Operating Systems — EDA093/DIT401

Introduction to Operating Systems

Vincenzo Gulisano

vincenzo.gulisano@chalmers.se

UNIVERSITY OF
GOTHENBURG

What to read (Main textbook)

* Chapter 1
e Especially: 1.1, 1.3, 1.6, 1.7

Agenda

* What is an Operating System?

* The event-driven (interrupt-drive) life of an OS
 System calls (overview)

* Dual-Mode and Multimode Operation

* Operating system services

 System calls (continued) and APIs [Self reading]
 System boot [Self reading]

e Operating systems structures

Agenda

* What is an Operating System?

Components of a Computer System

user

user

user

user

4

compiler

assembler

text editor

system and application programs

Vincenzo Gulisano

operating system

database
system

computer hardware

 Hardware — basic
computing resources:
CPU, memory, |/O devices

e Operating system: what
is?

* Application programs:
Word processors,
compilers, web browsers,
database systems, video
games

e Users: People, machines,
other computers

Operating Systems - Introduction to Operating Systems

How can we define what an Operating System

IS and does?

Source: http://www.amazon.com/Apple-MC916LL-Tablet-Black-
Generation/dp/B0047DVWZS

Vincenzo Gulisano

Full Touch Screen

1he 11 e
Start »

1 Temp. Rinse @Spin

-
30 3 800 | owex

Source: http://www.samsung.com/nz/consumer/home-appliances/washing-
machines/front-loader/WW90H9600EW/SA

»
a
]

LoKes @ ' ¢ @ mEY

9% mRn

=]

Fcrc
om

Home

BLRs R

SFER
mmx

BA

3e-1ac

ox I

m
&
-
s
| |
a
]
[
a
]

indicator china weather

X %00

Source: http://linustechtips.com/main/topic/50821-dell-contemplates-shipping-chinese-pcs-with-
ubuntu-kylin-os-by-default/

Operating Systems - Introduction to Operating Systems 6

Operating System as Component of a Computer System

* Provides a to system Application programs
users (collection of service programs) %z @
between the user and the S ~— Beautiful interface
hardware Operating system
AL -<— Ugly interface
Hardware
* CPU(s)
* memory and |/O devices Fig: Modern OS, A. Tanenbaum

* Controls execution of programs to prevent
errors and improper use of the computer

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems 7

Agenda

* The event-driven (interrupt-drive) life of an OS

How does the OS manage devices and users?

Fetch Cycle Execute Cycle
START < | Fetch Next Execute HALT
Instruction Instruction
Fig: Intro to OS, W. Stallings mouse keyboard printer monitor

disks

~N S

Events (interrupts)

disk

graphics
controller USB controller

adapter

mark the cycles of

the OS!

memory

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems 9

Events / Interrupts are the basic “ticks” of the OS cycles

Fetch Cycle

Execute Cycle Interrupt Cycle

&
<

Interrupts
Disabled

Check for
Interrupt;

Execute
Instruction

S + .| FetehNext
= ”| Instruction

Fig: Intro to OS, W. Stallings

Vincenzo Gulisano

Interrupts
Enabled

Process Interrupt

HALT

OS doing some work

Interrupt!

What’s happening?

Key stroke! Need to print character on screen...
Doing that...

Going back to my previous work...
Interrupt!

What’s happening?

Byte copied to disk!

OK then copying another byte...
Interrupt!

Operating Systems - Introduction to Operating Systems 10

Agenda

 System calls (overview)

Vincenzo Gulisano

Operating Systems - Introduction to Operating Systems

11

A deeper look at the OS...

user and other system programs

Application programs GUI batch command line

user interfaces

— S o oy
-— _—oa

~ e
~—~_ =~
program IO file . resource ,
execution operations systems cammunication allocation dgeauntng
error protection
. and
detection :
Hardware rices security
Fig: Modern OS, A. Tanenbaum operating system
hardware

Pt
‘_
How does the OS allow users and programs to use and
interface with the hardware and the resources of a computer?

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

(system calls) 9 nterru plf_ !

Agenda

* Dual-Mode and Multimode Operation

Wait a moment...

user and other system programs

GUl batch command line . .
 What if a program gets stuck in
 What if it alters the data of

system calls another program?
 What if it modifies the operating
_ system?
program /O file " resource -
execution operations systems Egmmunicatian allocation ‘ ‘ R
error pro;entglon
detection . security
services

operating system

hardware

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems 14

Dual-mode and Multimode Operations ()

user process
user moc_je
user process executing ——» calls system call return from system call (mode bit = 1)
\ Fa
A 7/
3 7
kernel trap return
ol mode bit=0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

Two different modes: User mode / Kernel mode
A mode bit (hardware) differentiates between the two

Is it a privileged instruction?
e Can only execute in kernel mode (mode bit = 0)

* Running an user program?
* First switch mode bit to 1... then run the code

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

Dual-mode and Multimode Operati

user process

ons (Il)

execute system call

e More than 2 modes can exist

user moc_je
user process executing ——» calls system call return from system call (mode bit = 1)
\ 7
L 7
\ 7
K I trap return
o mode bit=0 mode bit = 1
kernel mode
(mode bit = 0)

* Example: to allow a Virtual Machine Manager (VMM) to execute more instructions than an

user program

* Example: Intel 64 CPUs allow for 4 privilege levels

* If a user program tries to execute a privileged instruction
* The hardware sends an interrupt to the OS
* The OS terminates the program (or does something else depending on the case)

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

16

A special interrupt mechanism: the timer

* When the OS decides to run a user program, how can it be sure the
latter will generate an interrupt (in a reasonable amount of time)?

user and other system programs

GUI batch command line
user interfaces
system calls
program file I .
: communication accountin
execution systems g
error pro;iczjtlon
detection . security
services

operating system

hardware

* A timer can be used to
periodically raise an
interrupt to the OS

e The OS can then take
control

Agenda

* Operating system services

What does the operating system provides?

user and other system programs

batch command line

Allow the user to
user interfaces interact with the system

system calls

program l/O file — resource .
: : ommunication : accountin
execution operations systems € allocation & g

error Allow the user to access
detection i]]) i
information (files and directories)

operanng system

hardware

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems 19

What does the operating system provides?

user and other system programs

GUI batch command line

user interfaces

system calls

O ' L
program |/ file SEmTICation resource

: : . accountin
execution operations systems allocation g

Allow programs to run, communicate with devices, access
files and directories and communicate between them

Operatmnyg syserm

hardware

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

What does the operating system provides?

user and other system programs

GUI batch command line

user interfaces

system calls

O ' - sSourc
program |/ file SEmTICation resource

: : . accountin
execution operations systems allocation g

error React when errors occur (e.g., connection failure, attem
detection o .
to access illegal memory location)

operating system

hardware

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems 21

What does the operating system provides?

user and other system programs

GUI batch command line
user interfaces
system calls
pProgram V) e communication IEROLIeS accountin
execution operations systems allocation g
error pro;icc:jtlon
detection _ security
services

Allow the system itse

Vincenzo Gulisano

f to be efficient,

fair to different users and secure

Operating Systemn s =TrogucuolT t0 UPETraung SYSerns

22

Agenda

 System calls (continued) and APIs [self reading]

Let’s say we want to copy a file...

source file

>

destination file

Vincenzo Gulisano

@ Example System Call Sequence
Acquire input file name

~

Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen

Terminate normally

.

\

4

If a graphical menu is used to let the user
pick a source file, many more system calls
are needed (and 1/0)

We could also decide to replace it (asking
first the user)... More system calls!!!

Operating Systems - Introduction to Operating Systems 24

Application Programming Interfaces (APls)

* APIs provide high-level combination of low-level system calls

* Reducing by some order of magnitude the number of low-level system calls
required to perform some operations (usually thousands of system calls per
second are performed by the OS)

* What are the advantages?
* Portability
e Simplicity

Sample API

Vincenzo Gulisano

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size_t count)
I | | | | |
return function parameters
value name

A program that uses the read () function must include theunistd.h header
file, as this file defines the ssize-t and size-t data types (among other
things). The parameters passed to read () are as follows:
¢ int fd—the file descriptor to be read
¢ void *buf—a buffer where the data will be read into
¢ size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Operating Systems - Introduction to Operating Systems

26

System call interface

user application

open ()
user
mode
system call interface
kernel
mode A
— - open ()
Implementation
i » Of open ()

system call

Vincenzo Gulisano

L
®
L

return

Typically, a number associated
with each system call
e System-call interface
maintains a table indexed
according to these numbers
The system call interface invokes
the intended system call in OS
kernel and returns status of the
system call and any return values
The caller need know nothing
about how the system call is
implemented

Operating Systems - Introduction to Operating Systems 27

How to pass parameters to a system call?

e pass the parameters in registers
* |n some cases, may be more parameters

than registers

register Parameters stored in a block, or table, in
X parameters memory, and address of block passed as

for call

—> Use parameters }code for a parameter in a register
load address X / from table X system

system call 13— > || call1s * This approach taken by Linux and Solaris
* Parameters placed, or pushed, onto the

stack by the program and popped off
eeTpregrEm the stack by the operating system

operating system

Block and stack methods do not limit the
number or length of parameters being
passed

Types of system calls (I)

* Process control
* create process, terminate process
* end, abort
* load, execute
* get process attributes, set process attributes
* wait for time
* wait event, signal event
* allocate and free memory
e Dump memory if error
* Debugger for determining bugs, single step execution

* Locks for managing access to shared data between
processes

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

29

Types of system calls (Il)

* File management
* create file, delete file
* open, close file
* read, write, reposition
e get and set file attributes

* Device management
* request device, release device
* read, write, reposition
e get device attributes, set device attributes
* logically attach or detach devices

Types of system calls (I11)

 Information maintenance

get time or date, set time or date
get system data, set system data
get and set process, file, or device attributes

e Communications

create, delete communication connection

send, receive messages if message passing model to
host name or process name

* From client to server

Shared-memory model create and gain access to
memory regions

transfer status information
attach and detach remote devices

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

31

Types of system calls (IV)

* Protection
e Control access to resources
* Get and set permissions
* Allow and deny user access

Some examples

Vincenzo Gulisano

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit ()
wait()

open()
read()
write()
close()

ioctl()
read()
write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown()

Operating Systems - Introduction to Operating Systems

33

Agenda

e System boot [self reading]

How does the computer know where / how
to lead the kernel at startup?

. IWhen power initialized on system, execution starts at a fixed memory
ocation

* Firmware ROM used to hold initial boot code

* Operating system must be made available to hardware so hardware can
start it

* Small piece of code — bootstrap loader, stored in ROM or EEPROM locates the kernel,
loads it into memory, and starts it

* Sometimes two-step process where boot block at fixed location loaded by ROM code,
which loads bootstrap loader from disk

« Common bootstrap loader, GRUB, allows selection of kernel from multiple
disks, versions, kernel options

* Kernel loads and system is then running

Agenda

e Operating systems structures

Operating Systems structure

e Simple Structure
* Monolithic structure
* Designed for hardware without dual mode
* Vulnerable to wrong/malicious code

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

application program

resident system program

MS-DOS device drivers

P

ROM BIOS device drivers

37

Operating Systems structure

* Layered Approach
* Modular approach

* Each layer maintains some data structures and a set of routines

* Easier to debug
* Problematic for “circular references”

N
layer O

hardware

Application
Program

Operating Systems structure ’

Device
Driver

Interprocess
Communication

A

messages

memory CPU
managment scheduling

microkernel

messages

y

A

hardware

* Microkernels

* Mach, one of the firsts modularized (micro)kernel

* Essential parts remain in the microkernel
Smaller

Might suffer in performance

Everything that is not essential = system or user level program

Makes sense if system/user level programs can be updated frequently
More secure (most programs are know executed in user mode)

user
mode

kernel
mode

Operating Systems structure

* Modules

e Can be loaded in the kernel (at boot or on demand)
* UNIX (Solaris, Linux and Mac OS X) and Windows
* Modules can be loaded without recompiling the kernel

Operating Systems structure

* Hybrid Systems
* Mixing other structures
* Usual case for modern operating systems

Hybrid systems — Mac OS X

Laye re d St ru Ct ure graphical user interface fape

application environments and services

This is for Objective-C ya @ @

programming (Mac
OS X applications) kernel environment

BSD
Mach

1/0 kit kernel extensions

Memory management,
RPCs and Inter-Process

Command-line interface,

communication, thread
scheduling

networking, file system

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems 42

Hybrid systems —iOS

Cocoa Touch

Provides features of

touch screen devices

Media Services

Core Services

raphical user interface
grap Aqua

‘+ Core OS

kernel environment

application environments and services

BSD

Mach

1/0 kit kernel extensions

Vincenzo Gulisano Operating Systems - Introduction to Operating Systems

43

Hybrid systems — Android

Applications

Application Framework

Android runtime

Core Libraries

Libraries
SQLite openGL
surface media
manager framework
webkit libc

Dalvik <
virtual machine

“Java for android” virtual

machine

Linux kernel

Vincenzo Gulisano

Operating Systems -

Introduction to Operating Systems 44

Thank you for your attention!

[m]

"=':.l-.|;-

Questions?

[=]

=K.
L
I

For questions and feedback: u

https://forms.gle/UCYYnUPudSXy3Yvv9

https://forms.gle/UCYYnUPudSXy3Yvv9

