
[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Course Operating Systems
Lecture 6:

Classic Synchronization Problems and Resource Allocation
with emphasis on Deadlock Prevention

EDA093, DIT 401
Study Period 1

1

Ack: several figures in the slides are from the books
- Modern Operating Systems by A. Tanenbaum, H. Bos
- The art of multiprogramming, by M. Herlihy, Shavit
- OS Concepts by Silberschatz et-al
- Operating systems by W. Stallings

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 2

Classic Problems of Synchronization

• Bounded-Buffer (producer-consumer) today
• Dining-Philosophers (Resource allocation: we will use it as running example problem,

to study deadlock prevention): today
• Narrow Bridge (in Synchronization Exercise session: will be needed for your upcoming

labs; synchronization&scheduling problem): today, with Hannah
• Readers and Writers (paved the way to lock-free/wait-free synch) next lecture
• Sleeping barber, and more such fun 

practice these: it is useful and fun!

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reflect: this is what we are doing …

Using: primitives
• R/W variables
• RMW variables
• Transactions
• Semaphores, etc
• …

Construct: objects / solve specific synchronization problems
• 2 thread CS, n-thread-CS
• Semaphores, mutex-locks, …
• Producer-consumer (bounded buffer)
• Dining philosophers
• Transactions
• …

3

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

4

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: requirements

Solve this synch problem using semaphores

5

Producer inserts items;
must wait if buffer full

Consumer removes items;
must wait if buffer empty

Buffer with space for N items;
accessing common entries is a critical section

A X B Y U K

1 2 … N

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Bounded producer-consumer buffer: what synch do we need?

- Producer inserts items; must wait if buffer full
- Consumer removes items; must wait if buffer empty
- Accessing the buffer is a critical section

6

fig C.K. Shene
http://www.cs.mtu.edu/~shene/NSF-3/e-Book/

Wait until buffer
has space;

Wait until buffer
has items;

buffer
has items;

buffer
has space;

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

consumer
do {

wait (buffer-has-items)
wait (mutex_sem);

// remove item from buffer

signal (mutex_sem);
signal (buffer-has-space);

// use the item
} while (TRUE);

Bounded producer-consumer buffer: a solution

producer
do {

// produce item

wait (buffer-has-space);
wait (mutex_sem);

// add item to buffer

signal (mutex_sem);
signal (buffer-has-items);

} while (TRUE);

Synchronization variables:
• Binary semaphore mutex_sem initialized to 1
• General semaphore buffer-has-items initialized to 0
• General semaphore buffer-has-space initialized to N

7

wait(buffer-has-space); wait (buffer-has-items)Wait until buffer
has space;

Wait until buffer
has items;

Homework: write arguments
about correctness, i.e.to
show that the solution meets
the requirements

buffer
has items;

buffer
has space;

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

8

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

What is resource allocation?
Processes/threads need resources (eg memory pages, printer, access

to parts of shared data structure, etc)
- Our focus: reusable resources:

Eg. a human analogy: process = go fishing; needed resources: boat,
fishing-rod

9

To solve the problem: provide the method for each process to
acquire all its needed resources and release them, and
guarantee (as in the Critical Section problem):

1. Mutual exclusion: each resource is used by only one process at a
time

2. Progress: no deadlock
3. Fairness: FCFS, or no starvation, or other fairness formulation

Process/thread P structure
do

// use them

// remainder section
forever

request resources (i.e. entry section)

release resources (i.e. exit section)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

10

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

What is a deadlock?

11

A set of processes/threads blocking each-other s.t. none of them can proceed:
How can it occur?

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 12

4 necessary conditions for Deadlock [Coffman et al 1971]

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding some resource can request
additional resources and wait for them if they are held by other
processes.

3. No preemption: a resource can only be released by the process
holding it, after that process has completed its task.

4. Circular wait: there exists a circular chain of 2 or more blocked
processes, each waiting for a resource held by the next proc. in
the chain

Theorem: all 4 conditions hold simultaneously when a deadlock occurs:

Boat ok, i
need the rod

Rod ok; i
need the boat

A
B

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 13

let’s think together: (ie as in)

Q: What does the theorem imply wrt deadlock prevention?

A: see next slide

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 14

Resource Allocation with Deadlock Prevention

Eliminate Mutual Exclusion – (cannot do much here …)

Eliminate Circular Wait – how? E.g. impose that resources are acquired
in a certain order
• e.g always first the boat, then the rod

Eliminate No-Preemption – how? a process holding some resources &
requesting another that is occupied, it releases the held resources and
has to request them again.
• Eg be polite: B releases the boat for A to proceed (after which A

releases both and B can proceed)

Eliminate Hold and Wait – how? E.g. process requests and gets all its
resources at once
• Eg book both the boat and the rod through the same “agent”

How can a solution to RA be RESPONSIBLE AND PREVENT?

Restrain the ways requests can be made; eliminate at least one of the 4 conditions, so that deadlocks are impossible to
happen. How?

Boat ok, i
need the rod

Rod ok; i
need the boat

A
B

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

15

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Consider the dining philosophers problem [Dijkstra65]

n philosophers (processes); each philosopher P_i,
when hungry, needs : both left & right fork, in
order to eat

16

Pic: wikipedia

Process P_i structure
do

// eat

// think
forever

get resources (i.e. entry section)

leave resources (i.e. exit section)

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

17

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Trying to solving the dining philosophers problem:
pick-left-pick-right-fork
Shared var f[0..n-1]: bin-semaphore

// one for each fork; init all 1
P_i:
do

Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork

// Eat
Signal f[i]; // leave left fork
Signal f[(i+1) mod n]; leave right fork

// Think
forever

18

Does it solve the problem?

let’s think together: (ie as in)

Recall the requirements:
1. Mutual exclusion: each resource is used by only one process at a time
2. Progress: no deadlock
3. Fairness: FCFS, or no starvation, or other fairness formulation

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Does the ”pick-left-then-pick-right-fork” method satisfy
the mutual exclusion property?
• Can it violate it? I.e. Can it happen that there is a point in time s.t. some

proceses A and B concurrently access the same resource (i.e concurrently
eat)?

• Assume it can and w.l.o.g. consider the decision step by A to eat; Can B
(which must be A’s neighbour) decide to eat after A’s decision step and
before A finishes?

Homework: fill in the details that lead to contradiction, in the figure and in
text, using ”->” as we did when studying Peterson’s 2-CS algo

19

A eating

B eating

Time

Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1

P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork

// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork

// Think
forever

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 20

Does the “pick-left-pick-right-fork” method satisfy the progress property?

f0

f1

P0 P1

Think of:
• Mutual exclusion
• Hold&wait
• No preemption
• Cyclical waitYes, example deadlock with 2 philosophers and 2 forks

Can it deadlock? Shared var f[0..n-1]: bin-semaphore
// one for each fork; init all 1

P_i:
do
Wait f[i]; // pick left fork;
Wait f[(i+1) mod n]; // pick right fork

// Eat
Signal f[i]; // Leave left fork
Signal f[(i+1) mod n]; leave right fork

// Think
forever

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

21

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 22

Pick one fork at a time, & fight the circular wait:

Shared var f[0..n-1]: bin-semaphore //init all 1

Pi: (i ≠n-1)
do

Wait(f[i]);
Wait(f[(i+1)mod n]);

// Eat
Signal(f[(i+1)mod n])
Signal(f[i])

// Think
forever

Pn-1

do
Wait(f[(i+1)mod n]) //ie wait(f[0])
Wait(f[i]) //ie wait(f[n-1])
// Eat
Signal(f[i])
Signal(f[(i+1)mod n])
// Think

forever

Idea:
• use ordering of resources

• Proc’s request their needed
resources in increasing order

Does it solve the problem?
Does it fight the circular
wait?

Key idea: Follow the waiting chains
(directed paths in the RA graph): always
the requested resource with max-id is the
end of it, thus preventing circle

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 23

Correctness argument:
How is circular wait prevented with the “request-in-resource-order” algo?

f[0]

f[1]

P0 P1

Without loss of generality (wlog), consider P0:
Case 1: if P0 waits for f[0]:
- P1 must have it, hence it can get f[1] (i.e.

max-id resource) and eat; i.e. no circle (i.e.
contradiction of the assumption that the
wrong thing can happen, in case 1)

Start simple, consider 2 processes (P0, P1)
Assume, towards a contradicton that deadlock can happen,
i.e. there exists a circle…

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 24

Correctness argument:
How is circular wait prevented with the “request-in-resource-order” algo? (cont)

f[0]

f[1]

P0 P1

Case2: if P0 waits for f[1]:
- P0 must have f[0], hence f[1]
(i.e. max-id resource) is available and P0 can
eat; i.e. again no circle (i.e. contradiction of the
assumption that the wrong thing can happen, in
case 2)

- If we have more processes and resources, follow the
waiting chain: always the max-id resource is the end of
the waiting chain, thus preventing the circle, QED

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 25

Fairness property of the “request-in-resource-order” algo?

It depends directly on the fairness guarantees of the underlying semaphore’s implementation.

@home: Show in timelines that:
if the semaphores do not guarantee fairness, then the “request-in-resource-order” algo can be unfair
e.g given 2 threads A and B, A can by-pass B many times while B is not able to go beyond the wait of
their common-fork’s semaphore. You may consider a simple system with just 2 philosophers.

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

26

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 27

Fight the no-preemption
shared var f[0..n-1]: of type fork_structure { // one for each fork

s: bin-semaphore //init 1
available: boolean //init true

}

P_i:
local var holding_both_forks: boolean;
repeat

while (not holding_both_forks){
lock(f[i])
if !trylock(f[(i+1)modn]) then release(f[i])
else holding_both_forks := true }

// Eat
release(f[i])
release(f[(i+1)modn])
holding_both_forks := false
// Think

forever

trylock(fork: fork_structure):
wait(fork.s)
if fork.available then { fork.available := false ;

ret:= true;
}
else ret:= false;
signal(fork.s)
return(ret)

lock(fork : fork_structure):
repeat
until (trylock(fork))

release(fork : fork_structure):
wait(fork.s)
fork.available := true
signal(fork.s)

Idea: when the second resource is not
available, release the first one and retry

Properties?

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Fight the no-preemption algo of the prev. slide: properties:

• Mutual exclusion: ok
• Progress: no deadlock …
• Fairness: a process can starve…

• Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

28

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

29

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention 30

Fighting the hold and wait

shared var semaphore S[0 .. n-1] // init all 0
shared var semaphore mutex // init 1
shared var state[0 .. n-1] in {HUNGRY, THINKING,EATING}
Pi:
do

// think
enterCS(i) // ie get both forks
// eat
exitCS(i) // ie leave bothforks

forever

enterCS(i)
wait(mutex)
state(i) := HUNGRY
help(i)
signal(mutex)
wait(S[i])

exitCS(i)
wait(mutex)
state(i) := THINKING
help((i-1) mod n)
help((i+1) mod n)
signal(mutex)

help(k)
if state[k] ==HUNGRY && state[(k-1) mod n] != EATING && state[(k+1) mod n] != EATING
then {state(k) := EATING ; signal(S[k]) }

Idea: ”eat” is mutually exclusive (ie CS) among each P_i
and its neighbours, hence:
apply a CS algo in each neighbourhood, instead of for
each fork (i.e. as if philosopher picks both forks at once)

Properties?

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Fight the no-hold-and-wait algo of the prev slide: properties:

• Mutual exclusion: ok
• Progress: no deadlock
• Fairness: a process can starve

• Homework: put down the arguments for the above using our discussion
and the methodology that we apply + (for the no-deadlock property)
use the implication of Coffman’s thm

31

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Roadmap

32

The bounded buffer producer-consumer problem

Resource allocation (dining philosophers is such a problem)
Intro
We elaborate on deadlocks

What is the problem with the Dining philosophers…
… and how to help them
Well, we failed; let’s try to eliminate the deadlock’s necessary conditions
– First the cyclical wait
– Then the no-preempt
– Now the hold-and-wait

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Summary

• Discussed the concept of building synch-objects from other synch objects
• Common synchronization problems: bounded buffer, dining philosophers
• Resource-allocation&deadlocks

– Deadlock: 4 conditions necessary
– Fighting deadlock: prevent (i.e. attack deadlock’s necessary conditions)

• We saw several synchronization methods and examples
– incl. helping, trylock implementation

• Shortly: narrow bridge & lab

Next lecture: more in-depth n-process mutual-exclusion and tools/methods/ properties
– Lamport’s bakery algo + Turing award topic
– Readers/writers problems and a touch on lock-free synchronization
– One more way to deal with deadlocks (avoid, using with an arbitrator: Bankers algo by

Dijkstra)
33

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reading instructions (on all the synchronization topics we discuss)

34

Modern OS by Tanenbaum-Bos:
- careful study of sections 2.3.1-2.3.6, 2.5.2
- Complement (Bakery alg.) through

http://web.cs.iastate.edu/~chaudhur/cs611/Sp09/notes/lec03.pdf
- Quicker reading, for awareness, of sections 2.3.7-2.3.10
Alt. from OS Concepts: Silberschatz-et-al: Sections 6.1-6.7, 6.9

-Matching review questions at e.g.
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

Optional reading, other sources:
1. Leslie Lamport (recipient of ACM Turing award 2013). Turing lecture: The computer science of concurrency (with special

mention to the Bakery algo)
Commun. ACM 58, 6 (May 2015), 71-76. DOI= http://dx.doi.org/10.1145/2771951

2. Large variety of synch methods: how to think/decide? Cf also eg:
A Study of the Behavior of Synchronization Methods in Commonly Used Languages and Systems; D. Cederman, B.
Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatriantafilou, P Tsigas, 27th IEEE International Parallel & Distributed
Processing Symposium, IPDPS 2013 http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html

3.M. Herlihy&Shavit,”The art of Multiprogramming, By Herlihy & Shavit) (http://cs.brown.edu/courses/cs176/lectures.shtml)
4. P. Fatourou: Spin Locks and Contention https://www.csd.uoc.gr/~hy586/material/lectures/cs586-Section3.pdf

http://web.cs.iastate.edu/%7Echaudhur/cs611/Sp09/notes/lec03.pdf
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html
http://dx.doi.org/10.1145/2771951
http://www.computer.org/csdl/proceedings/ipdps/2013/4971/00/4971b309-abs.html
http://cs.brown.edu/courses/cs176/lectures.shtml
https://www.csd.uoc.gr/%7Ehy586/material/lectures/cs586-Section3.pdf

[MP] OS 06 Classic Synch. Problems; Resource allocation with deadlock prevention

Reading instructions (include all deadlock-related parts of our discussions):

35

- From Modern OS by Tanenbaum et-al:
Careful study 2.5.1, 6.1-6.2, 6.5-6.6, 6.7.3-6.7.4; quick reading 6.2-6.3

- Alt. from OS Concepts by Silberschatz et-al:
Careful study 7.1-7.5, 7.8; quick reading 7.6-7.7

- In addition to the above:
- Practice on the dining philosopher solutions described in the notes;

understand why they work, try to argue about correctness as we did for
Peterson’s algo

- Practice on homework hintsin the notes and on the exercises that will be
discussed in class (several of them have been basis for exam questions)

-Matching review questions at
http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

http://codex.cs.yale.edu/avi/os-book/OS9/review-dir/index.html

	Course Operating Systems��Lecture 6: �Classic Synchronization Problems and Resource Allocation with emphasis on Deadlock Prevention
	Classic Problems of Synchronization
	Reflect: this is what we are doing …
	Roadmap
	Bounded producer-consumer buffer: requirements
	Bounded producer-consumer buffer: what synch do we need?
	Bounded producer-consumer buffer: a solution
	Roadmap
	What is resource allocation?
	Roadmap
	What is a deadlock?
	4 necessary conditions for Deadlock [Coffman et al 1971]
	Slide Number 13
	Resource Allocation with Deadlock Prevention
	Roadmap
	Consider the dining philosophers problem [Dijkstra65]
	Roadmap
	Trying to solving the dining philosophers problem: �pick-left-pick-right-fork
	Does the ”pick-left-then-pick-right-fork” method satisfy �the mutual exclusion property?
	Does the “pick-left-pick-right-fork” method satisfy the progress property?
	Roadmap
	Pick one fork at a time, & fight the circular wait:
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo?
	Correctness argument: �How is circular wait prevented with the “request-in-resource-order” algo? (cont)
	Slide Number 25
	Roadmap
	Fight the no-preemption
	Fight the no-preemption algo of the prev. slide: properties:
	Roadmap
	Fighting the hold and wait
	Fight the no-hold-and-wait algo of the prev slide: properties:
	Roadmap
	Summary
	Reading instructions (on all the synchronization topics we discuss)
	Reading instructions (include all deadlock-related parts of our discussions):

