

C Tutorial for
EDA093 (part 1)

Amir Keramatian

About the Crash Course

Introduction to C concepts required for EDA093,
especially Lab1

Recommended reading material:
•The C Programming Language, Kernighan,
Richie
•C Traps and Pitfalls, Andrew Koenig,
Addison­Wesley
•Kernighan & Ritchie: "The C programming
language", 2nd edition. Prentice­Hall, 1988.

Outline

Variables & data types
Loops
Pointers
Functions
Recursive functions

Variables & Data types

Variable declaration tells the compiler two things: (I) the
name of the variable. (II) The type of the variable.

•char ch; //compiler sets aside 1 byte for ch
•ch = 'a'// fills the space corresponding to ch with the
binary representation of 'a'
•int x = 5; //compiler sets aside 4 bytes for x and fills it
with the binary representation of 5=0b101
•Other data types in C are: float, double, long, void, …

Changing Variable Values

int x = 5;
double y = 0.5;
double z = y+x; //implicit conversion of x
x+=5; // x=x+5;
x­­;
­­y;

Formatted Output

The printf(“”, …) function lets you print
formatted data to output:

•printf(“Hello world\n”);
•printf(“x is %d”, x);
•printf(“x+y is %f”, x+y);

Format specifiers:
•%d: integer
•%f: float
•%c: character
•%s: string

Formatted Input

The scanf(“”, …) function lets you receive
formatted data from standard input:

•int x;
•float y;
• printf(“enter an integer and a float\n”);
•Scanf(“%d %f\n”, &x, &y);

Mind the ampersand(&): it is needed to
instruct the compiler to store the input
value into the respective variables.

Looping in C

“A loop is a sequence of instructions
continually repeated until a certain
condition is reached”

A few structures in C that allow looping:
•For loop
•While loop
•Do­While loop

Looping in C: For loop

for (<initialization>; <test>; <update>) {
// code block
}
initialization takes place before the loop starts
before each iteration test is evaluated: if
true iterate; otherwise, stop
after each iteration, update is executed

Example: loop

Code:
A simple C program that:

•gets integer N from the user
•computes the sum: 1+2+...+N

Compilation:
•Using gcc: gcc filename.cc ­o output.out

Pointers

In C programming, pointers are data types that contain
memory addresses of other variables.
int n = 2;

int* nPtr = &n; // ==> <nPtr = 0x83242304>

*nPtr // de­referencing the pointer

printf(“%d”, *nPtr) ?

Pointers

int n = 2;

int* nPtr = &n; // ==> <nPtr = 0x83242304>

printf(“%d”, *nPtr) // prints 2

How to get the address of the memory location in which n
is stored?

Pointers
int n = 2; int* nPtr = &n; // ==> <nPtr = 0x83242304>

printf(“%d”, *nPtr) // prints 2

Q: How to get the address of the memory location in which
n is stored?

A: printf(“The address of the memory location in which n
is stored is: %p”, nPtr);

Example: Pointers

•Performing operations on a variable
through a pointer to the variable
•Performing operations on a variable
through a pointer to the pointer to the
variable!

Functions

A function has a signature:
<return type> name_of_the_function(type input_1, ….,
type input_N){
//code block
}

Declaration and Definition of a function can come
together or separately

Example: Functions

Two Functions:
•A function to test whether a given integer is even
•A function to compute the squares of its variables

Passing Arguments:
•Pass by value
•Pass by pointer

Recursive Functions

An onion is a natural recursive
phenomenon!

•Peel one layer off an onion => what remains is an onion

Recursion in C programming:
•When a function calls itself
•When a bigger problem can be broken down into smaller
chunks of same problem

Example:Recursive Functions

N! = Factorial(N)
 = 1 * 2 * … * (N­1) * N

Q: Recursive definition of the factorial
function?

Example:Recursive Functions

N! = Factorial(N)
 = 1 * 2 * … * (N­1) * N

Q: Recursive definition of the factorial
function?
A: N! = N * (N­1)!
 1! = 1 (no recursion, base case)

Example:Recursive Functions

The Fibonacci sequence:
1, 1, 2, 3, 5, 8, 13, 21, …

Recursive Definition:
•Fib(N) = Fib(N­1) + Fib(N­2)
•Fib(1) = Fib(2) = 1 (base case)

Next Session

Arrays
Strings
Dynamic Memory
Linked­lists

	C
	About the Crash Course
	Why C?
	Your First C Program
	Changing Variable Values
	Formatted Output
	Formatted Input
	For Loops
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Conditional Statements
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

