Lecture 2: Processes

Operating Systems — |

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

HDA093/DIT401

UNIVERSITY OF
GOTHENBURG

What to read (Main textbook)

* Chapter 2.1

(extra facultative reading: 3.1-3.4, 3.5.3, 3.6.3 from Silberschatz
Operating System Concepts)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

Objectives

* To introduce the notion of a process: a
program in execution, which forms the
basis of all computation

* To describe the various features of
processes, including scheduling, creation
and termination, and communication

* To explore inter-process communication
using shared memory and message
passing

1% Windows Task Manager | = &=
File Options View Help
Applications | Processes l Services] Performance l Networking [Users I
Image Name ‘ User Name CPU Memory (... Description
AeXAgentUIHost.exe chalmers 00 3616K Symantec...
ApMsgFwd.exe chalmers 00 2996 K ApMsgFwd
ApntEx.exe chalmers 00 2848K Alps Point...
Apoint.exe chalmers 00 3636K Alps Point...
ccSvcHst.exe *32 chalmers 00 6052K Symantec...
communicator.exe *32 chalmers 00 2556K Microsoft ...
conhost.exe chalmers 00 2196K Console ...
Csrss.exe 00 1848K
dagentui.exe chalmers 00 3448K Dagent
DCPSysMgr.exe chalmers 00 5012K Dell Syste...
dwm.exe chalmers 00 14176 K Desktop ...
explorer.exe chalmers 00 29416 K Windows ...
FF_Protection.exe *32 chalmers 00 2040K FF_Prote...
firefox.exe *32 chalmers 00 117 360K Firefox
hidfind.exe chalmers 00 2456K Alps Point...
InputPersonalization.exe chalmers 00 496 K InputPer...
nvvsvc.exe 00 5552K
NvXDSync.exe 00 6 376K
POWERPNT.EXE *32 chalmers 00 16 388K Microsoft ...
rundll32.exe chalmers 00 2500K Windows ...
SnippingTool.exe chalmers 00 2852K Snipping ...
splwowé4.exe chalmers 00 2992K Printdriv...
taskhost.exe chalmers 00 5040K HostProc...
taskmar.exe chalmers 00 399K Windows ...
TeamViewer.exe *32 chalmers 00 8672K TeamView...
tv_w32.exe 00 1740K
tv_x64.exe 00 2464K
winlogon.exe 00 3332K
wisptis.exe chalmers 03 3276K Microsoft...
[# show processes from all users
Processes: 78 CPU Usage: 4% Physical Memory: 37%

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

AGENDA

* Processes (Introduction)
* Process Scheduling

* Operations on Processes

* Interprocess Communication (contains self-reading part)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

AGENDA

* Processes (Introduction)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

1. We run several programs at
the same time

2. One CPU can only run one
program at the time

Concurrent vs Parallel execution

1. e veral S at
the me

2. OneCP run one
fam at the time

. We feel several programs run

at the same time

Each CPU core can only run
one program at the time

(Next lecture)

Process, not program

operating s

ystem process P,

Interrupt or system ca

executing ;L /
T

L 4
save state

int PCB,)

reload state

from PCB,

1

A process —> rldle interrupt or system call
can be in ey |
different save state into PCB;
states, how
many?

-~

reload state from PCB,

> idle

executing

idle

Thlere are periods of

executing ‘¥
L'

time during which
NO process is

running! Overheads
should be minimal

Process Concept

* Process (or job, task) — a program in execution; process execution must
progress in sequential fashion

* Program is passive entity stored on disk (executable file), process 1s
active

* Program becomes process when executable file loaded into memory

* Execution of program started via GUI mouse clicks, command line
entry of its name, ...

* One program can be several processes (consider multiple users executing
the same program)

* A process can be the execution environment for other code (e.g., Java
Virtual Machine)

Process in Memory

max

stack

heap

data

text

Vincenzo Gulisano

* Multiple parts:

* The program code, also called text
section

* Data section containing global variables

* Heap containing memory dynamically
allocated during run time

* Stack containing temporary data

* Function parameters, return addresses, local
variables

Operating Systems - Lecture 2 - Processes 10

Diagram of Process State

admitted

interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

* As a process executes, it changes state

new: The process is being created
Important: only 1 process

can be running on any

ready: The process is waiting to be assigned to a processor

running: Instructions are being executed

processor at any instant.

waiting: The process is waiting for some event to occur

terminated: The process has finished execution

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 11

Context Switch

* When CPU switches to another process, the system must save the state
of the old process and load the saved state for the new process via a
context switch

* Context of a process represented in the PCB

* Context-switch time is overhead; the system does no useful work while
switching
* The more complex the OS and the PCB =» the longer the context switch

* Time dependent on hardware support

* Some hardware provides multiple sets of registers per CPU = multiple contexts
loaded at once

Process Control Block (PCB)

* Information associated with each process in the OS

* Process state: running, waiting, etc.

* Program counter: location of next instruction to
execute

* CPU registers: contents of all process-centric registers

* CPU scheduling information: priorities, scheduling
queue pointers

* Memory-management information: memory allocated
to the process

* Accounting information: CPU used, clock time elapsed
since start, time limits

* I/O status information: I/O devices allocated to
process, list of open files

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

process state

process number

program counter

registers

memory limits

list of open files

13

AGENDA

* Process Scheduling

Vincenzo Gulisano

Operating Systems - Lecture 2 - Processes

14

Process Scheduling

* Maximize CPU use, quickly switch processes onto CPU for time sharing

* Process scheduler selects among available processes for next execution

on CPU

* Maintains scheduling queues of processes
* Job queue — set of all processes in the system

* Ready queue — set of all processes residing in main memory, ready and waiting to
execute

* Device queues — set of processes waiting for an 1/O device
q g

* Processes migrate among the various queues

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 15

Ready Queue And Varlous I/O Dev1ce Queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

Vincenzo Gulisano

queue header

2

head = > —a
tail registers registers
head T——=
T
head T——=
S PCB, PCB,,4 PCBg
B

head

N\
|

tail

PCB

head

tail

L 1
\"
1

Operating Systems - Lecture 2 - Processes

16

Representation of Process Scheduling

Queueing diagram represents queues, resources, flows

_____, ready queue CPU
/O l/O queue = /O request <
time slice !
expired
child fork a
@‘7 child «
interrupt wait for an
OCcCcurs interrupt

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

17

Schedulers

* Short-term scheduler (or CPU scheduler) — selects which
process should be executed next and allocates CPU
* Sometimes the only scheduler in a system

* Short-term scheduler 1s invoked frequently (milliseconds) = (must be

fast)

* Long-term scheduler (or job scheduler) — selects which
processes should be brought into the ready queue

* Long-term scheduler is invoked infrequently (seconds, minutes) = (may
be slow)

* The long-term scheduler controls the degree of multiprogramming

AGENDA

* Operations on Processes

Vincenzo Gulisano

Operating Systems - Lecture 2 - Processes

19

Operations on Processes

* System must provide mechanisms for:
* process creation,
* process termination,

* and so on as detailed next

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

20

Process Creation

* Parent process create children processes, which, in turn create other
processes, forming a tree of processes

* Generally, process identified and managed via a process identifier (pid)

* Resource sharing options
e Parent and children share all resources
e Children share subset of parent’ S resources

e Parent and child share no resources

* Execution options

* Parent and children execute concurrently

e Parent waits until children terminate

A Tree of Processes in Linux
init process, always has pid=1

manage ssh

manage clients connections
. . login kth: dd sshd
lOgglﬁg mn the pid = 8415 pi;e:z pid = 3028
system

bash khelper pdflush sshd
pid = 8416 pid = 6 pid = 200 pid = 3610

Ps emacs ' tc_sch
pid = 9298 pid = 9204 pid = 4005

User process

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 22

ps —el (UNIX)

XXXXXXXXXX:~$ pstree —pl
init(1)-+-NetworkManager(1215)—-+-dhclient(3386)
| |-dnsmasq(3390)
| |-{NetworkManager}(1224)
| *—{NetworkManager}(2164)
| —-accounts—daemon(1527)-——{accounts—daemon}(1530)
|-acpid(1360)
—apache2(16861)—-+-apache2
| —apache2
| —apache2
| —apache2
| —apache2
| —apache2

| 2458)
|

|

|

|

|

| | —apache2
|

|

|

|

|

2460)
2461)
2462)
2463)
2464)
4079)
| —apache2(4082)

| —apache2(5464)

| —apache2(5465)

"—apache2(5466)
—at-spi-bus-1laun(3570)-+-dbus—-daemon(3576)

P e e e e e e e~ o —

Process Creation (Cont.)

* Address space
* Child duplicate of parent
* Child has a program loaded into it

* UNIX examples

* fork() system call creates new process

* exec() system call used after a fork() to replace the process’ memory space with
a new program

parent N m resumes
\ /

child - exec() =/e;it()

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 24

C Program Forking Separate Process

#include <sys/types.h>
#include <stdio.h> —
#include <unistd.h> > watlt

int main() @
{ .
pid-t pid; e @ @

/* fork a child process */
pid = fork();

resumes

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/1s","1s" ,NULL) ;

else { /* parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 25

Process Termination

* Process executes last statement and then asks the operating system to
delete 1t using the exit() system call.
* Returns status data from child to parent (via wait())

e Process’ resources are deallocated by operating system

* Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:
* Child has exceeded allocated resources
* Task assigned to child is no longer required

* The parent is exiting and the operating systems does not allow a child to
continue if its parent terminates

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

26

Process Termination

* Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also be
terminated.

* cascading termination. All children, grandchildren, etc. are terminated.

* The termination 1s initiated by the operating system.

* The parent process may wait for termination of a child process by using
the wait()system call. The call returns status information and the pid of
the terminated process

* pid = wait(&status);
* If no parent waiting (did not invoke wait()) process is a zombie

* If parent terminated without invoking wait , process is an orphan

Multiprocess Architecture — Chrome Browser

* Many web browsers ran as single process (some still do)

* If one web site causes trouble, entire browser can hang or crash

* Google Chrome Browser 1s multi process with 3 different types of
processes:
* Browser process manages user interface, disk and network I/O

* Renderer process renders web pages, deals with HTML, Javascript. A new
renderer created for each website opened

* Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

* Plug-in process for each type of plug-in

(&) Chalmers tekniska hogske % g Startsida - www.gu.se - x | me International Herald Tribu X | @ The New York Times - Bre X / @ Chrome %

€« C' [3 www.google.com/chrome

N\] A

FEach tab represents a process

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

28

AGENDA

* Interprocess Communication (contains self-reading part)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

29

Interprocess Communication

* Processes within a system may be independent or cooperating

* Cooperating process can affect or be affected by other processes,
including sharing data

* Reasons for Cooperating Pprocesses:
* Information sharing
* Computation speedup
* Modularity

* Cooperating processes need interprocess communication (IPC)

* Two models of IPC

* Shared memory

* Message passing

Communications Models

shared memory.

(a) Message passing.

(b)

process A

process B

message queue

— Mo |M4 (Mo Mg ...

My,

kernel

(@)

process A

.

shared memory

process B

kernel

(b)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

31

Cooperating processes
Producer-Consumer Problem

* Paradigm for cooperating processes, producer process produces
information that 1s consumed by a consumer process

* unbounded-buffer: places no practical limit on the size of the buffer

* bounded-buffer: assumes that there is a fixed buffer size

Interprocess Communication — Shared Memory

* Major issues 1s to provide

process A mechanism that will allow the
shared memory user processes to synchronize
:I their actions when they access

process B shared memory.

* Synchronization is discussed in
detail in following lessons

kernel

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 33

Interprocess Communication — Message Passing

process A

process B

mesSage queue

—> M| M4 (Mo Mg| ...

My,

kernel

Vincenzo Gulisano

* If processes P and QQ wish to
communicate, they need to:

* HEstablish a communication link between
them

* Exchange messages via send/receive

* Implementation issues:
* How are links established?

e Can a link be associated with more than two
processes?

* How many links can there be between every
pair of communicating processes?

* What is the capacity of a link?

* Is the size of a message that the link can
accommodate fixed or variable?

* s a link unidirectional or bi-directional?

Operating Systems - Lecture 2 - Processes 34

Logical implementation — Issues [Self-reading section]

* Naming, Direct or indirect communication
* Synchronous or asynchronous communication

* Automatic or explicit buffering

Logical implementation - Issues

* Naming, Direct or indirect communication
* Synchronous or asynchronous communication

* Automatic or explicit butfering

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

36

Direct Communication

* Processes must name each other explicitly:
* send (P, message) — send a message to process P

* recetve(QQ, message) — recetve a message from process QQ

* Properties of communication link
* Links are established automatically
* A link 1s associated with exactly one pair of communicating processes
* Between each pair there exists exactly one link
* The link may be unidirectional, but is usually bi-directional

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

37

Indirect Communication

* Messages are directed and received from mailboxes (also referred to as
ports)
* Each mailbox has a unique 1d

* Processes can communicate only if they share a mailbox

* Properties of communication link

* Link established only if processes share a common mailbox
* A link may be associated with many processes
* Each pair of processes may share several communication links

* Link may be unidirectional or bi-directional

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

38

Indirect Communication

* Operations
* create a new mailbox (port)
* send and receive messages through mailbox

* destroy a mailbox

* Primitives are defined as:
* send(A, message) — send a message to mailbox A

* receive(A, message) — receive a message from mailbox A

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

39

Logical implementation - Issues

* Naming, Direct or indirect communication
* Synchronous or asynchronous communication

* Automatic or explicit butfering

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

40

Synchronization

* Message passing may be either blocking or non-blocking

* Blocking is considered synchronous
* Blocking send -- the sender is blocked until the message 1s recetved

* Blocking recetve -- the receiver 1s blocked until a message is available

* Non-blocking is considered asynchronous

* Non-blocking send -- the sender sends the message and continues

* Non-blocking receive -- the receiver receives:
* A valid message, or

* Null message

* Different combinations possible

* If both send and receive are blocking, we have a rendezvous

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 41

Synchronization (Cont.)

* Producer-consumer becomes trivial for blocking send/receive:

message next produced;

while (true) {
/* produce an item in next produced */
send (next produced) ;

message next consumed;
while (true) ({
recelve (next consumed) ;

/* consume the item 1n next consumed */

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

42

Logical implementation - Issues

* Naming, Direct or indirect communication
* Synchronous or asynchronous communication

* Automatic or explicit buffering

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

43

Buttering

* Queue of messages attached to the link.

* implemented in one of three ways

* 1.Zero capacity — no messages are queued on a link.

Sender must wait for recetver (rendezvous)

* 2.Bounded capacity — finite length of n messages
Sender must wait 1if link full

* 3.Unbounded capacity — infinite length
Sender never waits

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

44

Examples of IPC Systems — Windows

* Message-passing centric via advanced local procedure call (LPC) facility
* Only works between processes on the same system

* Uses ports (like mailboxes) to establish and maintain communication
channels

Local Procedure Calls in Windows

Client

Server

Handle

Connection
request Connection
Port
Handle Client

Communication Port

1 4

Server
Communication Port

Shared

Handle

¢«———» Section Object ¢————>»

Vincenzo Gulisano

(< = 256 bytes)

Operating Systems - Lecture 2 - Processes

46

Pipes

e Acts as a conduit aﬂowing two processes to communicate

* Ordinary pipes — cannot be accessed from outside the process that
created it. Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.

* Named pipes — can be accessed without a parent-child relationship.

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

47

Ordinary Pipes

* Ordinary Pipes allow communication in standard producer-consumer
style

* Producer writes to one end (the write-end of the pipe)
* Consumer reads from the other end (the read-end of the pipe)
* Ordinary pipes are therefore unidirectional

* Require parent-child relationship between communicating processes

parent child
fd[O] fd[1] fd[0] fd[1]

L)

* Windows calls these anonymous pipes

* See Unix and Windows code samples in textbook

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 48

Named Pipes

* Named Pipes are more powerful than ordinary pipes
* Communication is bidirectional

* No parent-child relationship is necessary between the
communicating processes

* Several processes can use the named pipe for communication

* Provided on both UNIX and Windows systems

Pipes in UNIX

* Serve output of one command - input of another command

use a long listing format pipe

Is -la | grep <pattern>

list directory contents print lines matching a pattern

do not ignore entries starting with .

in UNIX

Pipes in

Is -la | grep Apr

Is -la

—_T T

—_T T

—_T T

—_T T

Ordinary Pipes - example

#include
#include
#include

#include

<stdio.h>
<unistd.h>
<sys/types.h>

<string.h>

#define BUFFER SIZE 25

#define READ END 0

#define WRITE END 1

Vincenzo Gulisano

Operating Systems - Lecture 2 - Processes

52

Ordinary Pipes - example

int main (void)

{

char write msg[BUFFER SIZE] = "Greetings";
char read msg[BUFFER SIZE];

pid t pid;

int f£d[2];

/* create the pipe */

if (pipe(fd) == -1) {
fprintf (stderr, "Pipe failed");
return 1;

/* now fork a child process */
pid = fork();

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

if (pid < 0) {
fprintf (stderr, "Fork failed");
return 1;

if (pid > 0) { /* parent process */
/* close the unused end of the pipe */
close (fd[READ END]) ;
/* write to the pipe */

write (£d[WRITE END], write msg, strlen(write msqg)+1);

/* close the write end of the pipe */
close (fd[WRITE END]) ;

}

else { /* child process */
/* close the unused end of the pipe */
close (fd[WRITE END]) ;
/* read from the pipe */

read (fd[READ END], read msg, BUFFER SIZE);

printf ("child read %s\n",read msg);
/* close the write end of the pipe */
close (fd[READ END]) ;

}

return 0O;

}

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes

54

Thank you for your attention!

https://forms.gle/eHI6q]EpatDEQBBZ7

https://forms.gle/eH96qJEpatDEQBBz7

