
Lecture 2: Processes
Operating Systems – EDA093/DIT401

Vincenzo Gulisano
vincenzo.gulisano@chalmers.se

What to read (Main textbook)

• Chapter 2.1

(extra facultative reading: 3.1-3.4, 3.5.3, 3.6.3 from Silberschatz
Operating System Concepts)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 2

Objectives

• To introduce the notion of a process: a
program in execution, which forms the
basis of all computation
• To describe the various features of

processes, including scheduling, creation
and termination, and communication
• To explore inter-process communication

using shared memory and message
passing

Operating Systems - Lecture 2 - Processes 3Vincenzo Gulisano

AGENDA

• Processes (Introduction)
• Process Scheduling
• Operations on Processes
• Interprocess Communication (contains self-reading part)

Operating Systems - Lecture 2 - Processes 4Vincenzo Gulisano

AGENDA

• Processes (Introduction)
• Process Scheduling
• Operations on Processes
• Interprocess Communication (contains self-reading part)

Operating Systems - Lecture 2 - Processes 5Vincenzo Gulisano

1. We run several programs at
the same time

2. One CPU can only run one
program at the time

1. We feel several programs run
at the same time

2. Each CPU core can only run
one program at the time

Concurrent vs Parallel execution

1. We run several programs at
the same time

2. One CPU can only run one
program at the time

(Next lecture)

Process, not program

A process
can be in
different

states, how
many?

There are periods of
time during which

no process is
running! Overheads

should be minimal

Process Concept

• Process (or job, task) – a program in execution; process execution must
progress in sequential fashion

• Program is passive entity stored on disk (executable file), process is
active
• Program becomes process when executable file loaded into memory
• Execution of program started via GUI mouse clicks, command line

entry of its name, …
• One program can be several processes (consider multiple users executing

the same program)
• A process can be the execution environment for other code (e.g., Java

Virtual Machine)

Operating Systems - Lecture 2 - Processes 9Vincenzo Gulisano

Process in Memory

Operating Systems - Lecture 2 - Processes 10

•Multiple parts:
• The program code, also called text

section
•Data section containing global variables
•Heap containing memory dynamically

allocated during run time
• Stack containing temporary data
• Function parameters, return addresses, local

variables

Vincenzo Gulisano

Diagram of Process State

Operating Systems - Lecture 2 - Processes 11

• As a process executes, it changes state
• new: The process is being created
• ready: The process is waiting to be assigned to a processor
• running: Instructions are being executed
• waiting: The process is waiting for some event to occur
• terminated: The process has finished execution

Vincenzo Gulisano

Important: only 1 process
can be running on any
processor at any instant.

Context Switch

• When CPU switches to another process, the system must save the state
of the old process and load the saved state for the new process via a
context switch
• Context of a process represented in the PCB
• Context-switch time is overhead; the system does no useful work while

switching
• The more complex the OS and the PCB è the longer the context switch

• Time dependent on hardware support
• Some hardware provides multiple sets of registers per CPU è multiple contexts

loaded at once

Operating Systems - Lecture 2 - Processes 12Vincenzo Gulisano

Process Control Block (PCB)

• Information associated with each process in the OS

• Process state: running, waiting, etc.
• Program counter: location of next instruction to

execute
• CPU registers: contents of all process-centric registers
• CPU scheduling information: priorities, scheduling

queue pointers
• Memory-management information: memory allocated

to the process
• Accounting information: CPU used, clock time elapsed

since start, time limits
• I/O status information: I/O devices allocated to

process, list of open files

Operating Systems - Lecture 2 - Processes 13Vincenzo Gulisano

AGENDA

• Processes (Introduction)
• Process Scheduling
• Operations on Processes
• Interprocess Communication (contains self-reading part)

Operating Systems - Lecture 2 - Processes 14Vincenzo Gulisano

Process Scheduling

• Maximize CPU use, quickly switch processes onto CPU for time sharing
• Process scheduler selects among available processes for next execution

on CPU
• Maintains scheduling queues of processes
• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in main memory, ready and waiting to

execute
• Device queues – set of processes waiting for an I/O device
• Processes migrate among the various queues

Operating Systems - Lecture 2 - Processes 15Vincenzo Gulisano

Ready Queue And Various I/O Device Queues

Operating Systems - Lecture 2 - Processes 16Vincenzo Gulisano

Representation of Process Scheduling

Operating Systems - Lecture 2 - Processes 17

Queueing diagram represents queues, resources, flows

Vincenzo Gulisano

Schedulers

• Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU
• Sometimes the only scheduler in a system
• Short-term scheduler is invoked frequently (milliseconds) Þ (must be

fast)

• Long-term scheduler (or job scheduler) – selects which
processes should be brought into the ready queue
• Long-term scheduler is invoked infrequently (seconds, minutes) Þ (may

be slow)
• The long-term scheduler controls the degree of multiprogramming

Operating Systems - Lecture 2 - Processes 18Vincenzo Gulisano

AGENDA

• Processes (Introduction)
• Process Scheduling
• Operations on Processes
• Interprocess Communication (contains self-reading part)

Operating Systems - Lecture 2 - Processes 19Vincenzo Gulisano

Operations on Processes

• System must provide mechanisms for:
• process creation,
• process termination,
• and so on as detailed next

Operating Systems - Lecture 2 - Processes 20Vincenzo Gulisano

Process Creation

• Parent process create children processes, which, in turn create other
processes, forming a tree of processes
• Generally, process identified and managed via a process identifier (pid)

• Resource sharing options
• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

• Execution options
• Parent and children execute concurrently
• Parent waits until children terminate

Operating Systems - Lecture 2 - Processes 21Vincenzo Gulisano

A Tree of Processes in Linux

Operating Systems - Lecture 2 - Processes 22

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

Vincenzo Gulisano

init process, always has pid=1

manage ssh
connectionsmanage clients

logging in the
system

User process

ps –el (UNIX)

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 23

XXXXXXXXXX:~$ pstree -pl
init(1)-+-NetworkManager(1215)-+-dhclient(3386)

| |-dnsmasq(3390)
| |-{NetworkManager}(1224)
| `-{NetworkManager}(2164)
|-accounts-daemon(1527)---{accounts-daemon}(1530)
|-acpid(1360)
|-apache2(16861)-+-apache2(2458)
| |-apache2(2460)
| |-apache2(2461)
| |-apache2(2462)
| |-apache2(2463)
| |-apache2(2464)
| |-apache2(4079)
| |-apache2(4082)
| |-apache2(5464)
| |-apache2(5465)
| `-apache2(5466)
|-at-spi-bus-laun(3570)-+-dbus-daemon(3576)
...

Process Creation (Cont.)

• Address space
• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork() system call creates new process
• exec() system call used after a fork() to replace the process’ memory space with

a new program

Operating Systems - Lecture 2 - Processes 24Vincenzo Gulisano

C Program Forking Separate Process

Operating Systems - Lecture 2 - Processes 25Vincenzo Gulisano

Process Termination

• Process executes last statement and then asks the operating system to
delete it using the exit() system call.
• Returns status data from child to parent (via wait())
• Process’ resources are deallocated by operating system

• Parent may terminate the execution of children processes using the
abort() system call. Some reasons for doing so:
• Child has exceeded allocated resources
• Task assigned to child is no longer required
• The parent is exiting and the operating systems does not allow a child to

continue if its parent terminates

Operating Systems - Lecture 2 - Processes 26Vincenzo Gulisano

Process Termination

• Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also be
terminated.
• cascading termination. All children, grandchildren, etc. are terminated.
• The termination is initiated by the operating system.

• The parent process may wait for termination of a child process by using
the wait()system call. The call returns status information and the pid of
the terminated process
• pid = wait(&status);
• If no parent waiting (did not invoke wait()) process is a zombie
• If parent terminated without invoking wait , process is an orphan

Operating Systems - Lecture 2 - Processes 27Vincenzo Gulisano

Multiprocess Architecture – Chrome Browser

• Many web browsers ran as single process (some still do)
• If one web site causes trouble, entire browser can hang or crash

• Google Chrome Browser is multi process with 3 different types of
processes:
• Browser process manages user interface, disk and network I/O
• Renderer process renders web pages, deals with HTML, Javascript. A new

renderer created for each website opened
• Runs in sandbox restricting disk and network I/O, minimizing effect of security exploits

• Plug-in process for each type of plug-in

Operating Systems - Lecture 2 - Processes 28Vincenzo Gulisano

Each tab represents a process

AGENDA

• Processes (Introduction)
• Process Scheduling
• Operations on Processes
• Interprocess Communication (contains self-reading part)

Operating Systems - Lecture 2 - Processes 29Vincenzo Gulisano

Interprocess Communication

• Processes within a system may be independent or cooperating
• Cooperating process can affect or be affected by other processes,

including sharing data
• Reasons for cooperating processes:
• Information sharing
• Computation speedup
• Modularity

• Cooperating processes need interprocess communication (IPC)
• Two models of IPC
• Shared memory
• Message passing

Operating Systems - Lecture 2 - Processes 30Vincenzo Gulisano

Communications Models

Operating Systems - Lecture 2 - Processes 31

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

(a) Message passing. (b) shared memory.

Vincenzo Gulisano

Cooperating processes
Producer-Consumer Problem

• Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process

• unbounded-buffer: places no practical limit on the size of the buffer

• bounded-buffer: assumes that there is a fixed buffer size

Operating Systems - Lecture 2 - Processes 32Vincenzo Gulisano

Interprocess Communication – Shared Memory

• Major issues is to provide
mechanism that will allow the
user processes to synchronize
their actions when they access
shared memory.
• Synchronization is discussed in

detail in following lessons

Operating Systems - Lecture 2 - Processes 33Vincenzo Gulisano

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

Interprocess Communication – Message Passing

• If processes P and Q wish to
communicate, they need to:
• Establish a communication link between

them
• Exchange messages via send/receive

• Implementation issues:
• How are links established?
• Can a link be associated with more than two

processes?
• How many links can there be between every

pair of communicating processes?
• What is the capacity of a link?
• Is the size of a message that the link can

accommodate fixed or variable?
• Is a link unidirectional or bi-directional?

Operating Systems - Lecture 2 - Processes 34Vincenzo Gulisano

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

Logical implementation – Issues [Self-reading section]

• Naming, Direct or indirect communication
• Synchronous or asynchronous communication
• Automatic or explicit buffering

Operating Systems - Lecture 2 - Processes 35Vincenzo Gulisano

Logical implementation - Issues

• Naming, Direct or indirect communication
• Synchronous or asynchronous communication
• Automatic or explicit buffering

Operating Systems - Lecture 2 - Processes 36Vincenzo Gulisano

Direct Communication

• Processes must name each other explicitly:
• send (P, message) – send a message to process P
• receive(Q, message) – receive a message from process Q

• Properties of communication link
• Links are established automatically
• A link is associated with exactly one pair of communicating processes
• Between each pair there exists exactly one link
• The link may be unidirectional, but is usually bi-directional

Operating Systems - Lecture 2 - Processes 37Vincenzo Gulisano

Indirect Communication

• Messages are directed and received from mailboxes (also referred to as
ports)
• Each mailbox has a unique id
• Processes can communicate only if they share a mailbox

• Properties of communication link
• Link established only if processes share a common mailbox
• A link may be associated with many processes
• Each pair of processes may share several communication links
• Link may be unidirectional or bi-directional

Operating Systems - Lecture 2 - Processes 38Vincenzo Gulisano

Indirect Communication

• Operations
• create a new mailbox (port)
• send and receive messages through mailbox
• destroy a mailbox

• Primitives are defined as:
• send(A, message) – send a message to mailbox A
• receive(A, message) – receive a message from mailbox A

Operating Systems - Lecture 2 - Processes 39Vincenzo Gulisano

Logical implementation - Issues

• Naming, Direct or indirect communication
• Synchronous or asynchronous communication
• Automatic or explicit buffering

Operating Systems - Lecture 2 - Processes 40Vincenzo Gulisano

Synchronization

• Message passing may be either blocking or non-blocking
• Blocking is considered synchronous
• Blocking send -- the sender is blocked until the message is received
• Blocking receive -- the receiver is blocked until a message is available

• Non-blocking is considered asynchronous
• Non-blocking send -- the sender sends the message and continues
• Non-blocking receive -- the receiver receives:

• A valid message, or
• Null message

• Different combinations possible
• If both send and receive are blocking, we have a rendezvous

Operating Systems - Lecture 2 - Processes 41Vincenzo Gulisano

Synchronization (Cont.)
• Producer-consumer becomes trivial for blocking send/receive:

Operating Systems - Lecture 2 - Processes 42

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}

Vincenzo Gulisano

message next_produced;
while (true) {

/* produce an item in next produced */
send(next_produced);

}

Logical implementation - Issues

• Naming, Direct or indirect communication
• Synchronous or asynchronous communication
• Automatic or explicit buffering

Operating Systems - Lecture 2 - Processes 43Vincenzo Gulisano

Buffering

• Queue of messages attached to the link.
• implemented in one of three ways

• 1.Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

• 2.Bounded capacity – finite length of n messages
Sender must wait if link full

• 3.Unbounded capacity – infinite length
Sender never waits

Operating Systems - Lecture 2 - Processes 44Vincenzo Gulisano

Examples of IPC Systems – Windows

• Message-passing centric via advanced local procedure call (LPC) facility

• Only works between processes on the same system

• Uses ports (like mailboxes) to establish and maintain communication
channels

Operating Systems - Lecture 2 - Processes 45Vincenzo Gulisano

Local Procedure Calls in Windows

Operating Systems - Lecture 2 - Processes 46Vincenzo Gulisano

Pipes

• Acts as a conduit allowing two processes to communicate

• Ordinary pipes – cannot be accessed from outside the process that
created it. Typically, a parent process creates a pipe and uses it to
communicate with a child process that it created.

• Named pipes – can be accessed without a parent-child relationship.

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 47

Ordinary Pipes

• Ordinary Pipes allow communication in standard producer-consumer
style
• Producer writes to one end (the write-end of the pipe)
• Consumer reads from the other end (the read-end of the pipe)
• Ordinary pipes are therefore unidirectional
• Require parent-child relationship between communicating processes

• Windows calls these anonymous pipes
• See Unix and Windows code samples in textbook

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 48

Named Pipes

• Named Pipes are more powerful than ordinary pipes
• Communication is bidirectional
• No parent-child relationship is necessary between the

communicating processes
• Several processes can use the named pipe for communication
• Provided on both UNIX and Windows systems

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 49

Pipes in UNIX

• Serve output of one command à input of another command

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 50

ls -la | grep <pattern>

list directory contents

do not ignore entries starting with .

use a long listing format

print lines matching a pattern

pipe

Pipes in UNIX

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 51

ls -la ls -la | grep Apr

Ordinary Pipes - example

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 52

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <string.h>

#define BUFFER_SIZE 25

#define READ_END 0

#define WRITE_END 1

Ordinary Pipes - example

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 53

int main(void)
{
char write_msg[BUFFER_SIZE] = "Greetings";
char read_msg[BUFFER_SIZE];
pid_t pid;
int fd[2];

/* create the pipe */
if (pipe(fd) == -1) {

fprintf(stderr,"Pipe failed");
return 1;

}

/* now fork a child process */
pid = fork();

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 54

if (pid < 0) {
fprintf(stderr, "Fork failed");
return 1;

}

if (pid > 0) { /* parent process */
/* close the unused end of the pipe */
close(fd[READ_END]);
/* write to the pipe */
write(fd[WRITE_END], write_msg, strlen(write_msg)+1);
/* close the write end of the pipe */
close(fd[WRITE_END]);

}
else { /* child process */

/* close the unused end of the pipe */
close(fd[WRITE_END]);
/* read from the pipe */
read(fd[READ_END], read_msg, BUFFER_SIZE);
printf("child read %s\n",read_msg);
/* close the write end of the pipe */
close(fd[READ_END]);

}
return 0;

}

Thank you for your attention!

Questions?

Please evaluate the lecture!

https://forms.gle/eH96qJEpatDEQBBz7

Vincenzo Gulisano Operating Systems - Lecture 2 - Processes 55

https://forms.gle/eH96qJEpatDEQBBz7

