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Abstract 
This paper is an extended version of a paper that 

appeared in the proceedings of the IEEE Real-Time 
Systems Symposium 2009. This paper has been updated 
with respect to advances made in schedulability analysis, 
and contains a number of significant additional results. 

The paper addresses the problem of priority 
assignment in multiprocessor real-time systems using 
global fixed task-priority pre-emptive scheduling. 

We prove that Audsley’s Optimal Priority Assignment 
(OPA) algorithm, originally devised for uniprocessor 
scheduling, is applicable to the multiprocessor case, 
provided that three conditions hold with respect to the 
schedulability tests used. Our empirical investigations 
show that the combination of optimal priority assignment 
policy and a simple compatible schedulability test is highly 
effective in terms of the number of tasksets deemed to be 
schedulable.  

We also examine the performance of heuristic priority 
assignment policies such as Deadline Monotonic, and an 
extension of the TkC priority assignment policy called 
DkC that can be used with any schedulability test. Here we 
find that Deadline Monotonic priority assignment has 
relatively poor performance in the multiprocessor case, 
while DkC priority assignment is highly effective. 

Keywords: Real-Time, multiprocessor, multicore, 
optimal priority assignment; heuristic priority assignment; 
global scheduling; fixed priority; taskset generation; 
schedulability analysis. 

Extended version 
This paper is an expanded version of “Priority Assignment 
for Global Fixed Priority Pre-emptive Scheduling in 
Multiprocessor Real-Time Systems” (Davis and Burns, 
2009a), which appeared in the proceedings of the IEEE 
Real-Time Systems Symposium (RTSS) 2009. This paper 
updates and extends that work as follows: 
o Research by Guan et al. (2009) also published in 

RTSS 2009 improved upon the response time analysis 
(RTA) test of Bertogna and Cirinei (2007) for global 
fixed priority scheduling used by Davis and Burns 
(2009a). Here, we integrate these improvements into 
our research on priority assignment. 

o We provide formal proof (Theorem 1) of a key 
observation made by Guan et al. (2009) concerning 

the pattern of task execution that results in the worst-
case response time of a task under global fixed 
priority pre-emptive scheduling. Our proof applies to 
the general case, and is not limited in scope to the 
sufficient analysis given by Guan et al. (2009). 

o We introduce an improved version of the polynomial 
time schedulability test of Bertogna et al. (2005) by 
limiting the carry-in interference using the approach 
of Guan et al. (2009). 

o We update our analysis of which schedulability tests 
are compatible with Audsley’s Optimal Priority 
Assignment (OPA) algorithm (Audsley, 1991, 2001) 
with respect to these improved schedulability tests, 
and also the tests of Fisher and Baruah (2006), and 
Baruah and Fisher (2008). 

o We derived a pseudo-schedulability condition that 
dominates the response time analysis of Guan et al. 
(2009). We show that this condition is compatible 
with the OPA algorithm. 

o We update our empirical results to cover the improved 
schedulability tests, and also the pseudo-
schedulability condition which provides an upper 
bound on the performance of the response time 
analysis of Guan et al. (2009) combined with any 
priority assignment policy. We also provide results for 
tasksets with implicit deadlines as well as those for 
tasksets with constrained deadlines. Further, we add a 
comparison with the response time schedulability test 
for global EDF given by Bertogna and Cirenei (2007). 

o Finally, in Appendix A, we consider alternative 
heuristic priority assignment policies based on RM-
US{ς } (Andersson et al., 2001) and SM-US{ς } 
(Andersson, 2008). 

1. Introduction 
Real-time embedded systems are found in many 

diverse application areas including; automotive 
electronics, avionics, space systems, telecommunications, 
and consumer electronics. In all of these areas, there is 
rapid technological progress. Companies building 
embedded real-time systems are driven by a profit motive. 
To succeed, they aim to meet the needs and desires of their 
customers by providing systems that are more capable, 
more flexible, and more effective than their competition, 
and by bringing these systems to market earlier. This 
desire for technological progress has resulted in a rapid 
increase in both software complexity and processing 



demands. To address these demands for increased 
processor performance, silicon vendors no longer 
concentrate on increasing processor clock speeds, as this 
approach has lead to problems with high power 
consumption and the need for excessive heat dissipation. 
Instead, there is now an increasing trend towards using 
multiprocessor platforms for high-end real-time 
applications. In Avionics (Rosenburg, 2009), Automotive 
Electronics (Leteinturier, 2007), and Space systems, this 
trend is driven by the capability of multicore devices to 
significantly reduce size, weight and power requirements. 

Approaches to multiprocessor real-time scheduling, 
can be categorised into two broad classes: partitioned and 
global. Partitioned approaches allocate each task to a 
single processor, dividing the multiprocessor scheduling 
problem into one of task allocation (bin-packing) followed 
by uniprocessor scheduling. In contrast, global approaches 
allow tasks to migrate from one processor to another at 
run-time. Real-time scheduling algorithms can be 
categorised into three classes based on when priorities can 
change: fixed task-priority (all invocations, or jobs, of a 
task have the same priority), fixed-job priority and 
dynamic-priority. 

In this paper, we focus on priority assignment policies 
for global fixed task-priority pre-emptive scheduling, 
which for brevity we refer to as global FP scheduling. 
1.1. Related work 

In the context of uniprocessor fixed priority 
scheduling, there are three fundamental results regarding 
priority assignment. Serlin (1972) and Liu and Layland 
(1973) showed that Rate Monotonic priority ordering 
(RMPO) is optimal for independent synchronous periodic 
tasks (that share a common release time) that have implicit 
deadlines (equal to their periods). Leung and Whitehead 
(1982) showed that Deadline Monotonic priority ordering 
(DMPO) is optimal for independent synchronous tasks 
with constrained deadlines (less than or equal to their 
periods). Audsley (1991, 2001) devised an optimal priority 
assignment (OPA) algorithm that solved the problem of 
priority assignment for asynchronous tasksets, and for 
tasks with arbitrary deadlines (which may be greater than 
their periods). 

In the context of multiprocessor global FP scheduling, 
work on priority assignment has focussed on 
circumventing the so called “Dhall effect”. Dhall and Liu 
(1978) showed that under global FP scheduling with 
RMPO, a set of periodic tasks with implicit deadlines and 
total utilisation just greater than 1 can be unschedulable on 
m processors. For this problem to occur at least one task 
must have a high utilisation. 

Andersson and Jonsson (2000b) designed the TkC 
priority assignment policy to circumvent the Dhall effect. 
TkC assigns priorities based on a task’s period ( iT ) minus 
k times its worst-case execution time ( iC ), where k is a 
real value computed on the basis of the number of 

processors. Via an empirical investigation, Andersson and 
Jonsson showed that TkC is an effective priority 
assignment policy for periodic tasksets with implicit 
deadlines. 

Andersson et al. (2001) gave a utilisation bound for 
global FP scheduling of periodic tasksets with implicit 
deadlines using the RM-US{ς } priority assignment 
policy. RM-US{ς } gives the highest priority to tasks with 
utilisation greater than a threshold ς . Andersson and 
Jonsson (2003) showed that the maximum utilisation 
bound for global FP scheduling of such tasksets is 

mm 41.0)12( ≈− , when priorities are defined as a scale 
invariant function of worst-case execution times and 
periods. 

Bertogna et al. (2005) extended the work of Andersson 
et al. (2001) to sporadic tasksets with constrained 
deadlines forming the DM-DS{ς } priority assignment 
policy. DM-DS{ς } gives the highest priority to at most 

1−m  tasks with densities greater than the threshold ς , 
and otherwise uses DMPO. Bertogna et al. (2005) 
provided a density-based schedulability test for DM-
DS{ς }. Andersson (2008) proposed a form of Slack 
Monotonic priority assignment called SM-US{ς }. Using 
a threshold of )53/(2 + , SM-US{ς } has a utilisation 
bound of  mm 382.0)53/(2 ≈+  for sporadic tasksets 
with implicit-deadlines. 

More sophisticated schedulability tests for global FP 
scheduling of sporadic tasksets with constrained and 
arbitrary deadlines have been developed using analysis of 
response times and processor load. 

Andersson and Jonsson (2000a) gave a simple response 
time upper bound applicable to tasksets with constrained-
deadlines. Baker (2003) developed a fundamental 
schedulability test strategy, based on considering the 
minimum amount of interference in a given interval that is 
necessary to cause a deadline to be missed, and then taking 
the contra-positive of this to form a sufficient 
schedulability test. This basic strategy underpins an 
extensive thread of subsequent research into schedulability 
tests for global EDF (Baker and Baruah, 2009; Bertogna, 
2007; Baruah and Baker, 2009; Baruah et al., 2009), and 
global FP scheduling (Bertogna et al., 2005, 2009; Baker, 
2006; Fisher and Baruah , 2006; Baruah and Fisher, 2008; 
Guan et al., 2009). 

Baker’s work was subsequently built upon by Bertogna 
et al. (2005), and Bertogna and Cirinei (2009). They 
developed sufficient schedulability tests for: (i) any work 
conserving algorithm, (ii) global EDF, and (iii) global FP 
scheduling based on bounding the maximum workload in a 
given interval. This basic approach was extended to form 
an iterative schedulability test using the computed slack 
for each task to limit the amount of carry-in interference 
and hence to calculate a new value for the slack. Bertogna 
and Cirinei (2007) adapted this approach to iteratively 
compute an upper bound on the response time of each task, 
using the upper bound response times of other tasks to 



limit the amount of interference considered. 
Guan et al. (2009) extended the response time analysis 

of Bertogna and Cirinei (2007), limiting the amount of 
carry-in interference using ideas from Baruah (2007). 

Global multiprocessor scheduling is intrinsically a 
much more difficult problem than uniprocessor scheduling 
due to the simple fact that a task can only use one 
processor at a time, even when several are free (Liu, 
1969). This restriction manifests itself as the critical 
instant effect (Lauzac et al., 1998), where simultaneous 
release of all tasks does not necessarily lead to worst-case 
response times. As a result, to the best of our knowledge, 
no exact tests are currently known for global FP 
scheduling of sporadic tasksets. Exact tests are only known 
for the strictly periodic case (Cucu and Goossens, 2006, 
2007). 

For an extensive survey of multiprocessor scheduling, 
the interested reader is referred to (Davis and Burns, 
2009b). 
1.2. Intuition and motivation 

The research described in this paper is motivated by 
the need to close the large gap that currently exists 
between the best known approaches to multiprocessor real-
time scheduling for sporadic tasksets with constrained 
deadlines and what may be possible as indicated by 
feasibility / infeasibility tests. We hypothesise that a key 
factor in closing this gap is priority assignment. The 
intuition behind our work is the idea that for fixed priority 
scheduling, finding an appropriate priority ordering is as 
important as using an effective schedulability test. 

In the simulation chapter of his thesis, Bertogna 
(2007) showed that for sporadic tasksets with constrained 
deadlines, the response time test given in (Bertogna and 
Cirinei, 2007) for global FP scheduling – using DMPO, 
outperformed all other tests known at the time, including 
those for global FP, global EDF, and EDZL (Cirinei and 
Baker 2007, Baker et al., 2008); a minimally dynamic 
global scheduling algorithm that dominates global EDF. 
While DMPO is known to be an optimal priority 
assignment policy for the equivalent uniprocessor case 
(Leung and Whitehead, 1982), this optimality does not 
extend to multiprocessors. 

In this paper, we prove that Audsley’s Optimal Priority 
Assignment (OPA) algorithm (Audsely, 1991, 2001), 
originally devised for uniprocessor scheduling, is 
applicable to the multiprocessor case provided that the 
schedulability test used meets three simple conditions. 
These conditions allow us to classify schedulability tests 
for global FP scheduling into two categories: OPA-
compatible and OPA-incompatible. We show via an 
empirical investigation that optimal priority assignment 
combined with a polynomial time OPA-compatible 
schedulability test can be significantly more effective in 
terms of the number of tasksets deemed schedulable, than 
using a state-of-the-art, pseudo-polynomial-time OPA-

incompatible schedulability test with DMPO. Further, we 
build on the work of Andersson and Jonsson (2000b), 
developing heuristic priority assignment policies: D-
CMPO and DkC that are applicable to any schedulability 
test. Our empirical studies show that DkC significantly 
outperforms DMPO, giving close to optimal results. 
1.3. Organisation 

The remainder of the paper is organised as follows: 
Section 2 describes the terminology, notation and system 
model used. Section 3 describes sufficient tests for global 
FP scheduling. Section 4 discusses both optimal and 
heuristic approaches to priority assignment. Section 5 
outlines an unbiased method of taskset generation based 
on techniques developed for the uniprocessor case. Section 
6 presents an empirical investigation into the effectiveness 
of priority assignment policies and sufficient 
schedulability tests. Finally, Section 7 concludes the paper. 

2. System model, terminology and notation 
In this paper, we are interested in global FP scheduling 

of an application on a homogeneous multiprocessor system 
comprising m identical processors. The application or 
taskset is assumed to comprise a static set of n tasks. 
Before the taskset can be scheduled, a priority assignment 
policy is used to assigned a unique static priority i, from 1 
to n (where n is the lowest priority) to each task. For 
convenience of notation, each task iτ  is identified by its 
unique priority i. 

We are interested in two task models, referred to as 
periodic and sporadic. In both models, tasks give rise to a 
potentially infinite sequence of jobs. In the periodic task 
model, the jobs of a task arrive strictly periodically, 
separated by a fixed time interval. In the sporadic task 
model, each job of a task may arrive at any time once a 
minimum inter-arrival time has elapsed since the arrival of 
the previous job of the same task. 

Each task iτ  is characterised by: its relative deadline 
iD , worst-case execution time iC , and minimum inter-

arrival time or period iT . The utilisation iU  of each task 
is given by ii TC / . A task’s worst-case response time iR  
is defined as the longest time from a task arriving to it 
completing execution. 

It is assumed unless otherwise stated that all tasks have 
constrained deadlines ( ii TD ≤ ). The tasks are assumed to 
be independent and so cannot be blocked from executing 
by another task other than due to contention for the 
processors. Further, it is assumed that once a task starts to 
execute it will not voluntarily suspend itself. 

Intra-task parallelism is not permitted; hence, at any 
given time, each job may execute on at most one 
processor. As a result of pre-emption and subsequent 
resumption, a job may migrate from one processor to 
another. The cost of pre-emption, migration, and the run-
time operation of the scheduler is assumed to be subsumed 
into the worst-case execution time of each task. 



2.1. Feasibility, schedulability and optimality 
A taskset is referred to as feasible if there exists a 

scheduling algorithm that can schedule the taskset without 
any deadlines being missed. Further, we refer to a taskset 
as being global FP feasible if there exists a priority 
ordering under which the taskset is schedulable using 
global FP scheduling. 

In systems using global FP scheduling, it is useful to 
separate the two concepts of priority assignment and 
schedulability testing. The priority assignment problem is 
one of determining the relative priority ordering of a set of 
tasks. Given a taskset with some priority ordering, then the 
schedulability testing problem involves determining if the 
taskset is schedulable with that priority ordering. Clearly 
the two concepts are closely related. For a given taskset, 
there may be many priority orderings that are 
unschedulable, and just a few that are schedulable. 

A schedulability test S can be classified as follows. 
Test S is said to be sufficient if all of the priority ordered 
tasksets that it deems schedulable are in fact schedulable. 
Similarly, test S is said to be necessary if all of the priority 
ordered tasksets that it deems unschedulable are in fact 
unschedulable. Finally, test S is referred to as exact if it is 
both sufficient and necessary.  

The concept of an optimal priority assignment policy 
can be defined with respect to a specific schedulability test 
S:  
Definition 1: Optimal priority assignment policy: A 
priority assignment policy P is referred to as optimal with 
respect to a schedulability test S and a given task model, if 
and only if there are no tasksets that are compliant with the 
task model that are deemed schedulable by test S using 
another priority assignment policy, that are not also 
deemed schedulable by test S using policy P. 

We note that the above definition is applicable to both 
sufficient (and not necessary) schedulability tests and 
exact schedulability tests. 

An optimal priority assignment policy for an exact 
schedulability test facilitates classification of all global FP 
feasible tasksets compliant with a particular task model. 
For example, for periodic tasksets, Cucu and Goossens 
(2006, 2007) showed that exact schedulability can be 
determined by simulating the schedule over an interval 
related to the hyperperiod1 of the taskset. For this exact 
test the only known optimal priority assignment policy 
involves checking all n! possible priority orderings (Cucu, 
2008). Combining the two, it is theoretically possible, but 
computational intractable, to determine if any given 
periodic taskset is global FP feasible. 

Using an optimal priority assignment policy for a 
sufficient (but not necessary) test S we cannot classify all 
global FP feasible tasksets, due to the fact that the test is 

                                                 
1 The hyperperiod of a taskset is the least common multiple of the task 
periods.  

not exact. However, optimal performance is still provided 
with respect to the limitations of the test itself. For 
example, the set Y of all tasksets that are deemed 
schedulable by a sufficient test S using its optimal priority 
assignment policy is a superset of the set Z of all tasksets 
that are deemed schedulable by test S using any other 
priority assignment policy. Further due to fact that the test 
is not exact, Y is a strict subset of the set G containing all 
global FP feasible tasksets ( ZYG ⊇⊃ ). 

The concept of comparability relates to the priority 
ordered tasksets that are deemed schedulable by different 
schedulability tests. There are three possibilities: 
1. Dominance: Schedulability test S is said to dominate 

test V, if all of the priority ordered tasksets that are 
schedulable according to test V are also schedulable 
according to test S, and priority ordered tasksets exist 
that are schedulable according to test S, but not 
according to test V. 

2. Equivalence: Schedulability tests S and V are 
equivalent if all of the priority ordered tasksets that 
are schedulable according to test S are also 
schedulable according to test V, and vice-versa. 

3. Incomparable: Priority ordered tasksets exist that are 
schedulable according to test S, but not according to 
test V and vice-versa. 

3. Schedulability tests 
In this section, we outline two sufficient schedulability 

tests for global fixed priority scheduling of sporadic 
tasksets. The first was developed by Bertogna et al (2009) 
and uses deadline analysis. The second was developed by 
Bertogna and Cirinei (2007) and uses response time 
analysis. Subsequently, the response time test was 
improved by Guan et al. (2009), using ideas from (Baruah, 
2007) which limit the amount of carry-in interference. 

Deadline 
miss

rk Dk dk

τk τk τk

IUB > Dk - Ck τk

Other tasks

 
Figure 1: Problem window 

All of these schedulability tests are based on the 
fundamental strategy derived by Baker (2003), the outline 
of which is as follows: 
1. Consider an interval referred to as the problem 

window, at the end of which a deadline is missed, for 
example the interval of length kD  from the arrival to 
the deadline of some job of task kτ , see Figure 1. 



2. Establish a condition necessary for the job to miss its 
deadline, for example, all m processors executing 
other tasks for more than kk CD −  during the interval. 

3. Derive an upper bound UBI  on the maximum 
interference in the interval due to other tasks. 

4. Form a necessary unschedulability test; i.e. an 
inequality between UBI  and the amount of execution 
necessary for a deadline miss, then negate this 
inequality to form a sufficient schedulability test. 

Bertogna et al. (2009) derived a simple sufficient test 
using the above approach, by considering the maximum 
amount of interference that could occur in the problem 
window due to each higher priority task. This maximum 
interference occurs when the first job of the higher priority 
task in the problem window starts executing at the start of 
the problem window, and completes at its deadline, with 
all subsequent jobs executing as early as possible – see 
Figure 2. 

 
Figure 2: Interference in an interval 

Bertogna et al. (2009) showed that )(LW D
i  is an upper 

bound on the workload of task iτ  in an interval of length 
L: 
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If task kτ  is schedulable, then an upper bound on the 
interference due to a higher priority task iτ  in an interval 
of length kD  is given by2: 
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D
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D
i CDDWCDI   (3) 

Note, the ‘+1’ term in Equation (3) is a result of the 
approach to time representation3 used in (Bertogna et al., 
2009) and also in this paper. 

A sufficient schedulability test for each task kτ  is then 
given by the following inequality: 
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2 Dk and Ck are included as parameters to show the similarity with 
subsequent response time equations, and to make clear the dependency 
on these values. This dependency is relevant to the discussion of optimal 
priority assignment in Section 4 
3 Time is represented by non-negative integer values, with each time 
value t viewed as representing the whole of the interval [t, t+1). This 
enables mathematical induction on clock ticks and avoids confusion with 
respect to end points of execution. 

where hp(k) refers to the set of tasks with priorities higher 
than k. Note we have re-written Equation (4) in a different 
form from that presented by Bertogna et al. (2009) for ease 
of comparison with the schedulability test given by 
Bertogna and Cirinei (2007). We refer to Equation (4) as 
the “DA test”. 
 Bertogna and Cirinei (2007) extended the method 
described above to iteratively compute an upper bound 
response time UB

kR  for each task, using the upper bound 
response times of higher priority tasks to limit the amount 
of interference considered. This extended approach applies 
the same logic as (Bertogna et al., 2009), while 
recognising that the latest time that a task can execute is 
when it completes with its worst-case response time rather 
than at its deadline. 

Below, we give the schedulability test for this method. 
Note we have simplified the equations given by Bertogna 
and Cirinei (2007) to remove the slack terms and use 
upper bound response times directly. This is possible for 
global FP scheduling as the response times computed are 
unaffected by lower priority tasks4. 

Taking upper bound response times into account, an 
upper bound )(LW R

i  on the workload of task iτ  in an 
interval of length L is given by: 

))(,min()()( i
R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++=  (5) 

where )(LN R
i  is given by: 

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −+
=

i

i
UB

R
i T

CRL
LN i)(       (6) 

If task kτ  is schedulable, then an upper bound on the 
interference due to a higher priority task iτ  in an interval 
of length UB

kR  is given by: 
)1),(min(),( +−= k

UB
k
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R
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R
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An upper bound on the response time of each task kτ  
can then be found via the following fixed point iteration 
(Theorem 7 in (Bertogna and Cirinei, 2007)). 
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Iteration starts with k
UB
k CR = , and continues until the 

value of UB
kR  converges or until k

UB
k DR > , in which case 

task kτ  is unschedulable. We refer to Equation (8) as the 
“RTA test”. 

Guan et al. (2009) extended the response time analysis 
of Bertogna and Cirinei (2007), limiting the amount of 
‘carry-in’ interference (see Figure 3) using ideas from 
(Baruah, 2007). 

An observation following from the mathematical 
analysis of Guan et al. (2009) concerns the pattern of task 
execution that results in the largest response time upper 
bound UB

kR , for a job of task kτ  under global FP 
scheduling, computed using the sufficient response time 
                                                 
4 Bertogna and Cirinei (2007) also investigated global EDF scheduling 
and the slack terms are necessary in that case. 



analysis given in (Guan et al., 2009). We re-state this 
observation in Theorem 1 and provide a formal proof that 
it holds for exact response times. 

To determine the exact worst-case response time of 
task kτ , we potentially need to consider all possible 
patterns of job releases for high priority tasks. We note 
that as the times at which jobs of higher priority tasks 
execute are unaffected by the releases times and execution 
times of jobs of lower priority tasks, we can independently 
consider all possible alignments of a release of a job of 
task kτ  with respect to those patterns of higher priority 
execution. (For a constrained deadline task kτ , we need 
only consider one job of kτ ). 

Let us assume that all possible patterns of job releases 
of higher priority tasks (i.e. those in the set hp(k)) occur 
along a single discrete timeline. We can classify points on 
this timeline as belonging to the set )(kΨ  as follows: time 
point )(kt Ψ∈  if and only if all m processors are busy 
executing tasks in hp(k) in the interval ]1,[ +tt , and during 
the preceding time interval ],1[ tt −  at least one processor 
was not occupied by a higher priority task. In the 
following, we use t to refer to time points that are 
members of the set )(kΨ  ( )(kt Ψ∈ ) and x to refer to time 
points that are not members of the set ( )(kx Ψ∉ ). 
Theorem 1: (Release time leading to the worst-case 
response time of task kτ  under global FP scheduling). For 
a sporadic task system scheduled under global FP 
scheduling on a multiprocessor, and a timeline including 
all valid patterns of job releases for higher priority tasks, 
there exists a time )(kt Ψ∈  (i.e. a time t when all m 
processors are busy executing tasks in hp(k) during the 
interval ]1,[ +tt , and during the preceding time interval 

],1[ tt −  at least one processor was not occupied by a 
higher priority task), such that release of task kτ  at time t 
results in the worst-case response time. 
Proof: We show that for every time )(kx Ψ∉ , there exists 
a time )(kt Ψ∈  such that the response time of a job of 
task kτ  released at time t is at least as large as the 
response time of a job of task kτ  released at time x. There 
are two possibilities to consider: 
Case 1: During the time interval ]1,[ +xx  all m processors 
are busy executing higher priority tasks, and have been 
occupied in this way since some time )(kt Ψ∈ . As all m 
processors are occupied during the interval ],[ xt , we may 
move the release time of the job of task kτ  back from time 
x to time t without changing its finishing time. The 
response time of the job is therefore greater when it is 
released at time t than when it is released at time x. 
Case 2: During the interval ]1,[ +xx  not all m processors 
are busy executing higher priority tasks. The next time at 
which they will be occupied in this way is some time 

)(kt Ψ∈ . As not all m processors are occupied during the 
interval ],[ tx  the job of task kτ  must be executing during 
this interval. Moving the release time of the job forward 
from time x to time t must therefore increase its finishing 

time by at least t-x. Hence the job’s response time is at 
least as great when released at time t as it is when released 
at time x 
□ 
Corollary 1: Theorem 1 implies that in the worst-case 
scenario for task kτ , at most m-1 higher priority tasks can 
contribute workload due to jobs that are released strictly 
prior to the start of the interval of interest (so called carry-
in jobs) see Lemma 1 in (Guan et al., 2009). 

Recall that Bertogna and Cirinei (2007) showed that if 
task kτ  is schedulable, then an upper bound on the 
interference due to a higher priority task iτ  with a carry-in 
job, in an interval of length UB

kR  is given by ),( k
UB
k

R
i CRI  

(Equation (7)), see Figure 3 below. 

 
Figure 3: Interference in an interval with carry-in 

However if task iτ  does not have a carry-in job, then 
Guan et al. (2009) showed that the worst-case interference 
occurs in the scenario shown in Figure 4, and is given by: 
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Figure 4: Interference in an interval: no carry-in 

The difference between the two interference terms is: 
),(),(),( k
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RDIFF
i CRICRICRI −=−  (12) 

Using this result, Guan et al. (2009) improved upon the 
response time test of Bertogna and Cirinei (2007) as 
follows: 
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 (13) 
where Max(k, m-1) is the set of m-1 tasks in hp(k) that 
have the largest values of ),( k

UB
k

DIFF
i CRI . We refer to 

the schedulability test given by Equation (13) as the 
“RTA-LC test” (Response Time Analysis with Limited 



Carry-in). We note that the RTA-LC test reduces to the 
RTA test if the ),( k

UB
k

RDIFF
i CRI −  term is included for all 

of the higher priority tasks, rather than just those with the 
m-1 largest values. 

The observation by Guan et al. (2009), restated in 
Theorem 1, means that the technique of limiting 
interference due to carry-in jobs can be applied to an 
interval of length kD , and hence to the DA test of 
Bertogna et al. (2009), giving the following sufficient 
schedulability test for each task kτ : 
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where: 

),(),(),( kk
NC
ikk

D
ikk

DDIFF
i CDICDICDI −=−  (15) 

and ),( kk
D
i CDI  and ),( kk

NC
i CDI  are given by 

Equations (3) and (9) respectively. We refer to the 
schedulability test given by Equation (14) as the “DA-LC 
test” (Deadline Analysis with Limited Carry-in). We note 
that the DA-LC test reduces to the DA test if the 

),( kk
DDIFF

i CDI −  term is included for all of the higher 
priority tasks, rather than just those with the m-1 largest 
values. 
3.1. An upper bound on the RTA-LC test 

In this section, we derive a pseudo-schedulability 
condition, called the C-RTA condition that dominates the 
RTA-LC test. It is important to note that the C-RTA 
condition is not a schedulability test. It may deem some 
priority ordered tasksets schedulable that are in fact 
unschedulable. 

The C-RTA5 condition is formed from Equation (13) 
by using the smallest possible value that the response time 
upper bound of each higher priority task could take (i.e. by 
using iC  instead of UB

iR  in Equations (5) and (6)). We 
observe that as Equation (5) is monotonically non-
decreasing in UB

iR  and the minimum possible value for 
UB
iR  is iC , the C-RTA condition dominates the RTA-LC 

test. Thus the C-RTA condition forms an upper bound on 
task schedulability under the RTA-LC test. We will return 
to this point in Sections 4 and 6. 
3.2. Complexity and comparability 

We note that the RTA and RTA-LC tests (and the C-
RTA condition) are pseudo-polynomial in complexity, 

)( max
2 DnO  for a taskset of cardinality n, with longest 

deadline maxD , while the DA and DA-LC tests are 
polynomial in complexity, )( 2nO . 

The following comparability relationships hold 
between the various schedulability tests, shown in Figure 
5: 
(i) the RTA-LC test given by Equation (13) 

                                                 
5 The C-RTA condition is the same with or without limiting carry-in 
interference, hence we drop the “-LC”. 

dominates the RTA test, Equation (8); 
(ii) the DA-LC test given by Equation (14) dominates 

the DA test, Equation (4); 
(iii) the RTA-LC test dominates the DA-LC test; 
(iv) the RTA test dominates the DA test; 
(v) the DA-LC and RTA tests are incomparable. 
Figure 5 also depicts the set of priority ordered tasksets 
deemed schedulable by the C-RTA condition. Note this 
includes some unschedulable tasksets.  

 
Figure 5: Comparability relationships between 

schedulability tests 
The comparability relationships between the various 
schedulability tests are illustrated by the priority ordered 
taskset given in Table 1.  

Table 1: Taskset used to illustrate the 
comparability relationships between 

schedulability tests 
Task (priority) C D=T 

1τ  3 10 
2τ  3 10 
3τ  4 10 
4τ  4 10 
5τ  1 See text 

Table 2 gives the schedulability of the taskset in Table 1, 
according to each of the schedulability tests, assuming a 
two processor system, and a range of values for the 
deadline (and period) of the lowest priority task, 5τ . This 
simple example illustrates the four dominance 
relationships (i) to (iv) stated above, as well as the 
incomparability of the RTA and DA-LC tests. 

Table 2: Schedulability of the taskset in Table 1 
according to the four schedulability tests 

 Deadline of 5τ  
Schedulability test 10 12 15 

RTA-LC    
RTA    

DA-LC    
DA    

We observe the following interesting equivalence of the 
RTA and RTA-LC tests. 
Theorem 2: The upper bound response times computed by 



the RTA test (Equation (8)) and the RTA-LC test 
(Equation (13)) are the same for the 2m highest priority 
tasks in any taskset with cardinality mn 2≥ . 
Proof: We consider two cases: 
Case 1: Tasks with priorities from 1 to m. According to 
both the RTA and RTA-LC tests, the m highest priority 
tasks all have response time upper bounds equal to their 
worst-case execution times )( k

UB
k CR = . This can be seen 

by considering the behaviour of Equations (8) and (13) 
starting with an initial value of k

UB
k CR = . The maximum 

value of ),( kk
R
i CCI  for each higher priority task iτ  is 1 

(see Equation (7)), and hence with at most m-1 higher 
priority tasks, the maximum value of the floor function in 
Equations (8) and (13) is ⎣ ⎦ 0/)1( =− mm . Hence the 
fixed point iteration immediately terminates, returning a 
value of k

UB
k CR = . 

Case 2: Tasks with priorities from m+1 to 2m. Let us 
consider the interference from each of the m highest 
priority tasks iτ , where mi ≤≤1 , on some lower priority 
task kτ , where mkm 21 ≤≤+ . From Case 1, we know 
that i

UB
i CR = . Substituting these values into Equations 

(5) and (6) reduces them to Equations (10) and (11) 
respectively. Hence, for each of the m highest priority 
tasks iτ , we have =− ),( k

RDIFF
i CLI  

0),(),( =− k
NC
ik

R
i CLICLI  for any value of L. Therefore, 

when task kτ  has a priority in the range m+1 to 2m, at 
most (2m-1) – m = m-1 tasks with priorities higher than k 
have a non-zero RDIFF

iI −  term that could contribute to 
Equation (13). Limiting the number RDIFF

iI −  terms 
included to the largest m-1 of them therefore excludes no 
non-zero terms, and so Equation (13) reduces to Equation 
(8). Hence the upper bound response times computed by 
Equation (13) and Equation (8) are the same for each task 

kτ  with priority from m+1 to 2m 
□ 
Corollary 2: The RTA test (Equation (8)) and the RTA-
LC test (Equation (13)) are equivalent for any priority 
ordered taskset with cardinality mn 2≤ . (This is why we 
needed a taskset of cardinality 5 (see Table 1) to highlight 
the differences between the RTA and RTA-LC tests, 
assuming a two processor system). 

4. Priority assignment 
Andersson and Jonsson (2000a) made the following 

observation about periodic tasksets:  
“For fixed priority pre-emptive global multiprocessor 

scheduling, there exist task sets for which the response 
time of a task depends not only on iT  and iC of its higher-
priority tasks, but also on the relative priority ordering of 
those tasks”. 

Andersson and Jonsson (2000a) concluded that even if 
an exact schedulability test were known6, then it would not 

                                                 
6 Note, such tests are now known for periodic tasksets (Cucu and 
Goossens 2006, 2007). 

be possible to use Audsley’s OPA algorithm (Audsley, 
1991, 2001) to determine the optimal priority ordering. 
While this is undoubtedly true, we believe that it has also 
lead to a common misconception that the OPA algorithm 
cannot be applied to schedulability tests for global FP 
scheduling. 

In this section, we show that the OPA algorithm is 
applicable to the multiprocessor case provided that the 
schedulability test used meets three simple conditions. 
These conditions allow us to classify schedulability tests 
for global FP scheduling into two categories: OPA-
compatible and OPA-incompatible. First we provide an 
overview of the OPA algorithm (Audsley, 1991, 2001) 
originallyderived for uniprocessor systems. 
4.1. Optimal priority assignment 

The pseudo code for the OPA algorithm, using some 
compatible schedulability test S is given below. 

Optimal Priority Assignment Algorithm 
for each priority level k, lowest first 
{ 

for each unassigned task τ 
{ 
  if τ is schedulable at priority k  

  according to schedulability test S 
  with all unassigned tasks assumed to 
  have higher priorities 

  { 
   assign τ to priority k 
   break (continue outer loop) 
  } 
} 
 return unschedulable 

} 
return schedulable 

For n tasks, the algorithm performs at most n(n+1)/2 
schedulability tests and is guaranteed to find a priority 
assignment that is schedulable according to schedulability 
test S, if one exists. This is a significant improvement over 
inspecting all n! possible priority orderings. Note that the 
OPA algorithm does not specify the order in which tasks 
should be tried at each priority level. 

For a schedulability test S to be compatible with the 
OPA algorithm, it must comply with three conditions 
stated below. These conditions refer to properties or 
attributes of the tasks which make up the taskset. Task 
properties are referred to as independent if they have no 
dependency on the priority assigned to the task. For 
example in the sporadic task model used in this paper, the 
worst-case execution time, deadline, and minimum inter-
arrival time are all independent properties of a task, while 
the worst-case response time depends on the task’s priority 
and so is a dependent property. 
Condition 1: The schedulability of a task kτ  may, 
according to test S, depend on any independent properties 
of tasks with priorities higher than k, but not on any 
properties of those tasks that depend on their relative 
priority ordering. 
Condition 2: The schedulability of a task kτ  may, 



according to test S, depend on any independent properties 
of tasks with priorities lower than k, but not on any 
properties of those tasks that depend on their relative 
priority ordering. 
Condition 3: When the priorities of any two tasks of 
adjacent priority are swapped, the task being assigned the 
higher priority cannot become unschedulable according to 
test S, if it was previously schedulable at the lower 
priority. (As a corollary, the task being assigned the lower 
priority cannot become schedulable according to test S, if 
it was previously unschedulable at the higher priority). 
We now prove the following theorem about the 
applicability of the OPA algorithm to global FP 
scheduling. Theorem 3 and its proof make no assumptions 
about the schedulability test S, save that it complies with 
Conditions 1-3.  
Theorem 3: The Optimal Priority Assignment (OPA) 
algorithm is an optimal priority assignment policy (see 
Definition 1) for any global FP schedulability test S 
compliant with Conditions 1-3. 
Proof: We prove that for every taskset X that is 
schedulable according to test S with some arbitrary priority 
ordering Q , the OPA algorithm is able to generate a 
priority ordering P that is also schedulable according to 
test S. 

In the proof, we will show that when applied to taskset 
X, each iteration k of the OPA algorithm, from priority 
level n down to 1, is able to find a task that is schedulable 
according to test S. Thus the OPA algorithm is able to 
generate a complete priority ordering P for taskset X that is 
schedulable according to test S. 

For the purposes of the proof, we refer to priority 
ordering Q  as nQ . Over the n iterations, we will 
transform nQ  into 1−nQ … 0Q , where 0Q  is identical to 
the priority ordering P generated by the OPA algorithm. 
The transformation will be such that after each iteration k 
from n down to 1, the transformed priority ordering 1−kQ  
remains schedulable according to test S, and the tasks at 
priority levels k and below are the same in 1−kQ  as in P. 

We now introduce a concise notation to aid in the 
discussion of tasks and groups of tasks within a priority 
ordering: 
o )(iQk  is the task at priority level i in priority ordering 

kQ . 
o ),( kQihep  is the set of tasks with priority higher than 

or equal to i in priority ordering kQ . 
o ),( kQihp  is the set of tasks with priority strictly 

higher than i in priority ordering kQ . 
o ),( kQilep  is the set of tasks with priority lower than 

or equal to i in priority ordering kQ . 
o ),( kQilp  is the set of tasks with priority strictly lower 

than i in priority ordering kQ . 
In the proof that follows, we use k to represent both 

the iteration of the OPA algorithm, i.e. the priority level 
examined ( so initially, k = n), and also the index for the 

transformed priority ordering. Note that priority ordering P 
is built up over the n iterations, with a task assigned at 
priority k on each iteration of the OPA algorithm. 
Unassigned tasks are assumed to have higher priority than 
the priority level currently being examined.  

The proof proceeds by iterating over values of k from 
n to 1: At the start of each iteration k, all tasks in priority 
ordering kQ  are known to be schedulable according to test 
S. 

As the tasks with lower priority than k are the same in 
both kQ  and P ( ),( kQklp = ),( Pklp  and initially 

=),( nQnlp φ=),( Pnlp ), then it follows that ),( kQkhep  
= ),( Pkhep . Given Condition 1 and the fact that kQ  is a 
schedulable priority ordering according to test S, on 
iteration k the OPA algorithm is guaranteed to find a task 
in the set of unassigned tasks (i.e. ),( Pkhep  = 

),( kQkhep ) that is schedulable at priority k according to 
test S. We note that one such task is )(kQk . The task 
chosen by the OPA algorithm is designated )(kP . 

There are two cases that need to be considered: 
1. )(kP  is the same as )(kQk , in which case no 

transformation is necessary to form priority ordering 
1−kQ  ( kk QQ =−1 ) and hence 1−kQ  is trivially a 

schedulable priority ordering. 
2. The OPA algorithm chose a different schedulable 

task; in other words )(kP  is the task at some higher 
priority level i in kQ , i.e. )(iQk . In this case, we 
transform kQ  into 1−kQ  by moving task )(iQk  down 
in priority from priority level i to priority level k and 
the tasks in kQ  at priority levels i+1 to k up one 
priority level, as illustrated in Figure 6. 

 
Figure 6 

Comparing the tasks in priority order 1−kQ  with their 
counterparts in kQ . There are effectively four groups of 
tasks to consider: 
1. ),( 1−kQihp : These tasks are assigned the same 

priorities in both kQ  and 1−kQ , given Condition 2, all 
of these tasks remain schedulable. 

2. ),(),( 11 −− ∩ kk QilepQkhp : These tasks retain the 
same partial order but are shifted up one priority level 
in 1−kQ . This shift in priority can be achieved by 
repeatedly swapping the priorities of task )(kP  and 
the task immediately below it in the priority order, 
until task )(kP  reaches priority k. Hence, given 
Condition 3, all the tasks increasing in priority, i.e. 



those in the set ),(),( 11 −− ∩ kk QilepQkhp , remain 
schedulable. 

3. Task )()()(1 kPiQkQ kk ==− : The tasks of lower 
priority than k are the same in both kQ  and P, hence 

),(),( kQkhepPkhep = . The OPA algorithm selected 
task )(kP  from the set of tasks ),( kQkhep  on the 
basis that it is schedulable at priority k with the set of 
tasks )}({),( iQQkhep kk −  = ),( 1−kQkhp  at higher 
priorities. Given Condition 1, task )()(1 kPkQk =−  is 
schedulable at priority k, irrespective of the priority 
order of the tasks in ),( 1−kQkhp  and therefore it 
remains schedulable in priority order 1−kQ . 

4. ),( 1−kQklp : These tasks are assigned the same 
priorities in both kQ  and 1−kQ . Given Condition 1 
and the fact that ),(),( 1 kk QkhepQkhep =− , all of the 
tasks in ),( 1−kQklp  remain schedulable according to 
test S. 

The above analysis shows that every task in 1−kQ  remains 
schedulable according to test S. A total of n iterations of 
the above process (for k = n down to 1) correspond to 
iteration of the OPA algorithm over all n priority levels. 
On each iteration the OPA algorithm is able to identify a 
task that is schedulable according to test S and therefore 
generate a priority ordering P that is schedulable according 
to test S 
□ 
The proof of Theorem 3 shows that compliance with 
Conditions 1-3 is sufficient for schedulability test S to be 
OPA-compatible. We now show that each of the three 
conditions is also necessary. 
Theorem 4: (Non-optimality of the OPA algorithm for 
schedulability tests that are OPA-incompatible). For a 
schedulability test S that is non-compliant with one or 
more of Conditions 1-3, the OPA algorithm may fail to 
generate a priority ordering that is deemed schedulable by 
test S, when such an ordering exists. 
Proof: 
Necessity of Condition 1: The OPA algorithm does not 
specify the priority ordering of unassigned tasks; therefore 
when determining the schedulability of a task A at priority 
k, schedulability test S is effectively free to choose any 
arbitrary priority ordering for the unassigned (higher 
priority) tasks. Let us assume that with the arbitrary 
priority ordering chosen for the unassigned tasks, task A is 
deemed schedulable at priority k, and it is therefore 
assigned to that priority level. If Condition 1 does not 
hold, then a different priority ordering later established by 
the OPA algorithm for the higher priority tasks can result 
in task A becoming unschedulable at priority k according 
to test S. In this case, the priority ordering found by the 
OPA algorithm is erroneous; it is not in fact schedulable 
according to test S. However, a different choice of 
priorities for the higher priority tasks would result in task 
A being schedulable, and thus a schedulable priority 
ordering existed, yet it was not found by the OPA-

algorithm.  
Necessity of Condition 2: If Condition 2 does not hold 
then the schedulability of a task according to test S is 
dependent on the priority order of lower priority tasks. In 
this case, the OPA algorithm could place tasks at priorities 
lower than k in an order that results in no task being 
schedulable at priority level k. Yet, if the lower priority 
tasks were placed in a different priority order, then a task 
could be found that was schedulable at priority k according 
to test S. In this case, the OPA-algorithm fails to find a 
priority ordering that is schedulable according to test S 
when such a priority ordering exists.  
Necessity of Condition 3: If Condition 3 does not hold, 
then two tasks A and B may both be schedulable according 
to test S when assigned the lowest priority; however task B 
may be unschedulable when assigned the next highest 
priority. Let us assume that the OPA algorithm arbitrarily 
chooses to assign task A to the lowest priority. In this case, 
no tasks are found that are schedulable at the next highest 
priority. Thus the OPA-algorithm fails to find a priority 
ordering that is schedulable according to test S, even 
though one exists; with task B at the lowest priority 
□ 

Condition 2 holds for all of the schedulability tests 
considered in this paper. These tests deal with pre-emptive 
scheduling of independent tasks, hence the schedulability 
of higher priority tasks is independent of lower priority 
tasks. We note that Condition 2 is important when 
considering non-pre-emptive scheduling and task models 
which permit access to mutually exclusive shared 
resources. 

We note that Theorem 3 depends on emergent 
properties of the schedulability test, and not on the specific 
properties of the underlying task model. It is therefore 
applicable to both periodic and sporadic task models. 
Conditions 1-3 enable us to classify global FP 
schedulability tests as either OPA-compatible or OPA-
incompatible. 
Theorem 5: Any exact schedulability test for a general 
periodic taskset is OPA-incompatible. 
Proof: It suffices to show that Condition 1 does not hold 
for any exact test. Consider the following synchronous 
periodic taskset with four tasks, two copies of task A = {1, 
2, 3} and two copies of task B = {2, 4, 4}, executing on a 
two processor system. (The parameters are the task’s 
worst-case execution time, deadline, and period 
respectively). Task B is schedulable at the lowest priority, 
with the other tasks in priority order A, A, B, but not 
schedulable when they are in priority order A, B, A or B, A, 
A. This can be seen by examining the schedule over the 
hyperperiod. In effect, both the exact schedulability and 
the exact response time of task B at the lowest priority 
level are dependent on the relative priority ordering of the 
higher priority tasks. As all exact schedulability tests must 
by definition provide an identical classification of all 



priority ordered tasksets as schedulable or unschedulable it 
follows that all exact schedulability tests for periodic 
tasksets are OPA-incompatible □ 
Theorem 6: The RTA test (Bertogna and Cirinei, 2007) 
(Equation (8)) for global FP scheduling of sporadic 
tasksets is OPA-incompatible. 
Proof: It suffices to show that Condition 1 does not hold 
for the RTA test. The workload )(LW R

i  (Equation (5)) 
used to determine schedulability via these tests depends on 
the response times of higher priority tasks, which in turn 
depend on the relative priority ordering of those tasks. 
This can be seen by considering the following example 
comprising four tasks: two copies of task A = {10, 20, 20}, 
task B = {10, 20, 100}, and task C = {20, 55, 55}, 
executing on a two processor system. With priority order 
A, A, B, C the taskset is deemed schedulable by the test 
with upper bounds on task response times of 10, 10, 20, 
and 55 respectively. However, if the priority order is 
instead A, B, A, C, then the copy of task A at priority 3 has 
an increased upper bound response time of 20 (it was 10 at 
priority 2). This increases its workload and interference on 
task C which is then deemed unschedulable 
□ 
Theorem 7: The RTA-LC test (Guan et al., 2009) 
(Equation (13)) for global FP scheduling of sporadic 
tasksets is OPA-incompatible. 
Proof: Follows directly from the proof of Theorem 6, 
noting that the RTA-LC and RTA tests are equivalent for 
the 4 task, 2 processor counter example used (Corollary 2) 
□ 
Theorem 8: The response time test of Andersson and 
Jonsson (2000a) (Equation (16) below) for global FP 
scheduling of sporadic tasksets is OPA-compatible: 
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Proof: It suffices to show that Conditions 1-3 hold. 
 Inspection of Equation (16) shows that the upper 
bound response time ub

kR  computed for task kτ  depends 
on the set of higher priority tasks, but not on their relative 
priority ordering, hence Condition 1 holds. 

ub
kR  (Equation (16)) has no dependency on the set of 

tasks with lower priority than k, hence Condition 2 holds. 
Consider two tasks A and B initially at priorities k and 

k+1 respectively. The upper bound response time of task B 
cannot increase when it is shifted up one priority level to 
priority k, as the only change in the response time 
computation (Equation (16)) is the removal of task A from 
the set of tasks that have higher priority than task B, hence 
Condition 3 holds 
□ 
Theorem 9: The DA test (Bertogna et al., 2009) (Equation 
(4)) for global FP scheduling of sporadic tasksets is OPA-
compatible: 

Proof: Follows the same logic as the proof of Theorem 8, 
with the upper bound response time given by the right 
hand side of Equation (4) rather than Equation (16) 
□ 
Theorem 10: The DA-LC test (Equation (15)) for global 
FP scheduling of sporadic tasksets is OPA-compatible. 
Proof: Follows the same logic as the proof of Theorem 8, 
with the upper bound response time given by the right 
hand side of Equation (14) rather than Equation (16) 
□ 
Theorem 11: The C-RTA condition is OPA-compatible. 
Proof: It suffices to show that Conditions 1-3 hold. 
 Inspection of Equation (13) and its component 
equations shows that the upper bound response time UB

kR  
computed for task kτ  depends on the set of higher priority 
tasks, and their parameters ( iC , iD , iT ) but not on their 
upper bound response times (as iC  is substituted for UB

iR  
in Equations (5) and (6)) or their relative priority ordering, 
hence Condition 1 holds. 

Equation (13) has no dependency on the set of tasks 
with priorities lower than k, hence Condition 2 holds. 

Consider two tasks A and B initially at priorities k and 
k+1 respectively. The upper bound response time of task B 
cannot increase when it is shifted up one priority level to 
priority k, as the only change in the response time 
computation (Equation (13)) is the removal of task A from 
the set of tasks that have higher priority than task B, hence 
Condition 3 holds 
□ 

As the C-RTA condition is both OPA-compatible and 
dominates the RTA-LC schedulability test, it follows that 
any taskset that is deemed unschedulable according to the 
OPA-algorithm using the C-RTA condition is guaranteed 
to also be unschedulable according to the RTA-LC test for 
every possible priority assignment. We can therefore use 
the C-RTA condition combined with the OPA algorithm to 
provide an upper bound on the potential performance of 
the RTA-LC test with optimal priority assignment.  
We observe that the processor load based schedulability 
test for global FP scheduling given by Fisher and Baruah, 
(2006) (see Theorem 2, Equation (9) of (Fisher and 
Baruah, 2006)) is OPA-compatible as the schedulability of 
each task depends only on the set of higher priority tasks, 
and not on their relative priority order. Note that the 
simpler form of that test, given by Corollary 1 of (Fisher 
and Baruah, 2006)), is applicable only to tasksets using 
DMPO. 
 The processor load based test given by Baruah and 
Fisher (2008) (see Corollary 1 of (Baruah and Fisher, 
2008)) is also OPA-compatible; however, Baruah and 
Fisher proved that DMPO is the optimal priority 
assignment policy with respect to that test. 
 Finally, the processor load based test given by Baruah 
(2009) (see Theorem 3 in (Baruah, 2009)) is applicable 
only to tasksets in DMPO. 



4.2. Heuristic priority assignment 
In this section, we investigate heuristic priority 

assignment policies. 
In his thesis, Bertogna (2007) evaluates the 

effectiveness of a number of different schedulability tests. 
Bertogna’s experiments show that using DMPO the RTA 
test for global FP scheduling outperforms all other then 
known schedulability tests for constrained deadline 
sporadic tasksets, including those for EDF and EDZL. 
Despite this, and the optimality of DMPO in the equivalent 
uniprocessor case, we are sceptical about the effectiveness 
of DMPO in the multiprocessor case.  

The intuition for an alternative priority assignment 
policy can be obtained by re-arranging Equation (4): 
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For large m, the term on the right hand side grows 
relatively slowly with each additional higher priority task. 
This suggests that ii CD −  monotonic priority ordering 
(D-CMPO) might be a useful heuristic. 

Andersson and Jonsson (2000b) investigated a similar 
priority ordering, called TkC, for implicit deadline 
tasksets. TkC assigns priorities based on the value of 

ii kCT − , where k is a real value computed on the basis of 
the number of processors, as follows: 

m
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=     (18) 

Extending this approach to tasksets with constrained 
deadlines, we form the DkC priority assignment policy 
which orders tasks according to the value of ii kCD − , 
where k is again computed according to Equation (18). 

The performance of the three heuristic priority 
assignment policies: DMPO, D-CMPO, and DkC is 
examined empirically in Section 6. 

We also developed heuristic priority assignment 
algorithms based on the DM-DS{ς } (Bertogna et al., 
2005) and SM-US{ς } (Andersson, 2008) priority 
assignment policies. These algorithms, although more 
complex, were found in general to be no more effective 
than the DkC policy. (Appendix A gives details of these 
policies and their performance). 

It is interesting to note that D-CMPO and DkC have 
some similarities with recent work on dynamic priority 
scheduling: The LEDLm algorithm proposed by Easwaran 
et al. (2008), partially schedules jobs on the basis of 
longest remaining execution time first. This has the effect 
of maximising the potential for concurrency by retaining a 
large number of incomplete jobs with short remaining 
execution times; the idea being that such jobs are easier to 
schedule than a smaller number of jobs with longer 
remaining execution times. D-CMPO and DkC incorporate 
an element of this effect, as by comparison with DMPO, 
they assign higher priorities to tasks with longer execution 
times. 

5. Taskset generation 
Empirical investigations into the effectiveness of 

priority assignment policies and schedulability tests 
require a means of generating tasksets. A taskset 
generation algorithm should be unbiased (Bini and 
Buttazzo, 2005), and ideally, it should allow tasksets to be 
generated that comply with a specified parameter setting. 
That way the dependency of priority assignment policy / 
schedulability test effectiveness on each taskset parameter 
can be examined by varying that parameter, while holding 
all other parameters constant, avoiding any confounding 
effects. 

A (naïve) unbiased method of generating tasksets of 
cardinality n and target utilisation (Ut) is as follows.  
1. Select n task utilisation values iU  at random from a 

uniform distribution over the range [0,1]. 
2. Discard the taskset if the total utilisation U is not 

within some small percentage of Ut, and generate a 
new taskset by returning to step 1. 

We note that this naive approach is not viable in practice 
due to the number of tasksets that need to be discarded. 
The UUnifast algorithm of Bini and Buttazzo (2005) 
(pseudo code given below), was devised to give the same 
unbiased distribution. Note, pow(x, y) raises x to the power 
y, and rand() returns a random number in the range [0,1] 
from a uniform distribution. 

UUnifast(n,Ut) 
{ 
  SumU = Ut; 
  for (i = 1 to n-1)  
  { 

  nextSumU = SumU * pow(rand(), 1/(n-i)); 
  U[i] = SumU – nextSumU; 
  sumU = nextSumU; 

  } 
  U[n] = SumU; 
} 

To the best of our knowledge, UUnifast has not 
previously been used in the context of multiprocessors, as 
the basic algorithm cannot generate tasksets with total 
utilisation 1>U  without the possibility that some tasks 
will have utilisation 1>iU . Instead, researchers have used 
an approach to taskset generation based on generating an 
initial taskset of cardinality m+1 at random and then 
repeatedly adding tasks to it to generate further tasksets 
until the total utilisation exceeds the available processing 
resource (Bertogna, 2007; Bertogna et al., 2009; Bertogna 
and Cirinei, 2007; Baker et al., 2008). This approach has 
the disadvantage that it effectively combines two 
variables, utilisation and taskset cardinality, and does not 
necessarily result in an unbiased distribution of task 
utilisation values. 

In the remainder of this section, we show how the 
UUnifast algorithm can be adapted to generate the tasksets 
needed to study multiprocessor systems. Inspection of the 
UUnifast algorithm shows that it is scale invariant. We can 
therefore use it to generate tasksets with U > 1 as follows: 



o The UUnifast method, with parameters n, and Ut 
(which may be > 1), is used to generate task utilisation 
values in the range [0, Ut]. 

o If a task utilisation value iU  is generated that is > 1, 
then the values produced so far, that is 1U  to iU , are 
discarded. If the total number of discarded partial 
tasksets exceeds some limit, then the algorithm exits 
and reports that it has failed, otherwise it re-starts 
generating utilisation values at 1U . 

o Once a sequence of n valid utilisation values are 
generated, the algorithm completes, reporting success. 

We refer to the above algorithm as UUnifast-Discard.  
Theorem 12: The tasksets produced by UUnifast-Discard 
are unbiased, i.e. uniformly distributed (Bini and Buttazzo, 
2005), with task utilisations in the range [0, min(Ut,1)] 
which sum to Ut. 
Proof: We prove the theorem via a geometric argument. 
Each taskset can be represented by a point on an n-1 
dimensional plane in n-dimensional space, where the co-
ordinates of the point are the utilisation values of each task 
in the taskset i.e. ( nUUUU ...,, 321 ). A uniform distribution 
of tasksets is required over the valid region of the plane. 

UUnifast produces tasksets that are uniformly 
distributed over a finite convex region Z of the n-1 
dimensional plane defined by ∑ =UtUi , UtUi ≤  and 

0≥iU . (See Figure 9 in (Bini and Buttazzo, 2005) for a 
graphical illustration). 

For UUnifast-Discard, there are two cases to consider: 
Case 1: 1≤Ut : No tasksets are discarded; hence the 
distribution of tasksets remains uniform and unbiased. 
Case 2: 1>Ut : Let Y be the convex finite region of the n-
1 dimensional plane defined by ∑ =UtUi , 1≤iU  and 

0≥iU . Note that Y is a subset of Z and so the distribution 
of tasksets produced by UUnifast over the region Y is also 
uniform and unbiased. Now, all tasksets generated with 
any 1>iU  are discarded by UUnifast-Discard. This 
corresponds to removal of all of those tasksets that are in 
region Z but not in region Y. Further, none of the tasksets 
in region Y are discarded, hence the distribution of tasksets 
over region Y remains uniform and unbiased 
□ 

An unbiased distribution of task utilisation values is 
exactly what is required to study the effectiveness of 
multiprocessor schedulability tests. Unfortunately, there is 
a drawback to the UUnifast-Discard approach. As the 
target utilisation requested increases towards n/2, then the 
number of valid tasksets (with all 1≤iU ) becomes a 
vanishingly small proportion of those generated. While 
this is clearly a limitation in theory, in practice, we 
contend that many commercial real-time systems using 
multiprocessors will have significantly more tasks than 
processors. In any case, we can simply set a pragmatic 
discard limit for UUnifast-Discard and investigate as much 
of the problem space as possible within this limit. 

Figure 7 shows the maximum taskset utilisation that 

UUnifast-Discard is able to generate, using discard limits 
of 10,100, 1000, and 10,000 respectively, plotted against 
taskset cardinality. This graph was generated empirically, 
by running the UUnifast-Discard algorithm for increasing 
values of target utilisation for each value of taskset 
cardinality until the algorithm reached the discard limit 
and was thus unable to generate the 100 tasksets required 
by the experiment in the permitted number of iterations 
(given by the discard limit multiplied by the number of 
tasksets required).  

Figure 7 shows that, UUnifast-Discard, with a discard 
limit of 1000, can be used to generate tasksets with a target 
utilisation of up to 8, (suitable for investigation of 8 
processor systems) provided that the taskset cardinality 
exceeds 14. Lower utilisation levels of 7.5 and 6.7 are 
possible with 12 and 10 tasks respectively. (Note that the 
behaviour of the UUnifast-Discard algorithm is 
independent of the number of processors). 
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Figure 7 

As we will see in the next section, the scope of this 
taskset generation method is sufficient to examine the 
effectiveness of schedulability tests over a wide range of 
interesting parameter values. 

6. Empirical investigation 
In this section, we present the results of an empirical 

investigation, examining the effectiveness of different 
priority assignment policies when used in conjunction with 
two sufficient schedulability tests: the DA-LC test 
(Equation (14)), which is OPA-compatible, and the RTA-
LC test (Equation (13)), which is OPA-incompatible. The 
priority assignment policies studied are DMPO, D-CMPO, 
DkC and the OPA algorithm (DA-LC test only). 

We also used the C-RTA condition combined with the 
OPA algorithm to determine an upper bound on the 
potential performance of the RTA-LC test for any priority 
ordering. It is however important to remember that the C-
RTA condition is not a schedulability test, it can only tell 



us which tasksets are definitely unschedulable. Some of 
the tasksets that it apparently deems schedulable may in 
fact be unschedulable. Further, the optimism inherent in 
the C-RTA condition means that the actual performance of 
the RTA-LC test assuming optimal priority assignment is 
likely to be some way below the bound shown in the 
graphs. 

We also compared the performance of the tests for 
global FP scheduling with the iterative response time test 
for global EDF scheduling given by Bertogna and Cirinei 
(2007). We refer to this test as EDF-RTA. EDF-RTA is 
arguably the most effective schedulability test currently 
available for global EDF scheduling. (We note that by 
combining a number of incomparable schedulability tests 
for global EDF scheduling including EDF-RTA, a slightly 
large number of schedulable tasksets can be detected than 
using EDF-RTA alone, see (Bertogna, 2009) for further 
details). 

Note the figures in this section are best viewed online 
in colour. 
6.1. Parameter generation 

The task parameters used in our experiments were 
randomly generated as follows: 
o Task utilisations were generated using the UUnifast-

Discard algorithm, using a discard limit of 1000. 
o Task periods were generated according to a log-

uniform distribution7 with a factor of 1000 difference 
between the minimum and maximum possible task 
period. This represents a spread of task periods from 
1ms to 1 second, as found in most hard real-time 
applications. The log-uniform distribution was used as 
it generates an equal number of tasks in each time 
band (e.g. 1-10ms, 10-100ms etc.), thus providing 
reasonable correspondence with real systems. 

o Task execution times were set based on the utilisation 
and period selected: iii TUC = . 

o Task deadlines were assigned according to a uniform 
random distribution, in the range ],[ ii TC . 

In each experiment, the taskset utilisation (x-axis value) 
was varied from 0.025 to 0.975 times the number of 
processors in steps of 0.025. For each utilisation value, 
1000 valid tasksets were generated and the schedulability 
of those tasksets determined using various combinations of 
priority assignment policy and schedulability test. The 
graphs plot the percentage of tasksets generated that were 
deemed schedulable in each case. 
6.2. Experiment 1 (Priority assignment) 

In this experiment we investigated the impact of each 
of the priority assignment policies on the percentage of 
tasksets deemed schedulable by the different 
schedulability tests. Figures 7 to 10 show this data for 2, 4, 
8, and 16 processors respectively. In each case, the number 
                                                 
7 The log-uniform distribution of a variable x is such that ln (x) has a 
uniform distribution. 

of tasks was set to 5 times the number of processors. 
From the graphs, we can see that the priority 

assignment policy used has a significant impact on overall 
performance, and that the more processors there are, the 
larger this impact becomes. There are four broad solid 
lines on each graph depicting the performance of the DA-
LC test for DMPO (lowest performance with respect to 
this schedulability test), D-CMPO, DkC, and OPA 
(highest performance / optimal with respect to this 
schedulability test). The uppermost (thin) solid line on 
each graph represents the C-RTA condition combined with 
OPA. This line upper bounds the potential performance of 
the state-of-the-art RTA-LC schedulability test combined 
with optimal priority assignment. Note the lines on the 
graphs appear in the order given in the legend. 

In the 16 processor case (Figure 11), using DMPO, 
approx. 50% of the tasksets are unschedulable according to 
the DA-LC test at a utilisation level of 4.4 (= 0.28m); 
however, using the OPA algorithm, approx. 50% of the 
tasksets are schedulable according to the same test at a 
utilisation level of 9.6 (= 0.6m). Hence, in this case, 
optimal priority assignment effectively enables 118% 
better utilisation of the processing resource than DMPO. 
D-CMPO is more effective than DMPO, and the DkC 
priority assignment policy is notably significantly more 
effective again. Note, the performance of DkC and D-
CMPO are identical in the 2 processor case (Figure 8) as k 
= 1 in Equation (18). Comparison between the four figures 
shows that the difference between OPA and DMPO 
becomes considerably larger as the number of processors 
increases. 

It is clear from the graphs that the difference in 
performance between the DA-LC test (solid lines) and the 
RTA-LC test (dashed lines) is much less significant than 
the difference between the best and the worst priority 
assignment policies studied. 

It is noticeable that the EDF-RTA test for global EDF 
scheduling results in performance that is similar to that of 
the DA-LC test for global FP scheduling using DMPO in 
the 16 processor case (Figure 11), and generally inferior in 
the case of fewer processors. (The two tests are 
incomparable). 

It is clear from the graphs that the performance of the 
DA-LC test combined with the OPA algorithm is 
relatively close to the upper bound on the potential 
performance of the RTA-LC test with optimal priority 
assignment, given by the C-RTA condition.  
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Figure 8: (2 processors, 10 tasks) 
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Figure 9: (4 processors, 20 tasks) 
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Figure 10: (8 processors, 40 tasks) 
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Figure 11: (16 processors, 80 tasks) 

We repeated the same experiment for tasksets with 
implicit deadlines, using exactly the same parameter 
settings for taskset generation, save that task deadlines 
were set equal to their periods. In this case, DMPO 
reduces to Rate Monotonic priority ordering (Serlin, 1972; 
Liu and Layland, 1973), and DkC reduces to TkC 
(Andersson and Jonsson, 2000a). 

Figures 11 to 14 illustrate the impact of each of the 
priority assignment policies on the percentage of tasksets 
deemed schedulable by the different schedulability tests 
for 2, 4, 8, and 16 processors respectively. 

In the two processors case (Figure 12) DMPO, D-
CMPO and DkC priority assignment policies have similar 
performance8, and it is the effectiveness of the 
schedulability tests which dominates the results obtained 
for these policies. Using optimal priority assignment, the 
DA-LC test admits slightly fewer tasksets as compared to 
the RTA-LC test using DkC priority assignment. 

As the number of processors is increased, from 2 up to 
16 (in Figure 15) the difference between priority 
assignment policies dominates the results. For 16 
processors, there is a large difference between the 
utilisation level at which. 50% of the tasksets are deemed 
schedulable according to the DA-LC test using DMPO 
(approx. 9.2 = 0.58m), versus using the optimal priority 
assignment algorithm (approx. 12 = 0.75m). This 
difference corresponds to an effective increase in usable 
processing capacity of around 30%. 

It is interesting to compare the graphs for implicit-
deadline tasksets (Figures 11 to 14) with their counterparts 
for constrained-deadline tasksets (Figures 7 to 10). We 
conclude from this comparison, that the selection of OPA 
or DkC priority ordering rather than D-CMPO or DMPO 
brings about a greater improvement in the number of 
tasksets deemed schedulable in the constrained deadline 
case. Further the improvement obtained by using optimal 
priority assignment rather than the DkC heuristic is more 
                                                 
8 DkC and D-CMPO are in fact identical as k=1 for two processors. 



pronounced in the implicit deadline case. 
Finally, as the assumption that all higher priority tasks 

have worst-case response times equal to their execution 
times becoming more optimistic for tasks with longer 
deadlines and tasksets with higher utilisation, we 
hypothesize that the upper bound on the performance of 
the RTA-LC test with optimal priority assignment, given 
by the C-RTA condition, becomes more optimistic in the 
implicit-deadline case. 
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Figure 12: (2 processors, 10 tasks) 
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Figure 13: (4 processors, 20 tasks) 
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Figure 14: (8 processors, 40 tasks) 
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Figure 15: (16 processors, 80 tasks) 

We repeated our experiments for smaller (2) and 
larger (20) numbers of tasks per processor. In each case, 
although the data points changed, the relationships 
between the effectiveness of the different methods and the 
conclusions that can be drawn from them remained 
essentially the same. 

We note that overall, (2, 4, 8, and 16 processors, 
implicit and constrained deadline tasksets) the method 
with the best performance is the polynomial DA-LC test 
combined with optimal priority assignment. This confirms 
our hypothesis that finding an appropriate priority ordering 
is as important as using an effective schedulability test. 
Further, this test also significantly outperforms the EDF-
RTA test for global EDF scheduling in all of the cases 
studied. 
6.3. Experiment 2 (Number of tasks) 

In this experiment we investigated the effect of 
varying the number of tasks. Figure 16 shows the 
percentage of tasksets that were schedulable on an 8 
processor system, for taskset cardinalities of 9, 10, 12, 16, 
24, and 40, using the DA-LC test with optimal priority 



assignment. Figure 17 shows similar data for tasksets of 
cardinality 40, 80, 120, 160, and 200. We repeated this 
experiment for tasksets with implicit deadlines, and also 
for the RTA-LC test using DkC priority assignment with 
similar results. 

There are some data points missing from the right hand 
side of Figure 16. This is because the UUnifast-Discard 
algorithm, was unable to generate tasksets with cardinality 
9 and utilisation greater than 6.6 (or cardinality 10 and 
utilisation greater than 6.8) using a discard limit of 1000; 
however, despite this the trends are still clearly visible. 

In Figure 16, the percentage of schedulable tasksets 
decreases as the number of tasks is increased from 9 
towards 40, with all other parameters held constant. It 
would appear from this data alone that tasksets with a 
larger number of tasks are more difficult to schedule. 
Figure 17 shows what happens as we continue to increase 
the number of tasks from 40 to 200 (25 times the number 
of processors). Now as the number of tasks increases, the 
tasksets appear to become easier to schedule. This 
behaviour can be explained as a combination of two 
effects: With a small number of tasks, tasksets are 
relatively easy to schedule as the impact of each high 
utilisation, high interference task is limited to effectively 
occupying one processor (see Equations (3) and (7)). In 
the extreme, any valid taskset with m tasks or less is 
trivially schedulable on an m processor system. As taskset 
cardinality increases from m to 2m we therefore expect 
fewer tasksets to be schedulable at any given utilisation. 
At the other extreme, with increasing taskset cardinality 
( mn >> ), the average density ( kk DC / ) of each task kτ  
becomes small. This means that the amount of pessimism 
in the schedulability tests, due to the assumption that when 

kτ  executes all other processors are idle is reduced. 
Hence, as n increases beyond 10m so the number of 
schedulable tasksets increases. 
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Figure 16: (taskset cardinality from 9 to 40) 
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Figure 17: (taskset cardinality from 40 to 200) 
The fact that on an m processor system, any valid set of 

m tasks is schedulable, illustrates the incomparability of 
global FP scheduling on m processors of speed 1, with 
respect to fixed priority pre-emptive scheduling on a 
similar uniprocessor of speed m. The m-speed 
uniprocessor can trivially schedule a single task of 
utilisation greater than one, whereas the m processors of 
speed 1 cannot. Similarly, the m processors can schedule 
any set of m tasks with co-prime periods and individual 
task utilisations equal to 1, whereas the m-speed 
uniprocessor cannot. 

7. Summary and conclusions 
The motivation for our work was the desire to improve 

upon the current state-of-the-art in terms of practical 
techniques that enable the efficient use of processing 
capacity in hard real-time systems based on 
multiprocessors. 

In this paper we addressed the problem of priority 
assignment for global FP scheduling of constrained-
deadline sporadic tasksets. We were drawn to this area of 
research by the work of Bertogna et al. (2009) which 
showed that the best schedulability tests then available for 
global FP scheduling using Deadline Monotonic Priority 
Ordering (DMPO) outperformed the best tests then known 
for both global EDF and EDZL. 

The intuition behind our work was the idea that in 
fixed priority scheduling, finding an appropriate priority 
assignment is as important as using an effective 
schedulability test. While DMPO is an optimal priority 
assignment policy for uniprocessors, this result is known 
not to transfer to the multiprocessor case. Indeed, our 
results show that DMPO cannot even be considered a good 
heuristic for multiprocessors. 

The key contributions of this paper are as follows: 
o Formal proof of a key observation concerning the 



pattern of task execution that results in the worst-case 
response time under global fixed priority scheduling 
(Theorem 1). 

o Application of the approach of Guan et al. (2009) to 
limiting carry-in interference to the polynomial time 
schedulability test of Bertogna et al. (2009), forming 
the DA-LC test. 

o The observation that although Audsley’s Optimal 
Priority Assignment algorithm (Audsely, 1991, 2001) 
cannot be applied to any exact schedulability test for 
global FP scheduling of periodic tasksets, this does 
not necessarily preclude its use with sufficient 
schedulability tests. 

o Proof that Audsley’s OPA algorithm is the optimal 
priority assignment policy with respect to any global 
FP schedulability test for periodic or sporadic tasksets 
that complies with three simple conditions. 

o Classification of schedulability tests for global FP 
scheduling as either OPA-compatible or OPA-
incompatible based on these conditions. The deadline-
based sufficient test of Bertogna et al. (2009) (DA 
test), the DA-LC test developed in this paper, and the 
response time test of Andersson and Jonsson (2000a) 
for sporadic tasksets are all OPA-compatible; while 
any exact test for periodic tasksets, the response time 
test of Bertogna and Cirinei (2007) (RTA test) and the 
improved version of this test given by Guan et al. 
(2009) (RTA-LC test) for sporadic tasksets are OPA-
incompatible. 

o Extension of the TkC (Andersson and Jonsson, 2000b) 
priority assignment policy to constrained deadline 
tasksets forming the DkC priority assignment policy. 
This heuristic policy can be used in conjunction with 
any schedulability test. 

o Adaptation of the UUnifast algorithm (Bini and 
Buttazzo, 2005) to the multiprocessor case, forming 
the UUnifast-Discard algorithm. UUnifast-Discard 
generates tasksets with specific parameter settings, 
facilitating an empirical study of schedulability test 
effectiveness without the problem of confounding 
variables. 

o An empirical study showing that by using the OPA 
algorithm rather than DMPO, the DA-LC test can 
schedule significantly more tasksets. In fact, this 
combination of optimal priority assignment and a 
polynomial time schedulability test outperformed the 
pseudo-polynomial RTA-LC test combined with 
various heuristic priority assignment policies, 
including DMPO, D-CMPO, and DkC. It also 
significantly outperformed the EDF-RTA test for 
global EDF scheduling. 

o Deriving a pseudo-schedulability condition (C-RTA) 
which dominates the RTA-LC test yet is OPA-
compatible. This condition combined with the OPA 
algorithm provides an upper bound on the potential 
performance of the RTA-LC test with optimal priority 

assignment. The gap between the DA-LC test with 
optimal priority assignment and this upper bound was 
found to be relatively small for constrained-deadline 
tasksets, with a larger gap (possibly due to optimism 
in the bound) for implicit-deadline tasksets. 

Our studies showed that the improvements that an 
appropriate choice of priority assignment brings are very 
large when viewed in terms of the proportion of processing 
capacity that can be usefully deployed. For example, in the 
16 processor case, for tasksets with constrained deadlines, 
the utilisation level at which 50% of the tasksets were 
schedulable increased from 0.28m (for the DA-LC test 
with DMPO) to 0.6m (for the DA-LC test with optimal 
priority assignment). This represents an effective increase 
in the usable processing resource of over 100%. This level 
of improvement is of great value to engineers designing 
and implementing hard real-time systems based on 
multiprocessor platforms, as it enables more effective use 
to be made of processing resources while still ensuring that 
deadlines are met. We conclude that priority assignment is 
an important factor in determining the schedulability of 
tasksets under global fixed priority pre-emptive 
scheduling. 

The OPA algorithm requires a polynomial number of 
schedulability tests (n(n+1)/2) to solve the problem of 
optimal priority assignment for any OPA-compatible 
global FP schedulability test. To the best of our 
knowledge, the complexity of optimal priority assignment 
for exact schedulability tests for periodic tasksets under 
global FP scheduling remains an open problem. For 
sporadic tasksets, no exact test is known and the 
complexity of optimal priority assignment is also an open 
problem. 

The research reported in this paper suggests that the 
most effective combination of schedulability test and 
priority assignment policy currently available for global 
fixed priority scheduling is the DA-LC test (Equation (14)) 
introduced in this paper, combined with the optimal 
priority assignment (OPA) algorithm. As well as being 
highly effective, this approach has the additional 
advantage that it is polynomial )( 3nO  in complexity and 
therefore highly efficient. 

Finally, the upper bound provided by the C-RTA 
condition indicates that there remains some scope to 
improve upon these results if a way can be found to 
combine optimal priority assignment with the state-of-the-
art response time test (RTA-LC test). Initial work in this 
area can be found in (Davis and Burns, 2010). 
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Appendix A: Other heuristic priority 
assignment policies 

In this section, we examine the performance of two 
heuristic priority assignment algorithms, derived from 
RM-US{ς } (Andersson et al., 2001) and SM-US{ς } 
(Andersson, 2008). 
A.1 Implicit-deadline tasksets 

The RM-US{ς } priority assignment policy, was 
derived by Andersson et al. (2001) with the aim of 
addressing the “Dhall effect” (Dhall and Liu, 1978) for 
implicit-deadline tasksets using global FP scheduling. RM-
US{ς } assigns the highest priority9 to tasks with 
utilisation greater than some threshold ς . The remaining 
tasks are then assigned priorities in Rate Monotonic 
priority order. 

Lundberg (2002) showed that setting the threshold 
used in RM-US{ς } to 0.375 results in the following 
utilisation bound which is the maximum possible bound 
for this class of algorithm: 

mU 375.0≤      (A.1) 
The SM-US{ς } priority assignment policy was 

derived by Andersson (2008) with the aim of improving 
upon the above bound for RM-US{ς }. SM-US{ς } again 
assigns the highest priority to tasks with utilisation greater 
than some threshold ς ; the remaining tasks are then 
assigned priorities in Slack Monotonic priority order, 
(where the slack of task kτ  is defined as kk CD − ). 
Andersson (2008) showed that using a threshold of 

)53/(2 +  results in the following utilisation bound for 
SM-US{ς }: 

)53/(2 +≤U       (A.2) 
Figure 18 illustrates the impact of the RM-US{ς } and 

SM-US{ς } priority assignment policies, on the 
percentage of implicit-deadline tasksets deemed 
schedulable by the DA-LC schedulability test. This data is 
for tasksets generated according to the parameters 
described in Section 6.1, with the exception that all task 
deadlines were equal to their periods. The thresholds used 
were 0.375 for RM-US{ς } and )53/(2 +  for SM-
US{ς }. 

                                                 
9 Note that RM-US considers fewer than m tasks assigned priorities 
based on their utilisation, and as the first m priority levels in an m 
processor system are essentially equivalent, makes no distinction between 
their priorities. 
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Figure 18: (16 processors, 80 tasks) 

From Figure 18, we observe that the performance of 
the RM-US{0.375} and SM-US{ )53/(2 + } priority 
assignment policies is very similar to that of DkC (i.e. 
TkC) for implicit-deadline tasksets. This similarity in 
performance was also observed in the cases of 2, 4, and 8 
processors. 
A.2 Constrained-deadline tasksets 

Bertogna et al. (2005) extended the RM-US{ς } 
priority assignment policy to constrained-deadline 
tasksets, forming the DM-DS{ς } policy. DM-DS{ς } 
assigns the highest priorities to at most m-1 tasks with 
densities ( kkk DC /=δ ) greater than some threshold ς . 
Bertogna et al. showed that using a threshold of 1/3 results 
in the following density bound for global FP scheduling of 
constrained-deadline tasksets using DM-DS{1/3} priority 
assignment: 

3
1+

≤∑
∀

m

k
kδ       (A.3) 

The SM-US{ς } priority assignment policy can also 
be extended to the constrained deadline case, by simply 
assigning the highest priority to those tasks with density 
(rather than utilisation) greater than some threshold ς . We 
refer to this policy as SM-DS{ς } 

Figure 19 below shows the results of essentially the 
same experiment as Figure 18; however, this time using 
constrained-deadline tasksets, with task deadlines chosen 
according to a uniform random distribution, in the range 

],[ ii TC . Here, we see that the performance of the DM-
DS{1/3} and SM-DS{ )53/(2 + } priority assignment 
policies is significantly worse than that of DkC. Further, 
we found that the relative performance of DM-DS{1/3} 
and SM-DS{ )53/(2 + } was variable, depending on the 
number of processors. In the case of two processors, the 
performance of both DM-DS{1/3} and SM-
DS{ )53/(2 + } was significantly worse than that of 



DMPO. 
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Figure 19: (16 processors, 80 tasks) 

A possible explanation for the variable and relatively 
poor performance of DM-DS{1/3} and SM-
DS{ )53/(2 + } is the choice of threshold. While 
Bertogna et al. (2005) and Andersson (2008) were able to 
derive appropriate thresholds for DM-DS{ς } and SM-
US{ς } in order to derive maximum density or utilisation 
bounds, it is not obvious what the thresholds should be for 
constrained-deadline tasksets which exceed these bounds.  

We now describe variants of the DM-DS{ς } and SM-
US{ς } priority assignment policies, which address the 
problem of selecting an appropriate threshold. Here, we 
employ an idea used by Goosens et al. (2003) and Baker 
(2005) in global EDF scheduling. We refer to these 
algorithms as DM-DS(h) and SM-DS(h).  

The DM-DS(h) and SM-DS(h) priority assignment 
algorithms both assign the highest h priorities based on 
task density, highest density first. The remaining tasks are 
then assigned priorities in either Deadline Monotonic 
(DM-DS(h)) or Slack Monotonic (SM-DS(h)) priority 
order. Instead of using a threshold, the DM-DS(h) and 
SM-DS(h) algorithms, simply try all values of h, from 
zero, (which is equivalent to DMPO or Slack Monotonic 
priority order), to n-1, (which is equivalent to ordering all 
of the tasks based on decreasing density). Thus for a 
taskset of cardinality n, applying either the DM-DS(h) or 
the SM-DS(h) priority assignment algorithm implies 
checking taskset schedulability for n different priority 
orderings, (corresponding to h = 0 to n-1), stopping only 
when a schedulable priority ordering is found, or when all 
n priority orderings are found to be unschedulable. 

The DM-DS(h) and SM-DS(h) priority assignment 
algorithms circumvent the problem of finding an 
appropriate threshold, by effectively examining all of the 
priority orderings that could possibly be generated by any 
arbitrary threshold value. 
 Figure 20 illustrates the impact of the DM-DS(h) and 

SM-DS(h) priority assignment algorithms on the 
percentage of tasksets deemed schedulable by the DA-LC 
schedulability test. This data is again for constrained-
deadline tasksets and so is directly comparable with that 
presented in Figure 19.  
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Figure 20: (16 processors, 80 tasks) 

From Figure 20, it is clear that the performance of the 
SM-DS(h) priority assignment algorithm is similar to that 
of DkC, with DM-DS(h) providing somewhat inferior 
performance. The results shown in Figure 20 are for a 16 
processor system, with 80 tasks. We also repeated this 
experiment for smaller (2) and larger (20) numbers of 
tasks per processor, and 2, 4, and 8 processors. In each 
case, although the data points changed, the relationships 
between the different priority assignment methods 
remained essentially the same. 

While the SM-DS(h) priority assignment algorithm 
gives very similar performance to that of DkC, SM-DS(h) 
is more complex, requiring a schedulability test to be 
performed for n different priority orderings rather than just 
one. For this reason we recommend using DkC priority 
assignment in conjunction with OPA-incompatible 
schedulability tests for global FP scheduling. For OPA-
compatible schedulability tests, then Audsley’s optimal 
priority assignment algorithm should be used. 
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