C Tutorial for
EDAO93 (part 1)

aaaaaaaaaa

About the Crash Course

Introduction to C concepts required for EDA093,
especially Labl

Recommended reading material:
*The C Programming Language, Kernighan,
Richie
*C Traps and Pitfalls, Andrew Koenig,
Addison-Wesley

*Kernighan & Ritchie: "The C programming
language", 2nd edition. Prentice-Hall, 1988.

Outline

Variables & data types
Loops

Pointers

Functions

Recursive functions

Variables & Data types

Variable declaration tells the compiler two things: (I) the
name of the variable. (II) The type of the variable.

*char ch; /compiler sets aside 1 byte for ch

°ch ="a'// fills the space corresponding to ch with the
binary representation of 'a’

*int x = 5; //compiler sets aside 4 bytes for x and fills it
with the binary representation of 5=0b101

*Other data types in C are: float, double, long, void, ...

Changing Variable Values

intx=35;

double y = 0.5;

double z = y+x; //implicit conversion of x
X+=5; // x=x+5;

X--3

=Y

Formatted Output

The printf(**’, ...) function lets you print
formatted data to output:
printf(“Hello world\n™);

*printf(“x is %d”, x);
eprintf(“x+y is %1, x+y);

Format specifiers:
*%d: integer
*%f: float
*9c: character

*%s: string

Formatted Input

The scanf(*“’, ...) function lets you receive
formatted data from standard input:

°int X;

*float y;

* printf(“enter an integer and a float\n”);

*Scanf(“%d %f\n”, &x, &y);

Mind the ampersand(&): it is needed to
instruct the compiler to store the input
value into the respective variables.

Looping in C

““A loop is a sequence of instructions
continually repeated until a certain
condition is reached”

A few structures in C that allow looping:
*For loop

*While loop
*Do-While loop

Looping in C: For loop

for (<initialization>; <test>; <update>) {
// code block

}

initialization takes place before the loop starts

before each iteration fest is evaluated: if
true iterate; otherwise, stop

after each iteration, update is executed

Example: loop

Code:

A simple C program that:
*gets integer N from the user
*computes the sum: 1+2+...+N

Compilation:
*Using gcc: gece filename.cc -0 output.out

Pointers

In C programming, pointers are data types that contain
memory addresses of other variables.

intn=2;

int* nPtr = &n; // ==> <nPtr = 0x83242304>
*nPtr // de-referencing the pointer
printf(“%d”, *nPtr) ?

0xB83242300
0xB3242304

0xB83242308
0xB324230C

0xB83242310

Pointers

intn=2;
int* nPtr = &n; // ==> <nPtr = 0x83242304>
printf(““%d”, *nPtr) // prints 2

How to get the address of the memory location in which n
is stored?

0xB83242300
0xB3242304

0xB83242308
0xB324230C

0xB83242310

Pointers

int n = 2; int* nPtr = &n; // ==> <nPtr = 0x83242304>
printf(‘““%d”, *nPtr) // prints 2

Q: How to get the address of the memory location in which
n is stored?

A: printf(‘‘The address of the memory location in which n
is stored is: %p’’, nPtr);

0xB83242300
0xB3242304

0xB83242308
0xB324230C

0xB83242310

Example: Pointers

*Performing operations on a variable
through a pointer to the variable

*Performing operations on a variable
through a pointer to the pointer to the
variable!

Functions

A function has a signature:

<return type> name_of_the_function(type input_1,,
type input_N){

//code block
}

Declaration and Definition of a function can come
together or separately

Example: Functions

Two Functions:
*A function to test whether a given integer is even

*A function to compute the squares of its variables

Passing Arguments:
*Pass by value

*Pass by pointer

Recursive Functions

An onion is a natural recursive
phenomenon!
*Peel one layer off an onion => what remains is an onion

Recursion in C programming:
*When a function calls itself

*When a bigger problem can be broken down into smaller
chunks of same problem

Example:Recursive Functions

N! = Factorial(N)
=1*2 *_ .. *¥(N-1)*N

Q: Recursive definition of the factorial
function?

Example:Recursive Functions

N! = Factorial(N)
=1*2 *_ .. *¥(N-1)*N

Q: Recursive definition of the factorial
function?

A: N!'=N * (N-1)!
1! =1 (no recursion, base case)

Example:Recursive Functions

The Fibonacci sequence:
1,1,2,3,5,8,13, 21, ...

Recursive Definition:
*Fib(N) = Fib(N-1) + Fib(N-2)
°Fib(1) = Fib(2) = 1 (base case)

Next Session

Arrays

Strings

Dynamic Memory
Linked-lists

	C
	About the Crash Course
	Why C?
	Your First C Program
	Changing Variable Values
	Formatted Output
	Formatted Input
	For Loops
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Conditional Statements
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

