
Improved Priority Assignment for Global Fixed Priority Pre-emptive Scheduling
in Multiprocessor Real-Time Systems

Robert I. Davis and Alan Burns

Real-Time Systems Research Group, Department of Computer Science,
University of York, YO10 5DD, York (UK)

rob.davis@cs.york.ac.uk, alan.burns@cs.york.ac.uk

Abstract
This paper is an extended version of a paper that

appeared in the proceedings of the IEEE Real-Time
Systems Symposium 2009. This paper has been updated
with respect to advances made in schedulability analysis,
and contains a number of significant additional results.

The paper addresses the problem of priority
assignment in multiprocessor real-time systems using
global fixed task-priority pre-emptive scheduling.

We prove that Audsley’s Optimal Priority Assignment
(OPA) algorithm, originally devised for uniprocessor
scheduling, is applicable to the multiprocessor case,
provided that three conditions hold with respect to the
schedulability tests used. Our empirical investigations
show that the combination of optimal priority assignment
policy and a simple compatible schedulability test is highly
effective in terms of the number of tasksets deemed to be
schedulable.

We also examine the performance of heuristic priority
assignment policies such as Deadline Monotonic, and an
extension of the TkC priority assignment policy called
DkC that can be used with any schedulability test. Here we
find that Deadline Monotonic priority assignment has
relatively poor performance in the multiprocessor case,
while DkC priority assignment is highly effective.

Keywords: Real-Time, multiprocessor, multicore,
optimal priority assignment; heuristic priority assignment;
global scheduling; fixed priority; taskset generation;
schedulability analysis.

Extended version
This paper is an expanded version of “Priority Assignment
for Global Fixed Priority Pre-emptive Scheduling in
Multiprocessor Real-Time Systems” (Davis and Burns,
2009a), which appeared in the proceedings of the IEEE
Real-Time Systems Symposium (RTSS) 2009. This paper
updates and extends that work as follows:
o Research by Guan et al. (2009) also published in

RTSS 2009 improved upon the response time analysis
(RTA) test of Bertogna and Cirinei (2007) for global
fixed priority scheduling used by Davis and Burns
(2009a). Here, we integrate these improvements into
our research on priority assignment.

o We provide formal proof (Theorem 1) of a key
observation made by Guan et al. (2009) concerning

the pattern of task execution that results in the worst-
case response time of a task under global fixed
priority pre-emptive scheduling. Our proof applies to
the general case, and is not limited in scope to the
sufficient analysis given by Guan et al. (2009).

o We introduce an improved version of the polynomial
time schedulability test of Bertogna et al. (2005) by
limiting the carry-in interference using the approach
of Guan et al. (2009).

o We update our analysis of which schedulability tests
are compatible with Audsley’s Optimal Priority
Assignment (OPA) algorithm (Audsley, 1991, 2001)
with respect to these improved schedulability tests,
and also the tests of Fisher and Baruah (2006), and
Baruah and Fisher (2008).

o We derived a pseudo-schedulability condition that
dominates the response time analysis of Guan et al.
(2009). We show that this condition is compatible
with the OPA algorithm.

o We update our empirical results to cover the improved
schedulability tests, and also the pseudo-
schedulability condition which provides an upper
bound on the performance of the response time
analysis of Guan et al. (2009) combined with any
priority assignment policy. We also provide results for
tasksets with implicit deadlines as well as those for
tasksets with constrained deadlines. Further, we add a
comparison with the response time schedulability test
for global EDF given by Bertogna and Cirenei (2007).

o Finally, in Appendix A, we consider alternative
heuristic priority assignment policies based on RM-
US{ς } (Andersson et al., 2001) and SM-US{ς }
(Andersson, 2008).

1. Introduction
Real-time embedded systems are found in many

diverse application areas including; automotive
electronics, avionics, space systems, telecommunications,
and consumer electronics. In all of these areas, there is
rapid technological progress. Companies building
embedded real-time systems are driven by a profit motive.
To succeed, they aim to meet the needs and desires of their
customers by providing systems that are more capable,
more flexible, and more effective than their competition,
and by bringing these systems to market earlier. This
desire for technological progress has resulted in a rapid
increase in both software complexity and processing

demands. To address these demands for increased
processor performance, silicon vendors no longer
concentrate on increasing processor clock speeds, as this
approach has lead to problems with high power
consumption and the need for excessive heat dissipation.
Instead, there is now an increasing trend towards using
multiprocessor platforms for high-end real-time
applications. In Avionics (Rosenburg, 2009), Automotive
Electronics (Leteinturier, 2007), and Space systems, this
trend is driven by the capability of multicore devices to
significantly reduce size, weight and power requirements.

Approaches to multiprocessor real-time scheduling,
can be categorised into two broad classes: partitioned and
global. Partitioned approaches allocate each task to a
single processor, dividing the multiprocessor scheduling
problem into one of task allocation (bin-packing) followed
by uniprocessor scheduling. In contrast, global approaches
allow tasks to migrate from one processor to another at
run-time. Real-time scheduling algorithms can be
categorised into three classes based on when priorities can
change: fixed task-priority (all invocations, or jobs, of a
task have the same priority), fixed-job priority and
dynamic-priority.

In this paper, we focus on priority assignment policies
for global fixed task-priority pre-emptive scheduling,
which for brevity we refer to as global FP scheduling.
1.1. Related work

In the context of uniprocessor fixed priority
scheduling, there are three fundamental results regarding
priority assignment. Serlin (1972) and Liu and Layland
(1973) showed that Rate Monotonic priority ordering
(RMPO) is optimal for independent synchronous periodic
tasks (that share a common release time) that have implicit
deadlines (equal to their periods). Leung and Whitehead
(1982) showed that Deadline Monotonic priority ordering
(DMPO) is optimal for independent synchronous tasks
with constrained deadlines (less than or equal to their
periods). Audsley (1991, 2001) devised an optimal priority
assignment (OPA) algorithm that solved the problem of
priority assignment for asynchronous tasksets, and for
tasks with arbitrary deadlines (which may be greater than
their periods).

In the context of multiprocessor global FP scheduling,
work on priority assignment has focussed on
circumventing the so called “Dhall effect”. Dhall and Liu
(1978) showed that under global FP scheduling with
RMPO, a set of periodic tasks with implicit deadlines and
total utilisation just greater than 1 can be unschedulable on
m processors. For this problem to occur at least one task
must have a high utilisation.

Andersson and Jonsson (2000b) designed the TkC
priority assignment policy to circumvent the Dhall effect.
TkC assigns priorities based on a task’s period (iT) minus
k times its worst-case execution time (iC), where k is a
real value computed on the basis of the number of

processors. Via an empirical investigation, Andersson and
Jonsson showed that TkC is an effective priority
assignment policy for periodic tasksets with implicit
deadlines.

Andersson et al. (2001) gave a utilisation bound for
global FP scheduling of periodic tasksets with implicit
deadlines using the RM-US{ς } priority assignment
policy. RM-US{ς } gives the highest priority to tasks with
utilisation greater than a threshold ς . Andersson and
Jonsson (2003) showed that the maximum utilisation
bound for global FP scheduling of such tasksets is

mm 41.0)12(≈− , when priorities are defined as a scale
invariant function of worst-case execution times and
periods.

Bertogna et al. (2005) extended the work of Andersson
et al. (2001) to sporadic tasksets with constrained
deadlines forming the DM-DS{ς } priority assignment
policy. DM-DS{ς } gives the highest priority to at most

1−m tasks with densities greater than the threshold ς ,
and otherwise uses DMPO. Bertogna et al. (2005)
provided a density-based schedulability test for DM-
DS{ς }. Andersson (2008) proposed a form of Slack
Monotonic priority assignment called SM-US{ς }. Using
a threshold of)53/(2 + , SM-US{ς } has a utilisation
bound of mm 382.0)53/(2 ≈+ for sporadic tasksets
with implicit-deadlines.

More sophisticated schedulability tests for global FP
scheduling of sporadic tasksets with constrained and
arbitrary deadlines have been developed using analysis of
response times and processor load.

Andersson and Jonsson (2000a) gave a simple response
time upper bound applicable to tasksets with constrained-
deadlines. Baker (2003) developed a fundamental
schedulability test strategy, based on considering the
minimum amount of interference in a given interval that is
necessary to cause a deadline to be missed, and then taking
the contra-positive of this to form a sufficient
schedulability test. This basic strategy underpins an
extensive thread of subsequent research into schedulability
tests for global EDF (Baker and Baruah, 2009; Bertogna,
2007; Baruah and Baker, 2009; Baruah et al., 2009), and
global FP scheduling (Bertogna et al., 2005, 2009; Baker,
2006; Fisher and Baruah , 2006; Baruah and Fisher, 2008;
Guan et al., 2009).

Baker’s work was subsequently built upon by Bertogna
et al. (2005), and Bertogna and Cirinei (2009). They
developed sufficient schedulability tests for: (i) any work
conserving algorithm, (ii) global EDF, and (iii) global FP
scheduling based on bounding the maximum workload in a
given interval. This basic approach was extended to form
an iterative schedulability test using the computed slack
for each task to limit the amount of carry-in interference
and hence to calculate a new value for the slack. Bertogna
and Cirinei (2007) adapted this approach to iteratively
compute an upper bound on the response time of each task,
using the upper bound response times of other tasks to

limit the amount of interference considered.
Guan et al. (2009) extended the response time analysis

of Bertogna and Cirinei (2007), limiting the amount of
carry-in interference using ideas from Baruah (2007).

Global multiprocessor scheduling is intrinsically a
much more difficult problem than uniprocessor scheduling
due to the simple fact that a task can only use one
processor at a time, even when several are free (Liu,
1969). This restriction manifests itself as the critical
instant effect (Lauzac et al., 1998), where simultaneous
release of all tasks does not necessarily lead to worst-case
response times. As a result, to the best of our knowledge,
no exact tests are currently known for global FP
scheduling of sporadic tasksets. Exact tests are only known
for the strictly periodic case (Cucu and Goossens, 2006,
2007).

For an extensive survey of multiprocessor scheduling,
the interested reader is referred to (Davis and Burns,
2009b).
1.2. Intuition and motivation

The research described in this paper is motivated by
the need to close the large gap that currently exists
between the best known approaches to multiprocessor real-
time scheduling for sporadic tasksets with constrained
deadlines and what may be possible as indicated by
feasibility / infeasibility tests. We hypothesise that a key
factor in closing this gap is priority assignment. The
intuition behind our work is the idea that for fixed priority
scheduling, finding an appropriate priority ordering is as
important as using an effective schedulability test.

In the simulation chapter of his thesis, Bertogna
(2007) showed that for sporadic tasksets with constrained
deadlines, the response time test given in (Bertogna and
Cirinei, 2007) for global FP scheduling – using DMPO,
outperformed all other tests known at the time, including
those for global FP, global EDF, and EDZL (Cirinei and
Baker 2007, Baker et al., 2008); a minimally dynamic
global scheduling algorithm that dominates global EDF.
While DMPO is known to be an optimal priority
assignment policy for the equivalent uniprocessor case
(Leung and Whitehead, 1982), this optimality does not
extend to multiprocessors.

In this paper, we prove that Audsley’s Optimal Priority
Assignment (OPA) algorithm (Audsely, 1991, 2001),
originally devised for uniprocessor scheduling, is
applicable to the multiprocessor case provided that the
schedulability test used meets three simple conditions.
These conditions allow us to classify schedulability tests
for global FP scheduling into two categories: OPA-
compatible and OPA-incompatible. We show via an
empirical investigation that optimal priority assignment
combined with a polynomial time OPA-compatible
schedulability test can be significantly more effective in
terms of the number of tasksets deemed schedulable, than
using a state-of-the-art, pseudo-polynomial-time OPA-

incompatible schedulability test with DMPO. Further, we
build on the work of Andersson and Jonsson (2000b),
developing heuristic priority assignment policies: D-
CMPO and DkC that are applicable to any schedulability
test. Our empirical studies show that DkC significantly
outperforms DMPO, giving close to optimal results.
1.3. Organisation

The remainder of the paper is organised as follows:
Section 2 describes the terminology, notation and system
model used. Section 3 describes sufficient tests for global
FP scheduling. Section 4 discusses both optimal and
heuristic approaches to priority assignment. Section 5
outlines an unbiased method of taskset generation based
on techniques developed for the uniprocessor case. Section
6 presents an empirical investigation into the effectiveness
of priority assignment policies and sufficient
schedulability tests. Finally, Section 7 concludes the paper.

2. System model, terminology and notation
In this paper, we are interested in global FP scheduling

of an application on a homogeneous multiprocessor system
comprising m identical processors. The application or
taskset is assumed to comprise a static set of n tasks.
Before the taskset can be scheduled, a priority assignment
policy is used to assigned a unique static priority i, from 1
to n (where n is the lowest priority) to each task. For
convenience of notation, each task iτ is identified by its
unique priority i.

We are interested in two task models, referred to as
periodic and sporadic. In both models, tasks give rise to a
potentially infinite sequence of jobs. In the periodic task
model, the jobs of a task arrive strictly periodically,
separated by a fixed time interval. In the sporadic task
model, each job of a task may arrive at any time once a
minimum inter-arrival time has elapsed since the arrival of
the previous job of the same task.

Each task iτ is characterised by: its relative deadline
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iU of each task
is given by ii TC / . A task’s worst-case response time iR
is defined as the longest time from a task arriving to it
completing execution.

It is assumed unless otherwise stated that all tasks have
constrained deadlines (ii TD ≤). The tasks are assumed to
be independent and so cannot be blocked from executing
by another task other than due to contention for the
processors. Further, it is assumed that once a task starts to
execute it will not voluntarily suspend itself.

Intra-task parallelism is not permitted; hence, at any
given time, each job may execute on at most one
processor. As a result of pre-emption and subsequent
resumption, a job may migrate from one processor to
another. The cost of pre-emption, migration, and the run-
time operation of the scheduler is assumed to be subsumed
into the worst-case execution time of each task.

2.1. Feasibility, schedulability and optimality
A taskset is referred to as feasible if there exists a

scheduling algorithm that can schedule the taskset without
any deadlines being missed. Further, we refer to a taskset
as being global FP feasible if there exists a priority
ordering under which the taskset is schedulable using
global FP scheduling.

In systems using global FP scheduling, it is useful to
separate the two concepts of priority assignment and
schedulability testing. The priority assignment problem is
one of determining the relative priority ordering of a set of
tasks. Given a taskset with some priority ordering, then the
schedulability testing problem involves determining if the
taskset is schedulable with that priority ordering. Clearly
the two concepts are closely related. For a given taskset,
there may be many priority orderings that are
unschedulable, and just a few that are schedulable.

A schedulability test S can be classified as follows.
Test S is said to be sufficient if all of the priority ordered
tasksets that it deems schedulable are in fact schedulable.
Similarly, test S is said to be necessary if all of the priority
ordered tasksets that it deems unschedulable are in fact
unschedulable. Finally, test S is referred to as exact if it is
both sufficient and necessary.

The concept of an optimal priority assignment policy
can be defined with respect to a specific schedulability test
S:
Definition 1: Optimal priority assignment policy: A
priority assignment policy P is referred to as optimal with
respect to a schedulability test S and a given task model, if
and only if there are no tasksets that are compliant with the
task model that are deemed schedulable by test S using
another priority assignment policy, that are not also
deemed schedulable by test S using policy P.

We note that the above definition is applicable to both
sufficient (and not necessary) schedulability tests and
exact schedulability tests.

An optimal priority assignment policy for an exact
schedulability test facilitates classification of all global FP
feasible tasksets compliant with a particular task model.
For example, for periodic tasksets, Cucu and Goossens
(2006, 2007) showed that exact schedulability can be
determined by simulating the schedule over an interval
related to the hyperperiod1 of the taskset. For this exact
test the only known optimal priority assignment policy
involves checking all n! possible priority orderings (Cucu,
2008). Combining the two, it is theoretically possible, but
computational intractable, to determine if any given
periodic taskset is global FP feasible.

Using an optimal priority assignment policy for a
sufficient (but not necessary) test S we cannot classify all
global FP feasible tasksets, due to the fact that the test is

1 The hyperperiod of a taskset is the least common multiple of the task
periods.

not exact. However, optimal performance is still provided
with respect to the limitations of the test itself. For
example, the set Y of all tasksets that are deemed
schedulable by a sufficient test S using its optimal priority
assignment policy is a superset of the set Z of all tasksets
that are deemed schedulable by test S using any other
priority assignment policy. Further due to fact that the test
is not exact, Y is a strict subset of the set G containing all
global FP feasible tasksets (ZYG ⊇⊃).

The concept of comparability relates to the priority
ordered tasksets that are deemed schedulable by different
schedulability tests. There are three possibilities:
1. Dominance: Schedulability test S is said to dominate

test V, if all of the priority ordered tasksets that are
schedulable according to test V are also schedulable
according to test S, and priority ordered tasksets exist
that are schedulable according to test S, but not
according to test V.

2. Equivalence: Schedulability tests S and V are
equivalent if all of the priority ordered tasksets that
are schedulable according to test S are also
schedulable according to test V, and vice-versa.

3. Incomparable: Priority ordered tasksets exist that are
schedulable according to test S, but not according to
test V and vice-versa.

3. Schedulability tests
In this section, we outline two sufficient schedulability

tests for global fixed priority scheduling of sporadic
tasksets. The first was developed by Bertogna et al (2009)
and uses deadline analysis. The second was developed by
Bertogna and Cirinei (2007) and uses response time
analysis. Subsequently, the response time test was
improved by Guan et al. (2009), using ideas from (Baruah,
2007) which limit the amount of carry-in interference.

Deadline
miss

rk Dk dk

τk τk τk

IUB > Dk - Ck τk

Other tasks

Figure 1: Problem window

All of these schedulability tests are based on the
fundamental strategy derived by Baker (2003), the outline
of which is as follows:
1. Consider an interval referred to as the problem

window, at the end of which a deadline is missed, for
example the interval of length kD from the arrival to
the deadline of some job of task kτ , see Figure 1.

2. Establish a condition necessary for the job to miss its
deadline, for example, all m processors executing
other tasks for more than kk CD − during the interval.

3. Derive an upper bound UBI on the maximum
interference in the interval due to other tasks.

4. Form a necessary unschedulability test; i.e. an
inequality between UBI and the amount of execution
necessary for a deadline miss, then negate this
inequality to form a sufficient schedulability test.

Bertogna et al. (2009) derived a simple sufficient test
using the above approach, by considering the maximum
amount of interference that could occur in the problem
window due to each higher priority task. This maximum
interference occurs when the first job of the higher priority
task in the problem window starts executing at the start of
the problem window, and completes at its deadline, with
all subsequent jobs executing as early as possible – see
Figure 2.

Figure 2: Interference in an interval

Bertogna et al. (2009) showed that)(LW D
i is an upper

bound on the workload of task iτ in an interval of length
L:

))(,min()()(i
D
iiiii

D
i

D
i TLNCDLCCLNLW −−++= (1)

where)(LN D
i is the maximum number of jobs of task iτ

that contribute all of their execution time in the interval.

⎥
⎦

⎥
⎢
⎣

⎢ −+
=

i

iiD
i T

CDL
LN)((2)

If task kτ is schedulable, then an upper bound on the
interference due to a higher priority task iτ in an interval
of length kD is given by2:

)1),(min(),(+−= kkk
D

ikk
D
i CDDWCDI (3)

Note, the ‘+1’ term in Equation (3) is a result of the
approach to time representation3 used in (Bertogna et al.,
2009) and also in this paper.

A sufficient schedulability test for each task kτ is then
given by the following inequality:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+≥ ∑

∈)(
),(1

khpi
kk

D
ikk CDI

m
CD (4)

2 Dk and Ck are included as parameters to show the similarity with
subsequent response time equations, and to make clear the dependency
on these values. This dependency is relevant to the discussion of optimal
priority assignment in Section 4
3 Time is represented by non-negative integer values, with each time
value t viewed as representing the whole of the interval [t, t+1). This
enables mathematical induction on clock ticks and avoids confusion with
respect to end points of execution.

where hp(k) refers to the set of tasks with priorities higher
than k. Note we have re-written Equation (4) in a different
form from that presented by Bertogna et al. (2009) for ease
of comparison with the schedulability test given by
Bertogna and Cirinei (2007). We refer to Equation (4) as
the “DA test”.
 Bertogna and Cirinei (2007) extended the method
described above to iteratively compute an upper bound
response time UB

kR for each task, using the upper bound
response times of higher priority tasks to limit the amount
of interference considered. This extended approach applies
the same logic as (Bertogna et al., 2009), while
recognising that the latest time that a task can execute is
when it completes with its worst-case response time rather
than at its deadline.

Below, we give the schedulability test for this method.
Note we have simplified the equations given by Bertogna
and Cirinei (2007) to remove the slack terms and use
upper bound response times directly. This is possible for
global FP scheduling as the response times computed are
unaffected by lower priority tasks4.

Taking upper bound response times into account, an
upper bound)(LW R

i on the workload of task iτ in an
interval of length L is given by:

))(,min()()(i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++= (5)

where)(LN R
i is given by:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
=

i

i
UB

R
i T

CRL
LN i)((6)

If task kτ is schedulable, then an upper bound on the
interference due to a higher priority task iτ in an interval
of length UB

kR is given by:
)1),(min(),(+−= k

UB
k

UB
k

R
ik

UB
k

R
i CRRWCRI (7)

An upper bound on the response time of each task kτ
can then be found via the following fixed point iteration
(Theorem 7 in (Bertogna and Cirinei, 2007)).

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+← ∑

∈)(
),(1

khpi
k

UB
k

R
ik

UB
k CRI

m
CR (8)

Iteration starts with k
UB
k CR = , and continues until the

value of UB
kR converges or until k

UB
k DR > , in which case

task kτ is unschedulable. We refer to Equation (8) as the
“RTA test”.

Guan et al. (2009) extended the response time analysis
of Bertogna and Cirinei (2007), limiting the amount of
‘carry-in’ interference (see Figure 3) using ideas from
(Baruah, 2007).

An observation following from the mathematical
analysis of Guan et al. (2009) concerns the pattern of task
execution that results in the largest response time upper
bound UB

kR , for a job of task kτ under global FP
scheduling, computed using the sufficient response time

4 Bertogna and Cirinei (2007) also investigated global EDF scheduling
and the slack terms are necessary in that case.

analysis given in (Guan et al., 2009). We re-state this
observation in Theorem 1 and provide a formal proof that
it holds for exact response times.

To determine the exact worst-case response time of
task kτ , we potentially need to consider all possible
patterns of job releases for high priority tasks. We note
that as the times at which jobs of higher priority tasks
execute are unaffected by the releases times and execution
times of jobs of lower priority tasks, we can independently
consider all possible alignments of a release of a job of
task kτ with respect to those patterns of higher priority
execution. (For a constrained deadline task kτ , we need
only consider one job of kτ).

Let us assume that all possible patterns of job releases
of higher priority tasks (i.e. those in the set hp(k)) occur
along a single discrete timeline. We can classify points on
this timeline as belonging to the set)(kΨ as follows: time
point)(kt Ψ∈ if and only if all m processors are busy
executing tasks in hp(k) in the interval]1,[+tt , and during
the preceding time interval],1[tt − at least one processor
was not occupied by a higher priority task. In the
following, we use t to refer to time points that are
members of the set)(kΨ ()(kt Ψ∈) and x to refer to time
points that are not members of the set ()(kx Ψ∉).
Theorem 1: (Release time leading to the worst-case
response time of task kτ under global FP scheduling). For
a sporadic task system scheduled under global FP
scheduling on a multiprocessor, and a timeline including
all valid patterns of job releases for higher priority tasks,
there exists a time)(kt Ψ∈ (i.e. a time t when all m
processors are busy executing tasks in hp(k) during the
interval]1,[+tt , and during the preceding time interval

],1[tt − at least one processor was not occupied by a
higher priority task), such that release of task kτ at time t
results in the worst-case response time.
Proof: We show that for every time)(kx Ψ∉ , there exists
a time)(kt Ψ∈ such that the response time of a job of
task kτ released at time t is at least as large as the
response time of a job of task kτ released at time x. There
are two possibilities to consider:
Case 1: During the time interval]1,[+xx all m processors
are busy executing higher priority tasks, and have been
occupied in this way since some time)(kt Ψ∈ . As all m
processors are occupied during the interval],[xt , we may
move the release time of the job of task kτ back from time
x to time t without changing its finishing time. The
response time of the job is therefore greater when it is
released at time t than when it is released at time x.
Case 2: During the interval]1,[+xx not all m processors
are busy executing higher priority tasks. The next time at
which they will be occupied in this way is some time

)(kt Ψ∈ . As not all m processors are occupied during the
interval],[tx the job of task kτ must be executing during
this interval. Moving the release time of the job forward
from time x to time t must therefore increase its finishing

time by at least t-x. Hence the job’s response time is at
least as great when released at time t as it is when released
at time x
□
Corollary 1: Theorem 1 implies that in the worst-case
scenario for task kτ , at most m-1 higher priority tasks can
contribute workload due to jobs that are released strictly
prior to the start of the interval of interest (so called carry-
in jobs) see Lemma 1 in (Guan et al., 2009).

Recall that Bertogna and Cirinei (2007) showed that if
task kτ is schedulable, then an upper bound on the
interference due to a higher priority task iτ with a carry-in
job, in an interval of length UB

kR is given by),(k
UB
k

R
i CRI

(Equation (7)), see Figure 3 below.

Figure 3: Interference in an interval with carry-in

However if task iτ does not have a carry-in job, then
Guan et al. (2009) showed that the worst-case interference
occurs in the scenario shown in Figure 4, and is given by:

)1),(min(),(+−= k
NC

ik
NC
i CLLWCLI (9)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW −+= (10)

and

⎥
⎦

⎥
⎢
⎣

⎢
=

i

NC
i T

LLN) ((11)

Figure 4: Interference in an interval: no carry-in

The difference between the two interference terms is:
),(),(),(k

UB
k

NC
ik

UB
k

R
ik

UB
k

RDIFF
i CRICRICRI −=− (12)

Using this result, Guan et al. (2009) improved upon the
response time test of Bertogna and Cirinei (2007) as
follows:

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++← ∑∑

−∈

−

∈)1,()(
),(),(1

mkMaxi
k

UB
k

RDIFF
i

khpi
k

UB
k

NC
ik

UB
k CRICRI

m
CR

 (13)
where Max(k, m-1) is the set of m-1 tasks in hp(k) that
have the largest values of),(k

UB
k

DIFF
i CRI . We refer to

the schedulability test given by Equation (13) as the
“RTA-LC test” (Response Time Analysis with Limited

Carry-in). We note that the RTA-LC test reduces to the
RTA test if the),(k

UB
k

RDIFF
i CRI − term is included for all

of the higher priority tasks, rather than just those with the
m-1 largest values.

The observation by Guan et al. (2009), restated in
Theorem 1, means that the technique of limiting
interference due to carry-in jobs can be applied to an
interval of length kD , and hence to the DA test of
Bertogna et al. (2009), giving the following sufficient
schedulability test for each task kτ :

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++≥ ∑∑

−∈

−

∈)1,()(
),(),(1

mkMaxi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD

 (14)
where:

),(),(),(kk
NC
ikk

D
ikk

DDIFF
i CDICDICDI −=− (15)

and),(kk
D
i CDI and),(kk

NC
i CDI are given by

Equations (3) and (9) respectively. We refer to the
schedulability test given by Equation (14) as the “DA-LC
test” (Deadline Analysis with Limited Carry-in). We note
that the DA-LC test reduces to the DA test if the

),(kk
DDIFF

i CDI − term is included for all of the higher
priority tasks, rather than just those with the m-1 largest
values.
3.1. An upper bound on the RTA-LC test

In this section, we derive a pseudo-schedulability
condition, called the C-RTA condition that dominates the
RTA-LC test. It is important to note that the C-RTA
condition is not a schedulability test. It may deem some
priority ordered tasksets schedulable that are in fact
unschedulable.

The C-RTA5 condition is formed from Equation (13)
by using the smallest possible value that the response time
upper bound of each higher priority task could take (i.e. by
using iC instead of UB

iR in Equations (5) and (6)). We
observe that as Equation (5) is monotonically non-
decreasing in UB

iR and the minimum possible value for
UB
iR is iC , the C-RTA condition dominates the RTA-LC

test. Thus the C-RTA condition forms an upper bound on
task schedulability under the RTA-LC test. We will return
to this point in Sections 4 and 6.
3.2. Complexity and comparability

We note that the RTA and RTA-LC tests (and the C-
RTA condition) are pseudo-polynomial in complexity,

)(max
2 DnO for a taskset of cardinality n, with longest

deadline maxD , while the DA and DA-LC tests are
polynomial in complexity,)(2nO .

The following comparability relationships hold
between the various schedulability tests, shown in Figure
5:
(i) the RTA-LC test given by Equation (13)

5 The C-RTA condition is the same with or without limiting carry-in
interference, hence we drop the “-LC”.

dominates the RTA test, Equation (8);
(ii) the DA-LC test given by Equation (14) dominates

the DA test, Equation (4);
(iii) the RTA-LC test dominates the DA-LC test;
(iv) the RTA test dominates the DA test;
(v) the DA-LC and RTA tests are incomparable.
Figure 5 also depicts the set of priority ordered tasksets
deemed schedulable by the C-RTA condition. Note this
includes some unschedulable tasksets.

Figure 5: Comparability relationships between

schedulability tests
The comparability relationships between the various
schedulability tests are illustrated by the priority ordered
taskset given in Table 1.

Table 1: Taskset used to illustrate the
comparability relationships between

schedulability tests
Task (priority) C D=T

1τ 3 10
2τ 3 10
3τ 4 10
4τ 4 10
5τ 1 See text

Table 2 gives the schedulability of the taskset in Table 1,
according to each of the schedulability tests, assuming a
two processor system, and a range of values for the
deadline (and period) of the lowest priority task, 5τ . This
simple example illustrates the four dominance
relationships (i) to (iv) stated above, as well as the
incomparability of the RTA and DA-LC tests.

Table 2: Schedulability of the taskset in Table 1
according to the four schedulability tests

 Deadline of 5τ
Schedulability test 10 12 15

RTA-LC
RTA

DA-LC
DA

We observe the following interesting equivalence of the
RTA and RTA-LC tests.
Theorem 2: The upper bound response times computed by

the RTA test (Equation (8)) and the RTA-LC test
(Equation (13)) are the same for the 2m highest priority
tasks in any taskset with cardinality mn 2≥ .
Proof: We consider two cases:
Case 1: Tasks with priorities from 1 to m. According to
both the RTA and RTA-LC tests, the m highest priority
tasks all have response time upper bounds equal to their
worst-case execution times)(k

UB
k CR = . This can be seen

by considering the behaviour of Equations (8) and (13)
starting with an initial value of k

UB
k CR = . The maximum

value of),(kk
R
i CCI for each higher priority task iτ is 1

(see Equation (7)), and hence with at most m-1 higher
priority tasks, the maximum value of the floor function in
Equations (8) and (13) is ⎣ ⎦ 0/)1(=− mm . Hence the
fixed point iteration immediately terminates, returning a
value of k

UB
k CR = .

Case 2: Tasks with priorities from m+1 to 2m. Let us
consider the interference from each of the m highest
priority tasks iτ , where mi ≤≤1 , on some lower priority
task kτ , where mkm 21 ≤≤+ . From Case 1, we know
that i

UB
i CR = . Substituting these values into Equations

(5) and (6) reduces them to Equations (10) and (11)
respectively. Hence, for each of the m highest priority
tasks iτ , we have =−),(k

RDIFF
i CLI

0),(),(=− k
NC
ik

R
i CLICLI for any value of L. Therefore,

when task kτ has a priority in the range m+1 to 2m, at
most (2m-1) – m = m-1 tasks with priorities higher than k
have a non-zero RDIFF

iI − term that could contribute to
Equation (13). Limiting the number RDIFF

iI − terms
included to the largest m-1 of them therefore excludes no
non-zero terms, and so Equation (13) reduces to Equation
(8). Hence the upper bound response times computed by
Equation (13) and Equation (8) are the same for each task

kτ with priority from m+1 to 2m
□
Corollary 2: The RTA test (Equation (8)) and the RTA-
LC test (Equation (13)) are equivalent for any priority
ordered taskset with cardinality mn 2≤ . (This is why we
needed a taskset of cardinality 5 (see Table 1) to highlight
the differences between the RTA and RTA-LC tests,
assuming a two processor system).

4. Priority assignment
Andersson and Jonsson (2000a) made the following

observation about periodic tasksets:
“For fixed priority pre-emptive global multiprocessor

scheduling, there exist task sets for which the response
time of a task depends not only on iT and iC of its higher-
priority tasks, but also on the relative priority ordering of
those tasks”.

Andersson and Jonsson (2000a) concluded that even if
an exact schedulability test were known6, then it would not

6 Note, such tests are now known for periodic tasksets (Cucu and
Goossens 2006, 2007).

be possible to use Audsley’s OPA algorithm (Audsley,
1991, 2001) to determine the optimal priority ordering.
While this is undoubtedly true, we believe that it has also
lead to a common misconception that the OPA algorithm
cannot be applied to schedulability tests for global FP
scheduling.

In this section, we show that the OPA algorithm is
applicable to the multiprocessor case provided that the
schedulability test used meets three simple conditions.
These conditions allow us to classify schedulability tests
for global FP scheduling into two categories: OPA-
compatible and OPA-incompatible. First we provide an
overview of the OPA algorithm (Audsley, 1991, 2001)
originallyderived for uniprocessor systems.
4.1. Optimal priority assignment

The pseudo code for the OPA algorithm, using some
compatible schedulability test S is given below.

Optimal Priority Assignment Algorithm
for each priority level k, lowest first
{

for each unassigned task τ
{
 if τ is schedulable at priority k

 according to schedulability test S
 with all unassigned tasks assumed to
 have higher priorities

 {
 assign τ to priority k
 break (continue outer loop)
 }
}
 return unschedulable

}
return schedulable

For n tasks, the algorithm performs at most n(n+1)/2
schedulability tests and is guaranteed to find a priority
assignment that is schedulable according to schedulability
test S, if one exists. This is a significant improvement over
inspecting all n! possible priority orderings. Note that the
OPA algorithm does not specify the order in which tasks
should be tried at each priority level.

For a schedulability test S to be compatible with the
OPA algorithm, it must comply with three conditions
stated below. These conditions refer to properties or
attributes of the tasks which make up the taskset. Task
properties are referred to as independent if they have no
dependency on the priority assigned to the task. For
example in the sporadic task model used in this paper, the
worst-case execution time, deadline, and minimum inter-
arrival time are all independent properties of a task, while
the worst-case response time depends on the task’s priority
and so is a dependent property.
Condition 1: The schedulability of a task kτ may,
according to test S, depend on any independent properties
of tasks with priorities higher than k, but not on any
properties of those tasks that depend on their relative
priority ordering.
Condition 2: The schedulability of a task kτ may,

according to test S, depend on any independent properties
of tasks with priorities lower than k, but not on any
properties of those tasks that depend on their relative
priority ordering.
Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
test S, if it was previously schedulable at the lower
priority. (As a corollary, the task being assigned the lower
priority cannot become schedulable according to test S, if
it was previously unschedulable at the higher priority).
We now prove the following theorem about the
applicability of the OPA algorithm to global FP
scheduling. Theorem 3 and its proof make no assumptions
about the schedulability test S, save that it complies with
Conditions 1-3.
Theorem 3: The Optimal Priority Assignment (OPA)
algorithm is an optimal priority assignment policy (see
Definition 1) for any global FP schedulability test S
compliant with Conditions 1-3.
Proof: We prove that for every taskset X that is
schedulable according to test S with some arbitrary priority
ordering Q , the OPA algorithm is able to generate a
priority ordering P that is also schedulable according to
test S.

In the proof, we will show that when applied to taskset
X, each iteration k of the OPA algorithm, from priority
level n down to 1, is able to find a task that is schedulable
according to test S. Thus the OPA algorithm is able to
generate a complete priority ordering P for taskset X that is
schedulable according to test S.

For the purposes of the proof, we refer to priority
ordering Q as nQ . Over the n iterations, we will
transform nQ into 1−nQ … 0Q , where 0Q is identical to
the priority ordering P generated by the OPA algorithm.
The transformation will be such that after each iteration k
from n down to 1, the transformed priority ordering 1−kQ
remains schedulable according to test S, and the tasks at
priority levels k and below are the same in 1−kQ as in P.

We now introduce a concise notation to aid in the
discussion of tasks and groups of tasks within a priority
ordering:
o)(iQk is the task at priority level i in priority ordering

kQ .
o),(kQihep is the set of tasks with priority higher than

or equal to i in priority ordering kQ .
o),(kQihp is the set of tasks with priority strictly

higher than i in priority ordering kQ .
o),(kQilep is the set of tasks with priority lower than

or equal to i in priority ordering kQ .
o),(kQilp is the set of tasks with priority strictly lower

than i in priority ordering kQ .
In the proof that follows, we use k to represent both

the iteration of the OPA algorithm, i.e. the priority level
examined (so initially, k = n), and also the index for the

transformed priority ordering. Note that priority ordering P
is built up over the n iterations, with a task assigned at
priority k on each iteration of the OPA algorithm.
Unassigned tasks are assumed to have higher priority than
the priority level currently being examined.

The proof proceeds by iterating over values of k from
n to 1: At the start of each iteration k, all tasks in priority
ordering kQ are known to be schedulable according to test
S.

As the tasks with lower priority than k are the same in
both kQ and P (),(kQklp =),(Pklp and initially

=),(nQnlp φ=),(Pnlp), then it follows that),(kQkhep
=),(Pkhep . Given Condition 1 and the fact that kQ is a
schedulable priority ordering according to test S, on
iteration k the OPA algorithm is guaranteed to find a task
in the set of unassigned tasks (i.e.),(Pkhep =

),(kQkhep) that is schedulable at priority k according to
test S. We note that one such task is)(kQk . The task
chosen by the OPA algorithm is designated)(kP .

There are two cases that need to be considered:
1.)(kP is the same as)(kQk , in which case no

transformation is necessary to form priority ordering
1−kQ (kk QQ =−1) and hence 1−kQ is trivially a

schedulable priority ordering.
2. The OPA algorithm chose a different schedulable

task; in other words)(kP is the task at some higher
priority level i in kQ , i.e.)(iQk . In this case, we
transform kQ into 1−kQ by moving task)(iQk down
in priority from priority level i to priority level k and
the tasks in kQ at priority levels i+1 to k up one
priority level, as illustrated in Figure 6.

Figure 6

Comparing the tasks in priority order 1−kQ with their
counterparts in kQ . There are effectively four groups of
tasks to consider:
1.),(1−kQihp : These tasks are assigned the same

priorities in both kQ and 1−kQ , given Condition 2, all
of these tasks remain schedulable.

2.),(),(11 −− ∩ kk QilepQkhp : These tasks retain the
same partial order but are shifted up one priority level
in 1−kQ . This shift in priority can be achieved by
repeatedly swapping the priorities of task)(kP and
the task immediately below it in the priority order,
until task)(kP reaches priority k. Hence, given
Condition 3, all the tasks increasing in priority, i.e.

those in the set),(),(11 −− ∩ kk QilepQkhp , remain
schedulable.

3. Task)()()(1 kPiQkQ kk ==− : The tasks of lower
priority than k are the same in both kQ and P, hence

),(),(kQkhepPkhep = . The OPA algorithm selected
task)(kP from the set of tasks),(kQkhep on the
basis that it is schedulable at priority k with the set of
tasks)}({),(iQQkhep kk − =),(1−kQkhp at higher
priorities. Given Condition 1, task)()(1 kPkQk =− is
schedulable at priority k, irrespective of the priority
order of the tasks in),(1−kQkhp and therefore it
remains schedulable in priority order 1−kQ .

4.),(1−kQklp : These tasks are assigned the same
priorities in both kQ and 1−kQ . Given Condition 1
and the fact that),(),(1 kk QkhepQkhep =− , all of the
tasks in),(1−kQklp remain schedulable according to
test S.

The above analysis shows that every task in 1−kQ remains
schedulable according to test S. A total of n iterations of
the above process (for k = n down to 1) correspond to
iteration of the OPA algorithm over all n priority levels.
On each iteration the OPA algorithm is able to identify a
task that is schedulable according to test S and therefore
generate a priority ordering P that is schedulable according
to test S
□
The proof of Theorem 3 shows that compliance with
Conditions 1-3 is sufficient for schedulability test S to be
OPA-compatible. We now show that each of the three
conditions is also necessary.
Theorem 4: (Non-optimality of the OPA algorithm for
schedulability tests that are OPA-incompatible). For a
schedulability test S that is non-compliant with one or
more of Conditions 1-3, the OPA algorithm may fail to
generate a priority ordering that is deemed schedulable by
test S, when such an ordering exists.
Proof:
Necessity of Condition 1: The OPA algorithm does not
specify the priority ordering of unassigned tasks; therefore
when determining the schedulability of a task A at priority
k, schedulability test S is effectively free to choose any
arbitrary priority ordering for the unassigned (higher
priority) tasks. Let us assume that with the arbitrary
priority ordering chosen for the unassigned tasks, task A is
deemed schedulable at priority k, and it is therefore
assigned to that priority level. If Condition 1 does not
hold, then a different priority ordering later established by
the OPA algorithm for the higher priority tasks can result
in task A becoming unschedulable at priority k according
to test S. In this case, the priority ordering found by the
OPA algorithm is erroneous; it is not in fact schedulable
according to test S. However, a different choice of
priorities for the higher priority tasks would result in task
A being schedulable, and thus a schedulable priority
ordering existed, yet it was not found by the OPA-

algorithm.
Necessity of Condition 2: If Condition 2 does not hold
then the schedulability of a task according to test S is
dependent on the priority order of lower priority tasks. In
this case, the OPA algorithm could place tasks at priorities
lower than k in an order that results in no task being
schedulable at priority level k. Yet, if the lower priority
tasks were placed in a different priority order, then a task
could be found that was schedulable at priority k according
to test S. In this case, the OPA-algorithm fails to find a
priority ordering that is schedulable according to test S
when such a priority ordering exists.
Necessity of Condition 3: If Condition 3 does not hold,
then two tasks A and B may both be schedulable according
to test S when assigned the lowest priority; however task B
may be unschedulable when assigned the next highest
priority. Let us assume that the OPA algorithm arbitrarily
chooses to assign task A to the lowest priority. In this case,
no tasks are found that are schedulable at the next highest
priority. Thus the OPA-algorithm fails to find a priority
ordering that is schedulable according to test S, even
though one exists; with task B at the lowest priority
□

Condition 2 holds for all of the schedulability tests
considered in this paper. These tests deal with pre-emptive
scheduling of independent tasks, hence the schedulability
of higher priority tasks is independent of lower priority
tasks. We note that Condition 2 is important when
considering non-pre-emptive scheduling and task models
which permit access to mutually exclusive shared
resources.

We note that Theorem 3 depends on emergent
properties of the schedulability test, and not on the specific
properties of the underlying task model. It is therefore
applicable to both periodic and sporadic task models.
Conditions 1-3 enable us to classify global FP
schedulability tests as either OPA-compatible or OPA-
incompatible.
Theorem 5: Any exact schedulability test for a general
periodic taskset is OPA-incompatible.
Proof: It suffices to show that Condition 1 does not hold
for any exact test. Consider the following synchronous
periodic taskset with four tasks, two copies of task A = {1,
2, 3} and two copies of task B = {2, 4, 4}, executing on a
two processor system. (The parameters are the task’s
worst-case execution time, deadline, and period
respectively). Task B is schedulable at the lowest priority,
with the other tasks in priority order A, A, B, but not
schedulable when they are in priority order A, B, A or B, A,
A. This can be seen by examining the schedule over the
hyperperiod. In effect, both the exact schedulability and
the exact response time of task B at the lowest priority
level are dependent on the relative priority ordering of the
higher priority tasks. As all exact schedulability tests must
by definition provide an identical classification of all

priority ordered tasksets as schedulable or unschedulable it
follows that all exact schedulability tests for periodic
tasksets are OPA-incompatible □
Theorem 6: The RTA test (Bertogna and Cirinei, 2007)
(Equation (8)) for global FP scheduling of sporadic
tasksets is OPA-incompatible.
Proof: It suffices to show that Condition 1 does not hold
for the RTA test. The workload)(LW R

i (Equation (5))
used to determine schedulability via these tests depends on
the response times of higher priority tasks, which in turn
depend on the relative priority ordering of those tasks.
This can be seen by considering the following example
comprising four tasks: two copies of task A = {10, 20, 20},
task B = {10, 20, 100}, and task C = {20, 55, 55},
executing on a two processor system. With priority order
A, A, B, C the taskset is deemed schedulable by the test
with upper bounds on task response times of 10, 10, 20,
and 55 respectively. However, if the priority order is
instead A, B, A, C, then the copy of task A at priority 3 has
an increased upper bound response time of 20 (it was 10 at
priority 2). This increases its workload and interference on
task C which is then deemed unschedulable
□
Theorem 7: The RTA-LC test (Guan et al., 2009)
(Equation (13)) for global FP scheduling of sporadic
tasksets is OPA-incompatible.
Proof: Follows directly from the proof of Theorem 6,
noting that the RTA-LC and RTA tests are equivalent for
the 4 task, 2 processor counter example used (Corollary 2)
□
Theorem 8: The response time test of Andersson and
Jonsson (2000a) (Equation (16) below) for global FP
scheduling of sporadic tasksets is OPA-compatible:

∑
∈∀

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+←

)(

1

khpi
ii

i

ub
k

k
ub
k CC

T
R

m
CR (16)

Proof: It suffices to show that Conditions 1-3 hold.
 Inspection of Equation (16) shows that the upper
bound response time ub

kR computed for task kτ depends
on the set of higher priority tasks, but not on their relative
priority ordering, hence Condition 1 holds.

ub
kR (Equation (16)) has no dependency on the set of

tasks with lower priority than k, hence Condition 2 holds.
Consider two tasks A and B initially at priorities k and

k+1 respectively. The upper bound response time of task B
cannot increase when it is shifted up one priority level to
priority k, as the only change in the response time
computation (Equation (16)) is the removal of task A from
the set of tasks that have higher priority than task B, hence
Condition 3 holds
□
Theorem 9: The DA test (Bertogna et al., 2009) (Equation
(4)) for global FP scheduling of sporadic tasksets is OPA-
compatible:

Proof: Follows the same logic as the proof of Theorem 8,
with the upper bound response time given by the right
hand side of Equation (4) rather than Equation (16)
□
Theorem 10: The DA-LC test (Equation (15)) for global
FP scheduling of sporadic tasksets is OPA-compatible.
Proof: Follows the same logic as the proof of Theorem 8,
with the upper bound response time given by the right
hand side of Equation (14) rather than Equation (16)
□
Theorem 11: The C-RTA condition is OPA-compatible.
Proof: It suffices to show that Conditions 1-3 hold.
 Inspection of Equation (13) and its component
equations shows that the upper bound response time UB

kR
computed for task kτ depends on the set of higher priority
tasks, and their parameters (iC , iD , iT) but not on their
upper bound response times (as iC is substituted for UB

iR
in Equations (5) and (6)) or their relative priority ordering,
hence Condition 1 holds.

Equation (13) has no dependency on the set of tasks
with priorities lower than k, hence Condition 2 holds.

Consider two tasks A and B initially at priorities k and
k+1 respectively. The upper bound response time of task B
cannot increase when it is shifted up one priority level to
priority k, as the only change in the response time
computation (Equation (13)) is the removal of task A from
the set of tasks that have higher priority than task B, hence
Condition 3 holds
□

As the C-RTA condition is both OPA-compatible and
dominates the RTA-LC schedulability test, it follows that
any taskset that is deemed unschedulable according to the
OPA-algorithm using the C-RTA condition is guaranteed
to also be unschedulable according to the RTA-LC test for
every possible priority assignment. We can therefore use
the C-RTA condition combined with the OPA algorithm to
provide an upper bound on the potential performance of
the RTA-LC test with optimal priority assignment.
We observe that the processor load based schedulability
test for global FP scheduling given by Fisher and Baruah,
(2006) (see Theorem 2, Equation (9) of (Fisher and
Baruah, 2006)) is OPA-compatible as the schedulability of
each task depends only on the set of higher priority tasks,
and not on their relative priority order. Note that the
simpler form of that test, given by Corollary 1 of (Fisher
and Baruah, 2006)), is applicable only to tasksets using
DMPO.
 The processor load based test given by Baruah and
Fisher (2008) (see Corollary 1 of (Baruah and Fisher,
2008)) is also OPA-compatible; however, Baruah and
Fisher proved that DMPO is the optimal priority
assignment policy with respect to that test.
 Finally, the processor load based test given by Baruah
(2009) (see Theorem 3 in (Baruah, 2009)) is applicable
only to tasksets in DMPO.

4.2. Heuristic priority assignment
In this section, we investigate heuristic priority

assignment policies.
In his thesis, Bertogna (2007) evaluates the

effectiveness of a number of different schedulability tests.
Bertogna’s experiments show that using DMPO the RTA
test for global FP scheduling outperforms all other then
known schedulability tests for constrained deadline
sporadic tasksets, including those for EDF and EDZL.
Despite this, and the optimality of DMPO in the equivalent
uniprocessor case, we are sceptical about the effectiveness
of DMPO in the multiprocessor case.

The intuition for an alternative priority assignment
policy can be obtained by re-arranging Equation (4):

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
≥− ∑

∈∀)(
),(1

khpi
kk

D
ikk CDI

m
CD (17)

For large m, the term on the right hand side grows
relatively slowly with each additional higher priority task.
This suggests that ii CD − monotonic priority ordering
(D-CMPO) might be a useful heuristic.

Andersson and Jonsson (2000b) investigated a similar
priority ordering, called TkC, for implicit deadline
tasksets. TkC assigns priorities based on the value of

ii kCT − , where k is a real value computed on the basis of
the number of processors, as follows:

m
mmmk

2
1651 2 +−+−

= (18)

Extending this approach to tasksets with constrained
deadlines, we form the DkC priority assignment policy
which orders tasks according to the value of ii kCD − ,
where k is again computed according to Equation (18).

The performance of the three heuristic priority
assignment policies: DMPO, D-CMPO, and DkC is
examined empirically in Section 6.

We also developed heuristic priority assignment
algorithms based on the DM-DS{ς } (Bertogna et al.,
2005) and SM-US{ς } (Andersson, 2008) priority
assignment policies. These algorithms, although more
complex, were found in general to be no more effective
than the DkC policy. (Appendix A gives details of these
policies and their performance).

It is interesting to note that D-CMPO and DkC have
some similarities with recent work on dynamic priority
scheduling: The LEDLm algorithm proposed by Easwaran
et al. (2008), partially schedules jobs on the basis of
longest remaining execution time first. This has the effect
of maximising the potential for concurrency by retaining a
large number of incomplete jobs with short remaining
execution times; the idea being that such jobs are easier to
schedule than a smaller number of jobs with longer
remaining execution times. D-CMPO and DkC incorporate
an element of this effect, as by comparison with DMPO,
they assign higher priorities to tasks with longer execution
times.

5. Taskset generation
Empirical investigations into the effectiveness of

priority assignment policies and schedulability tests
require a means of generating tasksets. A taskset
generation algorithm should be unbiased (Bini and
Buttazzo, 2005), and ideally, it should allow tasksets to be
generated that comply with a specified parameter setting.
That way the dependency of priority assignment policy /
schedulability test effectiveness on each taskset parameter
can be examined by varying that parameter, while holding
all other parameters constant, avoiding any confounding
effects.

A (naïve) unbiased method of generating tasksets of
cardinality n and target utilisation (Ut) is as follows.
1. Select n task utilisation values iU at random from a

uniform distribution over the range [0,1].
2. Discard the taskset if the total utilisation U is not

within some small percentage of Ut, and generate a
new taskset by returning to step 1.

We note that this naive approach is not viable in practice
due to the number of tasksets that need to be discarded.
The UUnifast algorithm of Bini and Buttazzo (2005)
(pseudo code given below), was devised to give the same
unbiased distribution. Note, pow(x, y) raises x to the power
y, and rand() returns a random number in the range [0,1]
from a uniform distribution.

UUnifast(n,Ut)
{
 SumU = Ut;
 for (i = 1 to n-1)
 {

 nextSumU = SumU * pow(rand(), 1/(n-i));
 U[i] = SumU – nextSumU;
 sumU = nextSumU;

 }
 U[n] = SumU;
}

To the best of our knowledge, UUnifast has not
previously been used in the context of multiprocessors, as
the basic algorithm cannot generate tasksets with total
utilisation 1>U without the possibility that some tasks
will have utilisation 1>iU . Instead, researchers have used
an approach to taskset generation based on generating an
initial taskset of cardinality m+1 at random and then
repeatedly adding tasks to it to generate further tasksets
until the total utilisation exceeds the available processing
resource (Bertogna, 2007; Bertogna et al., 2009; Bertogna
and Cirinei, 2007; Baker et al., 2008). This approach has
the disadvantage that it effectively combines two
variables, utilisation and taskset cardinality, and does not
necessarily result in an unbiased distribution of task
utilisation values.

In the remainder of this section, we show how the
UUnifast algorithm can be adapted to generate the tasksets
needed to study multiprocessor systems. Inspection of the
UUnifast algorithm shows that it is scale invariant. We can
therefore use it to generate tasksets with U > 1 as follows:

o The UUnifast method, with parameters n, and Ut
(which may be > 1), is used to generate task utilisation
values in the range [0, Ut].

o If a task utilisation value iU is generated that is > 1,
then the values produced so far, that is 1U to iU , are
discarded. If the total number of discarded partial
tasksets exceeds some limit, then the algorithm exits
and reports that it has failed, otherwise it re-starts
generating utilisation values at 1U .

o Once a sequence of n valid utilisation values are
generated, the algorithm completes, reporting success.

We refer to the above algorithm as UUnifast-Discard.
Theorem 12: The tasksets produced by UUnifast-Discard
are unbiased, i.e. uniformly distributed (Bini and Buttazzo,
2005), with task utilisations in the range [0, min(Ut,1)]
which sum to Ut.
Proof: We prove the theorem via a geometric argument.
Each taskset can be represented by a point on an n-1
dimensional plane in n-dimensional space, where the co-
ordinates of the point are the utilisation values of each task
in the taskset i.e. (nUUUU ...,, 321). A uniform distribution
of tasksets is required over the valid region of the plane.

UUnifast produces tasksets that are uniformly
distributed over a finite convex region Z of the n-1
dimensional plane defined by ∑ =UtUi , UtUi ≤ and

0≥iU . (See Figure 9 in (Bini and Buttazzo, 2005) for a
graphical illustration).

For UUnifast-Discard, there are two cases to consider:
Case 1: 1≤Ut : No tasksets are discarded; hence the
distribution of tasksets remains uniform and unbiased.
Case 2: 1>Ut : Let Y be the convex finite region of the n-
1 dimensional plane defined by ∑ =UtUi , 1≤iU and

0≥iU . Note that Y is a subset of Z and so the distribution
of tasksets produced by UUnifast over the region Y is also
uniform and unbiased. Now, all tasksets generated with
any 1>iU are discarded by UUnifast-Discard. This
corresponds to removal of all of those tasksets that are in
region Z but not in region Y. Further, none of the tasksets
in region Y are discarded, hence the distribution of tasksets
over region Y remains uniform and unbiased
□

An unbiased distribution of task utilisation values is
exactly what is required to study the effectiveness of
multiprocessor schedulability tests. Unfortunately, there is
a drawback to the UUnifast-Discard approach. As the
target utilisation requested increases towards n/2, then the
number of valid tasksets (with all 1≤iU) becomes a
vanishingly small proportion of those generated. While
this is clearly a limitation in theory, in practice, we
contend that many commercial real-time systems using
multiprocessors will have significantly more tasks than
processors. In any case, we can simply set a pragmatic
discard limit for UUnifast-Discard and investigate as much
of the problem space as possible within this limit.

Figure 7 shows the maximum taskset utilisation that

UUnifast-Discard is able to generate, using discard limits
of 10,100, 1000, and 10,000 respectively, plotted against
taskset cardinality. This graph was generated empirically,
by running the UUnifast-Discard algorithm for increasing
values of target utilisation for each value of taskset
cardinality until the algorithm reached the discard limit
and was thus unable to generate the 100 tasksets required
by the experiment in the permitted number of iterations
(given by the discard limit multiplied by the number of
tasksets required).

Figure 7 shows that, UUnifast-Discard, with a discard
limit of 1000, can be used to generate tasksets with a target
utilisation of up to 8, (suitable for investigation of 8
processor systems) provided that the taskset cardinality
exceeds 14. Lower utilisation levels of 7.5 and 6.7 are
possible with 12 and 10 tasks respectively. (Note that the
behaviour of the UUnifast-Discard algorithm is
independent of the number of processors).

0

5

10

15

20

25

1 11 21 31 41
Number of tasks

M
ax

 to
ta

l u
til

is
at

io
n

10000
1000
100
10

Figure 7

As we will see in the next section, the scope of this
taskset generation method is sufficient to examine the
effectiveness of schedulability tests over a wide range of
interesting parameter values.

6. Empirical investigation
In this section, we present the results of an empirical

investigation, examining the effectiveness of different
priority assignment policies when used in conjunction with
two sufficient schedulability tests: the DA-LC test
(Equation (14)), which is OPA-compatible, and the RTA-
LC test (Equation (13)), which is OPA-incompatible. The
priority assignment policies studied are DMPO, D-CMPO,
DkC and the OPA algorithm (DA-LC test only).

We also used the C-RTA condition combined with the
OPA algorithm to determine an upper bound on the
potential performance of the RTA-LC test for any priority
ordering. It is however important to remember that the C-
RTA condition is not a schedulability test, it can only tell

us which tasksets are definitely unschedulable. Some of
the tasksets that it apparently deems schedulable may in
fact be unschedulable. Further, the optimism inherent in
the C-RTA condition means that the actual performance of
the RTA-LC test assuming optimal priority assignment is
likely to be some way below the bound shown in the
graphs.

We also compared the performance of the tests for
global FP scheduling with the iterative response time test
for global EDF scheduling given by Bertogna and Cirinei
(2007). We refer to this test as EDF-RTA. EDF-RTA is
arguably the most effective schedulability test currently
available for global EDF scheduling. (We note that by
combining a number of incomparable schedulability tests
for global EDF scheduling including EDF-RTA, a slightly
large number of schedulable tasksets can be detected than
using EDF-RTA alone, see (Bertogna, 2009) for further
details).

Note the figures in this section are best viewed online
in colour.
6.1. Parameter generation

The task parameters used in our experiments were
randomly generated as follows:
o Task utilisations were generated using the UUnifast-

Discard algorithm, using a discard limit of 1000.
o Task periods were generated according to a log-

uniform distribution7 with a factor of 1000 difference
between the minimum and maximum possible task
period. This represents a spread of task periods from
1ms to 1 second, as found in most hard real-time
applications. The log-uniform distribution was used as
it generates an equal number of tasks in each time
band (e.g. 1-10ms, 10-100ms etc.), thus providing
reasonable correspondence with real systems.

o Task execution times were set based on the utilisation
and period selected: iii TUC = .

o Task deadlines were assigned according to a uniform
random distribution, in the range],[ii TC .

In each experiment, the taskset utilisation (x-axis value)
was varied from 0.025 to 0.975 times the number of
processors in steps of 0.025. For each utilisation value,
1000 valid tasksets were generated and the schedulability
of those tasksets determined using various combinations of
priority assignment policy and schedulability test. The
graphs plot the percentage of tasksets generated that were
deemed schedulable in each case.
6.2. Experiment 1 (Priority assignment)

In this experiment we investigated the impact of each
of the priority assignment policies on the percentage of
tasksets deemed schedulable by the different
schedulability tests. Figures 7 to 10 show this data for 2, 4,
8, and 16 processors respectively. In each case, the number

7 The log-uniform distribution of a variable x is such that ln (x) has a
uniform distribution.

of tasks was set to 5 times the number of processors.
From the graphs, we can see that the priority

assignment policy used has a significant impact on overall
performance, and that the more processors there are, the
larger this impact becomes. There are four broad solid
lines on each graph depicting the performance of the DA-
LC test for DMPO (lowest performance with respect to
this schedulability test), D-CMPO, DkC, and OPA
(highest performance / optimal with respect to this
schedulability test). The uppermost (thin) solid line on
each graph represents the C-RTA condition combined with
OPA. This line upper bounds the potential performance of
the state-of-the-art RTA-LC schedulability test combined
with optimal priority assignment. Note the lines on the
graphs appear in the order given in the legend.

In the 16 processor case (Figure 11), using DMPO,
approx. 50% of the tasksets are unschedulable according to
the DA-LC test at a utilisation level of 4.4 (= 0.28m);
however, using the OPA algorithm, approx. 50% of the
tasksets are schedulable according to the same test at a
utilisation level of 9.6 (= 0.6m). Hence, in this case,
optimal priority assignment effectively enables 118%
better utilisation of the processing resource than DMPO.
D-CMPO is more effective than DMPO, and the DkC
priority assignment policy is notably significantly more
effective again. Note, the performance of DkC and D-
CMPO are identical in the 2 processor case (Figure 8) as k
= 1 in Equation (18). Comparison between the four figures
shows that the difference between OPA and DMPO
becomes considerably larger as the number of processors
increases.

It is clear from the graphs that the difference in
performance between the DA-LC test (solid lines) and the
RTA-LC test (dashed lines) is much less significant than
the difference between the best and the worst priority
assignment policies studied.

It is noticeable that the EDF-RTA test for global EDF
scheduling results in performance that is similar to that of
the DA-LC test for global FP scheduling using DMPO in
the 16 processor case (Figure 11), and generally inferior in
the case of fewer processors. (The two tests are
incomparable).

It is clear from the graphs that the performance of the
DA-LC test combined with the OPA algorithm is
relatively close to the upper bound on the potential
performance of the RTA-LC test with optimal priority
assignment, given by the C-RTA condition.

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 8: (2 processors, 10 tasks)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 9: (4 processors, 20 tasks)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 10: (8 processors, 40 tasks)

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 11: (16 processors, 80 tasks)

We repeated the same experiment for tasksets with
implicit deadlines, using exactly the same parameter
settings for taskset generation, save that task deadlines
were set equal to their periods. In this case, DMPO
reduces to Rate Monotonic priority ordering (Serlin, 1972;
Liu and Layland, 1973), and DkC reduces to TkC
(Andersson and Jonsson, 2000a).

Figures 11 to 14 illustrate the impact of each of the
priority assignment policies on the percentage of tasksets
deemed schedulable by the different schedulability tests
for 2, 4, 8, and 16 processors respectively.

In the two processors case (Figure 12) DMPO, D-
CMPO and DkC priority assignment policies have similar
performance8, and it is the effectiveness of the
schedulability tests which dominates the results obtained
for these policies. Using optimal priority assignment, the
DA-LC test admits slightly fewer tasksets as compared to
the RTA-LC test using DkC priority assignment.

As the number of processors is increased, from 2 up to
16 (in Figure 15) the difference between priority
assignment policies dominates the results. For 16
processors, there is a large difference between the
utilisation level at which. 50% of the tasksets are deemed
schedulable according to the DA-LC test using DMPO
(approx. 9.2 = 0.58m), versus using the optimal priority
assignment algorithm (approx. 12 = 0.75m). This
difference corresponds to an effective increase in usable
processing capacity of around 30%.

It is interesting to compare the graphs for implicit-
deadline tasksets (Figures 11 to 14) with their counterparts
for constrained-deadline tasksets (Figures 7 to 10). We
conclude from this comparison, that the selection of OPA
or DkC priority ordering rather than D-CMPO or DMPO
brings about a greater improvement in the number of
tasksets deemed schedulable in the constrained deadline
case. Further the improvement obtained by using optimal
priority assignment rather than the DkC heuristic is more

8 DkC and D-CMPO are in fact identical as k=1 for two processors.

pronounced in the implicit deadline case.
Finally, as the assumption that all higher priority tasks

have worst-case response times equal to their execution
times becoming more optimistic for tasks with longer
deadlines and tasksets with higher utilisation, we
hypothesize that the upper bound on the performance of
the RTA-LC test with optimal priority assignment, given
by the C-RTA condition, becomes more optimistic in the
implicit-deadline case.

0%

20%

40%

60%

80%

100%

120%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 12: (2 processors, 10 tasks)

0%

20%

40%

60%

80%

100%

120%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 13: (4 processors, 20 tasks)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8
Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA (OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 14: (8 processors, 40 tasks)

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

C-RTA(OPA) bound
DA-LC (OPA)
RTA-LC (DKC)
DA-LC (DKC)
 RTA-LC (DCMPO)
DA-LC (DCMPO)
RTA-LC (DMPO)
DA-LC (DMPO)
EDF-RTA

Figure 15: (16 processors, 80 tasks)

We repeated our experiments for smaller (2) and
larger (20) numbers of tasks per processor. In each case,
although the data points changed, the relationships
between the effectiveness of the different methods and the
conclusions that can be drawn from them remained
essentially the same.

We note that overall, (2, 4, 8, and 16 processors,
implicit and constrained deadline tasksets) the method
with the best performance is the polynomial DA-LC test
combined with optimal priority assignment. This confirms
our hypothesis that finding an appropriate priority ordering
is as important as using an effective schedulability test.
Further, this test also significantly outperforms the EDF-
RTA test for global EDF scheduling in all of the cases
studied.
6.3. Experiment 2 (Number of tasks)

In this experiment we investigated the effect of
varying the number of tasks. Figure 16 shows the
percentage of tasksets that were schedulable on an 8
processor system, for taskset cardinalities of 9, 10, 12, 16,
24, and 40, using the DA-LC test with optimal priority

assignment. Figure 17 shows similar data for tasksets of
cardinality 40, 80, 120, 160, and 200. We repeated this
experiment for tasksets with implicit deadlines, and also
for the RTA-LC test using DkC priority assignment with
similar results.

There are some data points missing from the right hand
side of Figure 16. This is because the UUnifast-Discard
algorithm, was unable to generate tasksets with cardinality
9 and utilisation greater than 6.6 (or cardinality 10 and
utilisation greater than 6.8) using a discard limit of 1000;
however, despite this the trends are still clearly visible.

In Figure 16, the percentage of schedulable tasksets
decreases as the number of tasks is increased from 9
towards 40, with all other parameters held constant. It
would appear from this data alone that tasksets with a
larger number of tasks are more difficult to schedule.
Figure 17 shows what happens as we continue to increase
the number of tasks from 40 to 200 (25 times the number
of processors). Now as the number of tasks increases, the
tasksets appear to become easier to schedule. This
behaviour can be explained as a combination of two
effects: With a small number of tasks, tasksets are
relatively easy to schedule as the impact of each high
utilisation, high interference task is limited to effectively
occupying one processor (see Equations (3) and (7)). In
the extreme, any valid taskset with m tasks or less is
trivially schedulable on an m processor system. As taskset
cardinality increases from m to 2m we therefore expect
fewer tasksets to be schedulable at any given utilisation.
At the other extreme, with increasing taskset cardinality
(mn >>), the average density (kk DC /) of each task kτ
becomes small. This means that the amount of pessimism
in the schedulability tests, due to the assumption that when

kτ executes all other processors are idle is reduced.
Hence, as n increases beyond 10m so the number of
schedulable tasksets increases.

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA-LC (OPA) 9
DA-LC (OPA) 10
DA-LC (OPA) 12
DA-LC (OPA) 16

DA-LC (OPA) 24
DA-LC (OPA) 40

Figure 16: (taskset cardinality from 9 to 40)

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA-LC (OPA) 200

DA-LC (OPA) 160

DA-LC (OPA) 120

DA-LC (OPA) 80

DA-LC (OPA) 40

Figure 17: (taskset cardinality from 40 to 200)
The fact that on an m processor system, any valid set of

m tasks is schedulable, illustrates the incomparability of
global FP scheduling on m processors of speed 1, with
respect to fixed priority pre-emptive scheduling on a
similar uniprocessor of speed m. The m-speed
uniprocessor can trivially schedule a single task of
utilisation greater than one, whereas the m processors of
speed 1 cannot. Similarly, the m processors can schedule
any set of m tasks with co-prime periods and individual
task utilisations equal to 1, whereas the m-speed
uniprocessor cannot.

7. Summary and conclusions
The motivation for our work was the desire to improve

upon the current state-of-the-art in terms of practical
techniques that enable the efficient use of processing
capacity in hard real-time systems based on
multiprocessors.

In this paper we addressed the problem of priority
assignment for global FP scheduling of constrained-
deadline sporadic tasksets. We were drawn to this area of
research by the work of Bertogna et al. (2009) which
showed that the best schedulability tests then available for
global FP scheduling using Deadline Monotonic Priority
Ordering (DMPO) outperformed the best tests then known
for both global EDF and EDZL.

The intuition behind our work was the idea that in
fixed priority scheduling, finding an appropriate priority
assignment is as important as using an effective
schedulability test. While DMPO is an optimal priority
assignment policy for uniprocessors, this result is known
not to transfer to the multiprocessor case. Indeed, our
results show that DMPO cannot even be considered a good
heuristic for multiprocessors.

The key contributions of this paper are as follows:
o Formal proof of a key observation concerning the

pattern of task execution that results in the worst-case
response time under global fixed priority scheduling
(Theorem 1).

o Application of the approach of Guan et al. (2009) to
limiting carry-in interference to the polynomial time
schedulability test of Bertogna et al. (2009), forming
the DA-LC test.

o The observation that although Audsley’s Optimal
Priority Assignment algorithm (Audsely, 1991, 2001)
cannot be applied to any exact schedulability test for
global FP scheduling of periodic tasksets, this does
not necessarily preclude its use with sufficient
schedulability tests.

o Proof that Audsley’s OPA algorithm is the optimal
priority assignment policy with respect to any global
FP schedulability test for periodic or sporadic tasksets
that complies with three simple conditions.

o Classification of schedulability tests for global FP
scheduling as either OPA-compatible or OPA-
incompatible based on these conditions. The deadline-
based sufficient test of Bertogna et al. (2009) (DA
test), the DA-LC test developed in this paper, and the
response time test of Andersson and Jonsson (2000a)
for sporadic tasksets are all OPA-compatible; while
any exact test for periodic tasksets, the response time
test of Bertogna and Cirinei (2007) (RTA test) and the
improved version of this test given by Guan et al.
(2009) (RTA-LC test) for sporadic tasksets are OPA-
incompatible.

o Extension of the TkC (Andersson and Jonsson, 2000b)
priority assignment policy to constrained deadline
tasksets forming the DkC priority assignment policy.
This heuristic policy can be used in conjunction with
any schedulability test.

o Adaptation of the UUnifast algorithm (Bini and
Buttazzo, 2005) to the multiprocessor case, forming
the UUnifast-Discard algorithm. UUnifast-Discard
generates tasksets with specific parameter settings,
facilitating an empirical study of schedulability test
effectiveness without the problem of confounding
variables.

o An empirical study showing that by using the OPA
algorithm rather than DMPO, the DA-LC test can
schedule significantly more tasksets. In fact, this
combination of optimal priority assignment and a
polynomial time schedulability test outperformed the
pseudo-polynomial RTA-LC test combined with
various heuristic priority assignment policies,
including DMPO, D-CMPO, and DkC. It also
significantly outperformed the EDF-RTA test for
global EDF scheduling.

o Deriving a pseudo-schedulability condition (C-RTA)
which dominates the RTA-LC test yet is OPA-
compatible. This condition combined with the OPA
algorithm provides an upper bound on the potential
performance of the RTA-LC test with optimal priority

assignment. The gap between the DA-LC test with
optimal priority assignment and this upper bound was
found to be relatively small for constrained-deadline
tasksets, with a larger gap (possibly due to optimism
in the bound) for implicit-deadline tasksets.

Our studies showed that the improvements that an
appropriate choice of priority assignment brings are very
large when viewed in terms of the proportion of processing
capacity that can be usefully deployed. For example, in the
16 processor case, for tasksets with constrained deadlines,
the utilisation level at which 50% of the tasksets were
schedulable increased from 0.28m (for the DA-LC test
with DMPO) to 0.6m (for the DA-LC test with optimal
priority assignment). This represents an effective increase
in the usable processing resource of over 100%. This level
of improvement is of great value to engineers designing
and implementing hard real-time systems based on
multiprocessor platforms, as it enables more effective use
to be made of processing resources while still ensuring that
deadlines are met. We conclude that priority assignment is
an important factor in determining the schedulability of
tasksets under global fixed priority pre-emptive
scheduling.

The OPA algorithm requires a polynomial number of
schedulability tests (n(n+1)/2) to solve the problem of
optimal priority assignment for any OPA-compatible
global FP schedulability test. To the best of our
knowledge, the complexity of optimal priority assignment
for exact schedulability tests for periodic tasksets under
global FP scheduling remains an open problem. For
sporadic tasksets, no exact test is known and the
complexity of optimal priority assignment is also an open
problem.

The research reported in this paper suggests that the
most effective combination of schedulability test and
priority assignment policy currently available for global
fixed priority scheduling is the DA-LC test (Equation (14))
introduced in this paper, combined with the optimal
priority assignment (OPA) algorithm. As well as being
highly effective, this approach has the additional
advantage that it is polynomial)(3nO in complexity and
therefore highly efficient.

Finally, the upper bound provided by the C-RTA
condition indicates that there remains some scope to
improve upon these results if a way can be found to
combine optimal priority assignment with the state-of-the-
art response time test (RTA-LC test). Initial work in this
area can be found in (Davis and Burns, 2010).
7.1. Acknowledgements

The authors would like to thank Enrico Bini and Paul
Emberson for their contributions to the discussions about
the applicability of the UUnifast algorithm to the
multiprocessor case, and also Yang Chang for his
insightful review of an early draft. This work was funded
in part by the EPSRC Tempo project (EP/G055548/1) and

the EU funded ArtistDesign Network of Excellence.

Appendix A: Other heuristic priority
assignment policies

In this section, we examine the performance of two
heuristic priority assignment algorithms, derived from
RM-US{ς } (Andersson et al., 2001) and SM-US{ς }
(Andersson, 2008).
A.1 Implicit-deadline tasksets

The RM-US{ς } priority assignment policy, was
derived by Andersson et al. (2001) with the aim of
addressing the “Dhall effect” (Dhall and Liu, 1978) for
implicit-deadline tasksets using global FP scheduling. RM-
US{ς } assigns the highest priority9 to tasks with
utilisation greater than some threshold ς . The remaining
tasks are then assigned priorities in Rate Monotonic
priority order.

Lundberg (2002) showed that setting the threshold
used in RM-US{ς } to 0.375 results in the following
utilisation bound which is the maximum possible bound
for this class of algorithm:

mU 375.0≤ (A.1)
The SM-US{ς } priority assignment policy was

derived by Andersson (2008) with the aim of improving
upon the above bound for RM-US{ς }. SM-US{ς } again
assigns the highest priority to tasks with utilisation greater
than some threshold ς ; the remaining tasks are then
assigned priorities in Slack Monotonic priority order,
(where the slack of task kτ is defined as kk CD −).
Andersson (2008) showed that using a threshold of

)53/(2 + results in the following utilisation bound for
SM-US{ς }:

)53/(2 +≤U (A.2)
Figure 18 illustrates the impact of the RM-US{ς } and

SM-US{ς } priority assignment policies, on the
percentage of implicit-deadline tasksets deemed
schedulable by the DA-LC schedulability test. This data is
for tasksets generated according to the parameters
described in Section 6.1, with the exception that all task
deadlines were equal to their periods. The thresholds used
were 0.375 for RM-US{ς } and)53/(2 + for SM-
US{ς }.

9 Note that RM-US considers fewer than m tasks assigned priorities
based on their utilisation, and as the first m priority levels in an m
processor system are essentially equivalent, makes no distinction between
their priorities.

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA-LC (OPT)

DA-LC (DKC)

DA-LC (SMDS(t))

DA-LC (DMDS(t))

DA-LC (DCMPO)

DA-LC (DMPO)

Figure 18: (16 processors, 80 tasks)

From Figure 18, we observe that the performance of
the RM-US{0.375} and SM-US{)53/(2 + } priority
assignment policies is very similar to that of DkC (i.e.
TkC) for implicit-deadline tasksets. This similarity in
performance was also observed in the cases of 2, 4, and 8
processors.
A.2 Constrained-deadline tasksets

Bertogna et al. (2005) extended the RM-US{ς }
priority assignment policy to constrained-deadline
tasksets, forming the DM-DS{ς } policy. DM-DS{ς }
assigns the highest priorities to at most m-1 tasks with
densities (kkk DC /=δ) greater than some threshold ς .
Bertogna et al. showed that using a threshold of 1/3 results
in the following density bound for global FP scheduling of
constrained-deadline tasksets using DM-DS{1/3} priority
assignment:

3
1+

≤∑
∀

m

k
kδ (A.3)

The SM-US{ς } priority assignment policy can also
be extended to the constrained deadline case, by simply
assigning the highest priority to those tasks with density
(rather than utilisation) greater than some threshold ς . We
refer to this policy as SM-DS{ς }

Figure 19 below shows the results of essentially the
same experiment as Figure 18; however, this time using
constrained-deadline tasksets, with task deadlines chosen
according to a uniform random distribution, in the range

],[ii TC . Here, we see that the performance of the DM-
DS{1/3} and SM-DS{)53/(2 + } priority assignment
policies is significantly worse than that of DkC. Further,
we found that the relative performance of DM-DS{1/3}
and SM-DS{)53/(2 + } was variable, depending on the
number of processors. In the case of two processors, the
performance of both DM-DS{1/3} and SM-
DS{)53/(2 + } was significantly worse than that of

DMPO.

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

DA-LC (OPT)

DA-LC (DKC)

DA-LC (SMDS(t))

DA-LC (DMDS(t))

DA-LC (DCMPO)

DA-LC (DMPO)

Figure 19: (16 processors, 80 tasks)

A possible explanation for the variable and relatively
poor performance of DM-DS{1/3} and SM-
DS{)53/(2 + } is the choice of threshold. While
Bertogna et al. (2005) and Andersson (2008) were able to
derive appropriate thresholds for DM-DS{ς } and SM-
US{ς } in order to derive maximum density or utilisation
bounds, it is not obvious what the thresholds should be for
constrained-deadline tasksets which exceed these bounds.

We now describe variants of the DM-DS{ς } and SM-
US{ς } priority assignment policies, which address the
problem of selecting an appropriate threshold. Here, we
employ an idea used by Goosens et al. (2003) and Baker
(2005) in global EDF scheduling. We refer to these
algorithms as DM-DS(h) and SM-DS(h).

The DM-DS(h) and SM-DS(h) priority assignment
algorithms both assign the highest h priorities based on
task density, highest density first. The remaining tasks are
then assigned priorities in either Deadline Monotonic
(DM-DS(h)) or Slack Monotonic (SM-DS(h)) priority
order. Instead of using a threshold, the DM-DS(h) and
SM-DS(h) algorithms, simply try all values of h, from
zero, (which is equivalent to DMPO or Slack Monotonic
priority order), to n-1, (which is equivalent to ordering all
of the tasks based on decreasing density). Thus for a
taskset of cardinality n, applying either the DM-DS(h) or
the SM-DS(h) priority assignment algorithm implies
checking taskset schedulability for n different priority
orderings, (corresponding to h = 0 to n-1), stopping only
when a schedulable priority ordering is found, or when all
n priority orderings are found to be unschedulable.

The DM-DS(h) and SM-DS(h) priority assignment
algorithms circumvent the problem of finding an
appropriate threshold, by effectively examining all of the
priority orderings that could possibly be generated by any
arbitrary threshold value.
 Figure 20 illustrates the impact of the DM-DS(h) and

SM-DS(h) priority assignment algorithms on the
percentage of tasksets deemed schedulable by the DA-LC
schedulability test. This data is again for constrained-
deadline tasksets and so is directly comparable with that
presented in Figure 19.

0%

20%

40%

60%

80%

100%

120%

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10
.0

10
.8

11
.6

12
.4

13
.2

14
.0

14
.8

15
.6

Utilisation
Pe

rc
en

ta
ge

 o
f t

as
ks

et
s

sc
he

du
la

bl
e

DA-LC (OPT)

DA-LC (DKC)

DA-LC (SMDS{h})

DA-LC (DMDS{h})

DA-LC(DCMPO)

DA-LC (DMPO)

Figure 20: (16 processors, 80 tasks)

From Figure 20, it is clear that the performance of the
SM-DS(h) priority assignment algorithm is similar to that
of DkC, with DM-DS(h) providing somewhat inferior
performance. The results shown in Figure 20 are for a 16
processor system, with 80 tasks. We also repeated this
experiment for smaller (2) and larger (20) numbers of
tasks per processor, and 2, 4, and 8 processors. In each
case, although the data points changed, the relationships
between the different priority assignment methods
remained essentially the same.

While the SM-DS(h) priority assignment algorithm
gives very similar performance to that of DkC, SM-DS(h)
is more complex, requiring a schedulability test to be
performed for n different priority orderings rather than just
one. For this reason we recommend using DkC priority
assignment in conjunction with OPA-incompatible
schedulability tests for global FP scheduling. For OPA-
compatible schedulability tests, then Audsley’s optimal
priority assignment algorithm should be used.

References
Andersson B, Jonsson J (2000a) Some insights on fixed-priority
pre-emptive non-partitioned multiprocessor scheduling. In Proc.
RTSS – Work-in-Progress Session.
Andersson B, Jonsson J (2000b) Fixed-priority preemptive
multiprocessor scheduling: to partition or not to partition, In
Proc. RTCSA.
Andersson B, Baruah SK, Jonsson J. (2001) Static-priority
scheduling on multiprocessors. In Proc. RTSS, pp. 193–202.
Andersson B, Jonsson J (2003) The Utilization Bounds of
Partitioned and Pfair Static-Priority Scheduling on
Multiprocessors are 50%, In Proc. ECRTS, pp. 33-40.

Andersson B (2008) Global static-priority preemptive
multiprocessor scheduling with utilization bound 38%. In Proc.
International Conference on Principles of Distributed Systems,
pp. 73-88
Audsley NC (1991) Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times, Technical Report
YCS 164, Dept. Computer Science, University of York, UK.
Audsley NC (2001) On priority assignment in fixed priority
scheduling, Information Processing Letters, 79(1): 39-44.
Baker TP (2003) Multiprocessor EDF and deadline monotonic
schedulability analysis. In Proc. RTSS, pp. 120–129.
Baker TP (2005) An analysis of EDF scheduling on a
multiprocessor. IEEE Trans. on Parallel and Distributed Systems,
15(8):760–768.
Baker TP (2006) An analysis of fixed-priority scheduling on a
multiprocessor. Real Time Systems, 32(1-2), 49-71.
Baker TP, Cirinei M, Bertogna M (2008) EDZL scheduling
analysis. Real-Time Systems. 40(3) : 264-289.
Baker TP, Baruah SK. (2009) Sustainable multiprocessor
scheduling of sporadic task systems. In Proc. ECRTS, pp. 141-
150.
Baruah SK (2007) Techniques for Multiprocessor Global
Schedulability Analysis. In proc. RTSS, pp. 119-128.
Baruah SK, Fisher N (2008) Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic Task Systems. In Proc. of the 9th
Int’l Conference on Distributed Computing and Networking, pp.
215-226.
S Baruah SK, Bonifaci V, Marchetti-Spaccamela A, Stiller S
(2009) Implementation of a speedup-optimal global EDF
schedulability test, In Proc. ECRTS, pp. 259-268.
Baruah SK, Baker TP (2009) An analysis of global EDF
schedulability for arbitrary sporadic task systems. Real-Time
Systems ECRTS special issue, 43(1): 3-24.
Baruah SK (2009) Schedulability analysis of global deadline
monotonic scheduling. Technical report available from
http://www.cs.unc.edu/~baruah/Pubs.shtml.
Bertogna M, Cirinei M, Lipari G (2005) New schedulability tests
for real-time task sets scheduled by deadline monotonic on
multiprocessors. In Proc. 9th International Conf. on Principles of
Distributed Systems, pp. 306-321.
Bertogna M, Cirinei M (2007) Response Time Analysis for
global scheduled symmetric multiprocessor platforms. In Proc.
RTSS, pp. 149-158.
Bertogna M (2007) Real-Time Scheduling for Multiprocessor
Platforms. PhD Thesis, Scuola Superiore Sant’Anna, Pisa.
Bertogna M, Cirinei M, Lipari G (2009) Schedulability analysis
of global scheduling algorithms on multiprocessor platforms.
IEEE Transactions on parallel and distributed systems, 20(4):
553-566.
Bertogna M (2009) Evaluation of existing schedulability tests for
global EDF, In proceedings of the First International Workshop
on Real-time Systems on Multicore Platforms: Theory and
Practice.
Bini E, Buttazzo GC (2005) Measuring the Performance of
Schedulability tests. Real-Time Systems, 30(1–2):129–154.
Cirinei M, Baker TP (2007) “EDZL scheduling analysis”. In
Proc. ECRTS, pp. 9–18.
Cucu L, Goossens J (2006) Feasibility Intervals for Fixed-
Priority Real-Time Scheduling on Uniform Multiprocessors, In
Proc. 11th IEEE International Conference on Emerging
Technologies and Factory Automation.

Cucu L, Goossens J (2007) Feasibility Intervals for
Multiprocessor Fixed-Priority Scheduling of Arbitrary Deadline
Periodic Systems , In Proc. DATE, pp. 1635-1640.
Cucu L (2008) Optimal priority assignment for periodic tasks on
unrelated processors. In Proc. ECRTS WiP session.
Davis RI, Burns A (2007) Robust Priority Assignment for Fixed
Priority Real-Time Systems. In Proc. RTSS, pp. 3-14.
Davis RI, Burns A (2009a) Priority Assignment for Global Fixed
Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems. In Proc. RTSS, pp. 398-409.
Davis RI, Burns A (2009b) A Survey of Hard Real-Time
Scheduling Algorithms and Schedulability Analysis Techniques
for Multiprocessor Systems, Technical Report YCS-2009-443,
Dept. of Computer Science, University of York (to appear in
ACM Computing Surveys).
Davis RI, Burns A (2010) On Optimal Priority Assignment for
Response Time Analysis of Global Fixed Priority Pre-emptive
Scheduling in Multiprocessor Hard Real-Time Systems.
Department of Computer Science, University of York, Technical
Report YCS-2010-451.
Dhall SK, Liu CL (1978) On a Real-Time Scheduling Problem,
Operations Research, vol. 26, No. 1, pp. 127-140.
Easwaran A, Shin I, Lee I (2008) Toward Optimal Mutiprocessor
Scheduling for Arbitrary Deadline Tasks. In Proc. RTSS WiP pp.
1-4.
Fisher N, Baruah SK (2006) Global Static-Priority Scheduling of
Sporadic Task Systems on Multiprocessor Platforms. In Proc.
IASTED International Conference on Parallel and Distributed
Computing and Systems.
Goossens J, Funk S, Baruah SK, (2003) Priority-driven
scheduling of periodic task systems on multiprocessors. Real
Time Systems, 25(2–3):187–205.
Guan N, Stigge M, Yi W, Yu G (2009) New Response Time
Bounds for Fixed Priority Multiprocessor Scheduling. In
proceedings of the Real-Time Systems Symposium, pp. 388-397.
Lauzac S, Melhem R, Mosse D (1998) Comparison of global and
partitioning schemes for scheduling rate monotonic tasks on a
multiprocessor. In Proc. of the EuroMicro Workshop on Real-
Time Systems, pp. 188–195.
Liu CL (1969) Scheduling algorithms for multiprocessors in a
hard real-time environment. JPL Space Programs Summary, vol.
37-60, pp. 28-31.
Liu CL, Layland JW (1973) Scheduling algorithms for
multiprogramming in a hard-real-time environment, Journal of
the ACM, 20(1): 46-61.
Leteinturier P (2007) Multi-Core Processors: Driving the
Evolution of Automotive Electronics Architectures. In
embedded.com 16/09/2007.
Leung JY-T, Whitehead J (1982) On the complexity of fixed-
priority scheduling of periodic real-time tasks. Performance
Evaluation, 2(4): 237-250.
Lundberg L (2002) Analyzing Fixed-Priority Global
Multiprocessor Scheduling. Eighth IEEE Real-Time and
Embedded Technology and Applications Symposium.
Rosenburg B (2009) Product Focus: Software. In Avionics
Magazine, 1st Oct. 2009.
Serlin O (1972) Scheduling of time critical processes. In
proceedings AFIPS Spring Computing Conference, pp 925-932.

