g8 ¥ UNIVERSITY OF GOTHENBURG
T Eey

Course Operating Systems

Lecture 6:
Classic Synchronization Problems and Resource Allocation
with emphasis on Deadlock Prevention

EDAOQ93, DIT 401
Study Period 1

Ack: several figures in the slides are from the books

- Modern Operating Systems by A. Tanenbaum, H. Bos
- The art of multiprogramming, by M. Herlihy, Shavit

- OS Concepts by Silberschatz et-al

- Operating systems by W. Stallings

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention N e

Classic Problems of Synchronization

 Bounded-Buffer (producer-consumer) today

* Dining-Philosophers (Resource allocation: we will use it as running example problem,
to study deadlock prevention): today

e Narrow Bridge (in Synchronization Exercise session: will be needed for your upcoming
labs; synchronization&scheduling problem): today, with Hannah

* Readers and Writers (paved the way to lock-free/wait-free synch) next lecture
* Sleeping barber, and more such fun ©

practice these: it is useful and fun!

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reflect: this is what we are doing ...

Construct: objects / solve specific synchronization problems
e 2 thread CS, n-thread-CS

 Semaphores, mutex-locks, ...

* Producer-consumer (bounded buffer)

* Dining philosophers

e Transactions

Using: primitives |

* R/W variables
RMW variables
Transactions

Semaphores, etc

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

The bounded buffer producer-consumer problem

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: requirements

Buffer with space for N items;

accessing common entries is a critical section
Producer inserts items;

must wait if buffer full
Consumer removes items;

must wait if buffer empty

12 N

Solve this synch problem using semaphores

. . . . CHALMERS S50
[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snamen S | §g2) UNIVERSITY OF GOTHENBURG

Bounded producer-consumer buffer: what synch do we need?

producer consumer
- Producer inserts items; must wait if buffer full Wait unti Wait until buffer
ait until buffer has items;

has space;

- Consumer removes items; must wait if buffer empty

- Accessing the buffer is a critical section Iuc}c\t{ S e e
\
b
N
N
| ;
|| Retrieve
unloe k/t};'ﬁ'er unlock buffer
®
= o
F
I buffer buffer
,_-.,,_ has items; , has space;

fig C.K. Shene
http://www.cs.mtu.edu/~shene/NSF-3/e-Book/

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: a solution

Synchronization variables:

* Binary semaphore mutex_sem initialized to 1
* General semaphore buffer-has-items initialized to 0
* General semaphore buffer-has-space initialized to N

producer
do {
// produce item

wait (buffer-has-space);
wait (mutex_sem);

// add item to buffer

signal (mutex_sem);
signal (buffer-has-items);
} while (TRUE);

consumer
do {
wait (buffer-has-items)
wait (mutex_sem);

// remove item from buffer

signal (mutex_sem);
signal (buffer-has-space);

// use the item
} while (TRUE);

producer consumer
| :

- Wait until buffer

Wait until buffer R
has items;
has space;
\
lockwbuffer lock buffer
vo \\
SN
N
N~
Deposit © Retrieve
2] AN
’ 7
unleck :'J'-ti'iz:i' unlock buffer
N,
‘/
| buffer buffer
| has items; has space;

Homework: write arguments
about correctness, i.e.to
show that the solution meets

the requirements

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

@

CHALMERS

UmvERITY B8 TREHNBLOGT el

e
| @#%5 UNIVERSITY OF GOTHENBURG
S

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

What is resource allocation?

Processes/threads need resources (eg memory pages, printer, access
to parts of shared data structure, etc)

Process/thread P structure
- Our focus: reusable resources:

do
Eg. a human analogy: process = go fishing; needed resources: boat, request resources (i.e. entry section)
fishing-rod // use them
release resources (i.e. exit section)

// remainder section
forever

To solve the problem: provide the method for each process to
acquire all its needed resources and release them, and
guarantee (as in the Critical Section problem):

1. Mutual exclusion: each resource is used by only one process at a
time

\

2. Progress: no deadlock

3. Fairness: FCFS, or no starvation, or other fairness formulation

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ SROENMERS

e
d#%5 UNIVERSITY OF GOTHENBURG 9

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

10

What is a deadlock?

A set of processes/threads blocking each-other s.t. none of them can proceed:
How can it occur?

cccccccc | @#1§ UNIVERSITY OF GOTHENBURG
T

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ ---------------- -

11

4 necessary conditions for Deadlock [Coffman et al 1971]

Theorem: all 4 conditions hold simultaneously when a deadlock occurs:

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding some resource can request
additional resources and wait for them if they are held by other
processes.

Rod ok; i
need the boat:

3. No preemption: aresource can only be released by the process
holding it, after that process has completed its task.

4. Circular wait: there exists a circular chain of 2 or more blocked
processes, each waiting for a resource held by the next proc. in
the chain

\

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 12

let’s think together: (ie as in m o

Q: What does the theorem imply wrt deadlock prevention?

A: see next slide ©

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

13

Resource Allocation with Deadlock Prevention

How can a solution to RA be RESPONSIBLE AND PREVENT?

Restrain the ways requests can be made; eliminate at least one of the 4 conditions, so that deadlocks are impossible to

happen. How?

Boat ok, i

Rod ok; i
need the boat:

Eliminate Mutual Exclusion — (cannot do much here ...)

Eliminate Circular Wait — how? E.g. impose that resources are acquired
in a certain order

* e.g always first the boat, then the rod

Eliminate No-Preemption — how? a process holding some resources &
requesting another that is occupied, it releases the held resources and
has to request them again.

* Egbe polite: B releases the boat for A to proceed (after which A
releases both and B can proceed)

Eliminate Hold and Wait — how? E.g. process requests and gets all its
resources at once

* Eg book both the boat and the rod through the same “agent”

[MP] OS 06 Classic Synch. F :esource allocation with deadlock prevention

ST,
d#%5 UNIVERSITY OF GOTHENBURG

14

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

15

Consider the dining philosophers problem [Dijkstra65]

n philosophers (processes); each philosopher P_ji,
when hungry, needs : both left & right fork, in
order to eat

Process P_i structure
do

get resources (i.e. entry section)

// eat

leave resources (i.e. exit section)

// think
forever

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

UBIVERSITY 08 TRCHMDLO!

16

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

17

Trying to solving the dining philosophers problem:

pick-left-pick-right-fork

Does it solve the problem?

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1
P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork
// Eat
Signal f[i]; // leave left fork
Signal f[(i+1) mod n]; leave right fork
// Think
forever

Recall the requirements:

1. Mutual exclusion: each resource is used by only one process at a time
2. Progress: no deadlock

3. Fairness: FCFS, or no starvation, or other fairness formulation

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

18

Does the "pick-left-then-pick-right-fork” method satisfy
the mutual exclusion property?

 Canitviolateit? l.e. Can it happen that there is a point in time s.t. some
proceses A and B concurrently access the same resource (i.e concurrently
eat)?

 Assume it can and w.l.o0.g. consider the decision step by A to eat; Can B
(which must be A’s neighbour) decide to eat after A’s decision step and
before A finishes?

Homework: fill in the details that lead to contradiction, in the figure and in

text, using ”->” as we did when studying Peterson’s 2-CS algo

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1
P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork
// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork
// Think
forever

Time
>

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

UBIVERSITY 08 TRCHMDLO!

19

Does the “pick-left-pick-right-fork” method satisfy the progress property?

Can it deadlock?

fo

f1

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1
P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork
// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork
// Think
forever

Yes, example deadlock with 2 philosophers and 2 forks

Think of:

. Mutual exclusion
. Hold&wait

. No preemption

. Cyclical wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

ST,
3_‘-):5 UNIVERSITY OF GOTHENBURG 20
Rt

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them

Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

21

P;: (i #zn-1)
do
Wait(f[i]);
Wait(f[(i+1)mod n]);
// Eat

Signal(f[(i+1)mod n])
Signal(f[i])
// Think
forever

Shared var f[0..n-1]: bin-semaphore //init all 1

Pn-l
do
Wait(f[(i+1)mod n]) //ie wait(f[0])
Wait(f[i]) //ie wait(f[n-1])
// Eat
Signal(f[i])
Signal(f[(i+1)mod n])
// Think
forever

ldea:
* use ordering of resources

’ C =
* Proc’s request their needed
resources in increasing order

Does it fight the circular
wait?

Key idea: Follow the waiting chains
(directed paths in the RA graph): always
the requested resource with max-id is the
end of it, thus preventing circle

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

22

Correctness argument:

How is circular wait prevented with the “request-in-resource-order” algo?

Start simple, consider 2 processes (PO, P1)
Assume, towards a contradicton that deadlock can happen,
i.e. there exists a circle...

f[0]

f[1]

Without loss of generality (wlog), consider PO:

Case 1: if PO waits for f[0]:
- P1 must have it, hence it can get f[1] (i.e.

max-id resource) and eat; i.e. no circle (i.e.

contradiction of the assumption that the
wrong thing can happen, in case 1)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

€298 UNIVERSITY OF GOTHENBURG
Rt

23

Correctness argument:

How is circular wait prevented with the “request-in-resource-order” algo? (cont)

f[0]

f[1]

Case2: if PO waits for f[1]:

- PO must have f[0], hence f[1]

(i.e. max-id resource) is available and PO can
eat; i.e. again no circle (i.e. contradiction of the

case 2)

assumption that the wrong thing can happen, in

- If we have more processes and resources, follow the
waiting chain: always the max-id resource is the end of
the waiting chain, thus preventing the circle, QED

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

€298 UNIVERSITY OF GOTHENBURG
Rt

24

Fairness property of the “request-in-resource-order” algo?

It depends directly on the fairness guarantees of the underlying semaphore’s implementation.

@home: Show in timelines that:

if the semaphores do not guarantee fairness, then the “request-in-resource-order” algo can be unfair
e.g given 2 threads A and B, A can by-pass B many times while B is not able to go beyond the wait of
their common-fork’s semaphore. You may consider a simple system with just 2 philosophers.

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ cnawvens | @D vriversiy or corrENBURG 25

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait
— Then the no-preempt

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

26

Fight the no-preemption

shared var f[0..n-1]: of type fork_structure {// one for each fork
s: bin-semaphore //init 1
available: boolean //init true

trylock(fork: fork_structure):
wait(fork.s)

if fork.available then { fork.available := false ;
} ret:=true;
_ }
P_i: else ret:= false;
local var holding_both forks: boolean; signal(fork.s)
repeat return(ret)

while (not holdlng both_forks){

lock(fork : fork_structure):
repeat
until (trylock(fork))

if ltrylock
else holding

(i+1)modn]) then release(f[i])
| both_forks :=true }

release(f[i])
release(f[(i+1)modn])
holding_both_forks := false

release(fork : fork_structure):
wait(fork.s)
fork.available := true

// Think signal(fork.s) rﬁmﬁ
forever L
Idea: when the second resource is not Properties?
available, release the first one and retry

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snavess | @D vniversiry or coreNsURG

Fight the no-preemption algo of the prev. slide: properties:

* Mutual exclusion: ok
* Progress: no deadlock ...
e Fairness: a process can starve...

e Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

28

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks
What is the problem with the Dining philosophers...
... and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait
— Then the no-preempt
— Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

29

Fighting the hold and wait

shared var semaphore S[0 .. n-1] // init all O enterCS(i) exitCS(i)

shared var semaphore mutex // init 1 wait(mutex) wait(mutex)

shared var state[0 .. n-1] in {HUNGRY, THINKING,EATING} state(i) := HUNGRY state(i) := THINKING

Pi: help(i) help((i-1) mod n)

do signal(mutex) help((i+1) mod n)
// think Y, wait(S[i]) signal(mutex)
enterCS(i) // ie get both forks /
// eat Idea: “eat” is mutually exclusive (ie CS) among each P_i
exitCS(i) // ie leave bothforks / and its neighbours, hence:

forever apply a CS algo in each neighbourhood, instead of for

/ | each fork (i.e. as if philosopher picks both forks at once)

 help(k)) = lf ,

O

if state[k] ==HUNGRY && state[(k-1) phod n] != EATING && state[(k+1) mod n] != EATING
then {state(k) := EATING ; signal(S[k]) }

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 30

Fight the no-hold-and-wait algo of the prev slide: properties:

* Mutual exclusion: ok
* Progress: no deadlock
* Fairness: a process can starve

e Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

HHHHHH E‘ -F—‘ UNIVERSITY OF GOTHENBURG

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ SROENMER s | @&

31

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)

Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers...
... and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
— First the cyclical wait
— Then the no-preempt
— Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

32

Summary

* Discussed the concept of building synch-objects from other synch objects
« Common synchronization problems: bounded buffer, dining philosophers
 Resource-allocation&deadlocks

— Deadlock: 4 conditions necessary
— Fighting deadlock: prevent (i.e. attack deadlock’s necessary conditions)

 We saw several synchronization methods and examples
— incl. helping, trylock implementation

e Shortly: narrow bridge & lab

Next lecture: more in-depth n-process mutual-exclusion and tools/methods/ properties
— Lamport’s bakery algo + Turing award topic

— Readers/writers problems and a touch on lock-free synchronization

— One more way to deal with deadlocks (avoid, using with an arbitrator: Bankers algo by &
Dijkstra) .

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reading instructions (on all the synchronization topics we discuss)

Modern OS by Tanenbaum-Bos:
- careful study of sections 2.3.1-2.3.6, 2.5.2

- Complement (Bakery alg.) through
http://web.cs.iastate.edu/~chaudhur/cs611/Sp09/notes/lec03.pdf

- Quicker reading, for awareness, of sections 2.3.7-2.3.10
Alt. from OS Concepts: Silberschatz-et-al: Sections 6.1-6.7, 6.9

-Matching review questions at e.g.
http://codex.cs.yale.edu/avi/os-book/0S9/review-dir/index.html|

Optional reading, other sources:

1. Leslie Lamport (recipient of ACM Turing award 2013). Turing lecture: The computer science of concurrency (with special
mention to the Bakery algo)

Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951
2. Large variety of synch methods: how to think/decide? Cf also eg:

A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman, B.
Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas, 27th IEEE International Parallel & Distributed
Processing Symposium, IPDPS 2013 http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

3.M. Herlihy&Shavit,”The art of Multiprogramming, By Herlihy & Shavit) (http://cs.brown.edu/courses/cs176/lectures.shtml)
4. P. Fatourou: Spin Locks and Contention https://www.csd.uoc.gr/~hy586/material/lectures/cs586-Section3.pdf

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snavess | @D vniversiry or coreNsURG

http://web.cs.iastate.edu/%7Echaudhur/cs611/Sp09/notes/lec03.pdf
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html
http://dx.doi.org/10.1145/2771951
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html
http://cs.brown.edu/courses/cs176/lectures.shtml
https://www.csd.uoc.gr/%7Ehy586/material/lectures/cs586-Section3.pdf

Reading instructions (include all deadlock-related parts of our discussions):

- From Modern OS by Tanenbaum et-al:
Careful study 2.5.1, 6.1-6.2, 6.5-6.6, 6.7.3-6.7.4; quick reading 6.2-6.3

- Alt. from OS Concepts by Silberschatz et-al:
Careful study 7.1-7.5, 7.8; quick reading 7.6-7.7

- In addition to the above:

- Practice on the dining philosopher solutions described in the notes;
understand why they work, try to argue about correctness as we did for
Peterson’s algo

- Practice on homework hintsin the notes and on the exercises that will be
discussed in class (several of them have been basis for exam questions)

-Matching review questions at
http://codex.cs.yale.edu/avi/os-book/0S9/review-dir/index.html

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention @ snavess | @D vniversiry or coreNsURG

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

	Course Operating Systems��Lecture 6: �Classic Synchronization Problems and Resource Allocation with emphasis on Deadlock Prevention
	Classic Problems of Synchronization
	Reflect: this is what we are doing …
	Roadmap
	Bounded producer-consumer buffer: requirements
	Bounded producer-consumer buffer: what synch do we need?
	Bounded producer-consumer buffer: a solution
	Roadmap
	What is resource allocation?
	Roadmap
	What is a deadlock?
	4 necessary conditions for Deadlock [Coffman et al 1971]
	Slide Number 13
	Resource Allocation with Deadlock Prevention
	Roadmap
	Consider the dining philosophers problem [Dijkstra65]
	Roadmap
	Trying to solving the dining philosophers problem: �pick-left-pick-right-fork
	Does the ”pick-left-then-pick-right-fork” method satisfy �the mutual exclusion property?
	Does the “pick-left-pick-right-fork” method satisfy the progress property?
	Roadmap
	Pick one fork at a time, & fight the circular wait:
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo?
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo? (cont)
	Slide Number 25
	Roadmap
	Fight the no-preemption
	Fight the no-preemption algo of the prev. slide: properties:
	Roadmap
	Fighting the hold and wait
	Fight the no-hold-and-wait algo of the prev slide: properties:
	Roadmap
	Summary
	Reading instructions (on all the synchronization topics we discuss)
	Reading instructions (include all deadlock-related parts of our discussions):

