
Lecture 4:  Process scheduling
Operating Systems – EDA093/DIT401

Vincenzo Gulisano
vincenzo.gulisano@chalmers.se



What to read (main textbook)

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 2

• Chapter 2.4, 8.1.1, 8.1.2, 8.1.4, 10.3.4, 11.4.1

(extra facultative reading: 5.1-5.7, 1.10 from Silberschatz
Operating System Concepts)



Objectives

• Get deeper into processes, threads and their 
scheduling / execution
• Discuss different types of systems 

(batch/interactive/real-time)
• Discuss challenges of multi-processor/multi-

core architectures

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 3



Agenda

• Introduction
• Batch /  Interactive / Real-time systems scheduling
• Processes vs. Threads scheduling
• Multiprocessor hardware
• Why does it complicate the matter?

• Multiprocessor scheduling
• Time sharing
• Space sharing
• Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 4



Agenda

• Introduction
• Batch /  Interactive / Real-time systems scheduling
• Processes vs. Threads scheduling
• Multiprocessor hardware
• Why does it complicate the matter?

• Multiprocessor scheduling
• Time sharing
• Space sharing
• Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 5



Introduction

• 2 types of processes:
a) CPU-bound (or compute-bound)
b) I/O bound

• Notice: I/O does not mean I/O takes a lot, it means few CPU cycles in-between 
I/O calls

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 6



When can the OS take scheduling decisions?

• Process creation
• Process termination
• I/O request
• I/O interrupt
• Elapsed time

Non-preemptive preemptive

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 7



Agenda

• Introduction
• Batch /  Interactive / Real-time systems scheduling
• Processes vs. Threads scheduling
• Multiprocessor hardware
• Why does it complicate the matter?

• Multiprocessor scheduling
• Time sharing
• Space sharing
• Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 8



Scheduling algorithms – Categories and goals

• Batch
”business-world” applications, data 
analysis. Appropriate for non-
preemptive

• Interactive
Many users that need 
responsiveness, requiring 
preemptive scheduling

• Real-time
for short-lived, short-cycle processes 
with hard/soft deadlines

THROUGHPUT

CPU UTILIZATION

TURNAROUND TIME

RESPONSE TIME

PROPORTIONALITY

MEETING DEADLINES

PREDICTABILITY

FA
IR

N
ES

S

BA
LA

N
CE

PO
LI

CY
 E

N
FO

RC
EM

EN
T

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 9



… Let’s discuss some scheduling algorithms for some of 
these categories [read others in book]…

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 10



Batch systems – scheduling

Algorithm + -
First-Come/First-Serve (non-preemptive) Easy, fair Possibly inefficient (esp. for I/O bound processes)

Shortest Job First (non-preemptive) Optimal for turnaround Starvation + need to know runtime

Shortest Remaining Time Next (preemptive) New short jobs get 
good service

Starvation + need to know runtime

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 11



Example of inefficient first-come/first-serve scheduling

• Process 0 (CPU-bound): 1 I/0 every 1 sec of computations, 1000 sec 
to finish
• Processes 1…1000 (I/O bound): need to perform 1000 I/Os

• FCFS: Processes 1…1000 get to perform 1 I/O every second. Hence, 
they end in 1000 seconds (>16 minutes)

• Preempting Process 0 every 10 ms, they could complete in 10 
seconds…

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 12



Interactive Systems - scheduling

• Round-robin
• Priority scheduling
• Multiple queues
• Shortest process next
• Guaranteed scheduling
• Lottery scheduling
• Fair-share scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 13



Round-Robin

• Quantum: time-interval during which the process can run

• Process still running at the end of the quantum? Preempt!
• Simple to implement (keep a list…)

• Challenge: what’s the right quantum length?
• Too short à high overhead
• Too long à responsiveness (e.g., 50th process of a batch scheduled in round-

robin with quantum 100ms waits 5 secs to start… what if it was the shortest 
I/O-bound of the 50 processes???)

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 14



Priority scheduling

• Not all processes are equally 
important, processes with higher 
priority should be prioritized

• Priorities:
• Static (by OS or user)
• Dynamic (by OS or user)

• Priority can be combined with 
round-robin à priority classes

…In the previous example (FCFS batch) I/O 
could have higher priority than CPU-bound…

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 15



Lottery scheduling

• Alternative to priority scheduling that still gives more resources to 
some processes rather than others

• Processes get “lottery tickets”.
• Next process to run is the one holding the next randomly chose ticket.

• Easier to map portions of resources to give to a process (i.e., portion 
of tickets to give) than with priority scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 16



Agenda

• Introduction
• Batch /  Interactive / Real-time systems scheduling
• Processes vs. Threads scheduling
• Multiprocessor hardware
• Why does it complicate the matter?

• Multiprocessor scheduling
• Time sharing
• Space sharing
• Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 17



User-level vs. Kernel-level threads

User-level Kernel-level

+

- Inter-quantum thread switch 
is extremely fast (no real 
context switch)

- Can employ application 
specific scheduler

Process can keep 
running even if some 
of its thread perform 
I/O

-

A thread blocking on I/O means 
the entire process does

Thread switch costs 
more (but OS knows 
inter-process thread 
switch might cost 
more than intra-
process one)

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 18



Agenda

• Introduction
• Batch /  Interactive / Real-time systems scheduling
• Processes vs. Threads scheduling
• Multiprocessor hardware
• Why does it complicate the matter?

• Multiprocessor scheduling
• Time sharing
• Space sharing
• Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 19



Multiprocessor hardware– Why complicated?

Suppose a thread has some data 
here and issues an I/O request. 
When later rescheduled, it might 
perform better on this CPU than on 
this one…

… but for that we need to keep 
track of more such information and 
make it part of the scheduling 
process.

Caches

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 20



Multiprocessor hardware– Why complicated?

NUMA architectures
Suppose two threads (producer/consumer) are scheduled 
at the same time…

Scheduling on the same socket will perform better than…

Scheduling on two different sockets

To complicate a bit further… how would the OS know 2 
threads are producer/consumer?

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 21



Multiprocessor hardware– Why complicated?

Where to place the OS itself?

Each CPU its own OS

Might still be better than n separate 
computers

No sharing makes it simple, but also inefficient 
and possibly useless…

- Load can become imbalanced

- Data can become inconsistent (especially 
with buffers!)

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 22



Multiprocessor hardware– Why complicated?

Where to place the OS itself?
All system calls redirected to the Master CPU

… easy to bottleneck …
Master-Slave

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 23



Multiprocessor hardware– Why complicated?

Where to place the OS itself? Balances workload / resources

à CONCURRENT ACCESS TO KERNEL!!!

2 threads could modify the same data structure at 
the same time.

Big lock? à Then it is basically master-slave

Critical regions / fine-grained parallelism? à better! 
…but makes it hard to program (e.g., deadlocks…) 

Symmetric multiprocessors

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 24



Agenda

• Introduction
• Batch /  Interactive / Real-time systems scheduling
• Processes vs. Threads scheduling
• Multiprocessor hardware
• Why does it complicate the matter?

• Multiprocessor scheduling
• Time sharing
• Space sharing
• Gang scheduling

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 25



Time sharing

• Single system-wide data structure (or combination) for all ready threads

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 26

+ Automatic load balancing
- Contention might bottleneck 

the system
- Still suffers from the “affinity 

problem”



Time sharing – two-level scheduling algorithm

• Each CPU has its collection of threads (assigned at creation time, in 
e.g. round-robin or least-loaded)
• Idle CPUs can still take threads from other CPUs if needed

• Benefits:
• Load balancing
• Cache affinity
• Less contention

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 27



Space sharing

• When a set of related threads (e.g., from the same process) is created, the OS 
tries to schedule all of them at the same time (if enough CPUs are available).
• Thread issuing I/O still holds the CPU (inefficient…).

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 28



Gang scheduling

• Schedule both in time and space
• Can prevent problems like the one shown below:

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 29



Gang scheduling

• Groups of related threads are scheduled as a gang (with same 
quantum)

• All gang members run at once

• All gang members start / end their quantum together

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 30



Gang scheduling - example

Vincenzo Gulisano Operating Systems - Lecture 4 – Process Scheduling 31



Thank you for your attention!
Questions?

Feedback / questions:

Vincenzo Gulisano Operating Systems - Lecture 3 - Threads 32

https://forms.gle/dNkZZ1RE6WwYqzFk6

https://forms.gle/dNkZZ1RE6WwYqzFk6

