings of the seventh annual ACM
Symposium on Principles of distributed computing (PODC '88). Association
for Computing Machinery, New York, NY, USA, 105–116. DOI:
https://doi.org/10.1145/62546.62567
(direct link to pdf
https://dl.acm.org/doi/pdf/10.1145/62546.62567?casa_token=4uO24jxk
wEAAAAAA:jJlAILeISZe5Uu2ERv6O-dTq_0LbSmRpv0beOZ_3vDi50otRS-
_HqB30GoWDib1zVQ9jjrhx4w0)

32

https://doi.org/10.1145/62546.62567
https://dl.acm.org/doi/pdf/10.1145/62546.62567?casa_token=4uO24jxkwEAAAAAA:jJlAILeISZe5Uu2ERv6O-dTq_0LbSmRpv0beOZ_3vDi50otRS-_HqB30GoWDib1zVQ9jjrhx4w0

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

33

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Summary

• Discussed the concept of building synch-objects from other synch objects
• Common synchronization problems: bounded buffer, dining philosophers
• Resource-allocation&deadlocks

– Deadlock: 4 conditions necessary
– Fighting deadlock: prevent (i.e. attack deadlock’s necessary conditions)

• We saw several synchronization methods and examples
– incl. helping, trylock implementation

• Shortly: narrow bridge & lab

Next lecture: more in-depth n-process mutual-exclusion and tools/methods/ properties
– Lamport’s bakery algo + Turing award topic
– Readers/writers problems and a touch on lock-free synchronization
– One more way to deal with deadlocks (avoid, using with an arbitrator: Bankers algo by

Dijkstra)
34

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reading instructions (on all the synchronization topics we discuss)

35

Modern OS by Tanenbaum-Bos:
- careful study of sections 2.3.1-2.3.6, 2.5.2
- Complement (Bakery alg.) through

http://web.cs.iastate.edu/~chaudhur/cs611/Sp09/notes/lec03.pdf
- Quicker reading, for awareness, of sections 2.3.7-2.3.10
Alt. from OS Concepts: Silberschatz-et-al: Sections 6.1-6.7, 6.9

-Matching review questions at e.g.
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

Optional reading, other sources:
1. Leslie Lamport (recipient of ACM Turing award 2013). Turing lecture: The computer science of concurrency (with special

mention to the Bakery algo)
Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951

2. Large variety of synch methods: how to think/decide? Cf also eg:
A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman, B.
Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas, 27th IEEE International Parallel & Distributed
Processing Symposium, IPDPS 2013 http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

3.M. Herlihy&Shavit,”The art of Multiprogramming, By Herlihy & Shavit) (http://cs.brown.edu/courses/cs176/lectures.shtml)
4. P. Fatourou: Spin Locks and Contention https://www.csd.uoc.gr/~hy586/material/lectures/cs586-Section3.pdf

http://web.cs.iastate.edu/%7Echaudhur/cs611/Sp09/notes/lec03.pdf
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html
http://dx.doi.org/10.1145/2771951
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html
http://cs.brown.edu/courses/cs176/lectures.shtml
https://www.csd.uoc.gr/%7Ehy586/material/lectures/cs586-Section3.pdf

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reading instructions (include all deadlock-related parts of our discussions):

36

- From Modern OS by Tanenbaum et-al:
Careful study 2.5.1, 6.1-6.2, 6.5-6.6, 6.7.3-6.7.4; quick reading 6.2-6.3

- Alt. from OS Concepts by Silberschatz et-al:
Careful study 7.1-7.5, 7.8; quick reading 7.6-7.7

- In addition to the above:
- Practice on the dining philosopher solutions described in the notes;

understand why they work, try to argue about correctness as we did for
Peterson’s algo

- Practice on homework hintsin the notes and on the exercises that will be
discussed in class (several of them have been basis for exam questions)

-Matching review questions at
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

	Course Operating Systems��Lecture 6: �Classic Synchronization Problems and Resource Allocation with emphasis on Deadlock Prevention
	Classic Problems of Synchronization
	Reflect: this is what we are doing …
	Roadmap
	Bounded producer-consumer buffer: requirements
	Bounded producer-consumer buffer: what synch do we need?
	Bounded producer-consumer buffer: a solution
	Roadmap
	What is resource allocation?
	Roadmap
	What is a deadlock?
	4 necessary conditions for Deadlock [Coffman et al 1971]
	Slide Number 13
	Resource Allocation with Deadlock Prevention
	Roadmap
	Consider the dining philosophers problem [Dijkstra65]
	Roadmap
	Trying to solving the dining philosophers problem: �pick-left-pick-right-fork
	Does the ”pick-left-then-pick-right-fork” method satisfy �the mutual exclusion property?
	Does the “pick-left-pick-right-fork” method satisfy the progress property?
	Roadmap
	Pick one fork at a time, & fight the circular wait:
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo?
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo? (cont)
	Slide Number 25
	Roadmap
	Fight the no-preemption
	Fight the no-preemption algo of the prev. slide: properties:
	Roadmap
	Fighting the hold and wait
	Fight the no-hold-and-wait algo of the prev slide: properties:
	Link to solutions to the problem with fairness guarantees as well
	Roadmap
	Summary
	Reading instructions (on all the synchronization topics we discuss)
	Reading instructions (include all deadlock-related parts of our discussions):

