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Schedulability analysis 

Recall from an earlier lecture that we have:  
•  The priority assignment problem 

–  Given a set of tasks, does there exist an assignment of 
priorities to these tasks satisfying the property that the 
system can be scheduled by a priority-based run-time  
system such that all task instances will complete by their 
deadlines? 

•  The feasibility testing problem 
–  Given a set of tasks, and an assignment of priorities to  

these tasks, can the system be scheduled by a priority- 
based run-time system such that all task instances will 
complete by their deadlines? 



Schedulability analysis 

Complexity of feasibility testing: (Leung, 1989; Baruah et al 1990) 

The problem of deciding the feasibility of a schedule 
produced on m ≥ 1 processors by a particular static or 

dynamic priority assignment is NP-hard in the strong sense.  

Observation:  
•  If an optimal priority assignment can be found in polynomial 

time, the complexity of schedulability analysis reduces to  
that of the feasibility testing problem. 

•  For single-processor systems, there exist optimal priority 
assignments that can be generated in polynomial time, and 
there exist pseudo-polynomial time exact feasibility tests. 



Feasibility testing revisited 

Feasibility testing – exactness of test: 
•  A feasibility test is sufficient if it with a positive answer 

shows that a set of tasks is definitely schedulable 
–  A negative answer says nothing! A set of tasks can still be 

schedulable despite a negative answer  
•  A feasibility test is necessary if it with a negative answer 

shows that a set of tasks is definitely not schedulable 
–  A positive answer says nothing! A set of tasks can still be 

impossible to schedule despite a positive answer  
•  An exact feasibility test is both sufficient and necessary 

–  If the answer is positive the task set is definitely schedulable, 
and if the answer is negative the task set is definitely not 
schedulable 



Feasibility testing revisited 

Feasibility testing – existing techniques: 
•  Hyper period analysis 

–  In an existing schedule no task execution may miss its deadline  

•  Guarantee bound analysis 
–  The fraction of processor time that is used for executing the  

task set must not exceed a given bound 

•  Response time analysis 
–  The worst-case response time for each task must not exceed  

the deadline of the task 

•  Processor demand analysis 
–  The accumulated computation demand for the task set under  

a given time interval must not exceed the length of the interval 



Hyper period analysis 

Hyper period analysis: 
•  When it is not obvious which feasibility analysis should  

be used for a given task set and a given scheduler it is 
always possible to generate a schedule by simulating  
the execution of the tasks, and then check feasibility  
for individual tasks. 

•  The schedule interval that is sufficient to investigate is 
related to the hyper period of the task set, that is, the 
least common multiple (LCM) of the task periods. 

NOTE: Unless the periods of all tasks are harmonically  
related (multiples of each other) hyper-period analysis  
will in general have an exponential time complexity. 



Hyper period analysis 

Hyper period analysis – the trivial cases: 
•  For synchronous task sets: 

 It is sufficient to investigate the interval         ,  
where    is the hyper period of the task set.  0,P[ ]

P

•  For asynchronous task sets: (special case) 
It is sufficient to investigate the interval         
if no task instance that arrives within the interval 
executes beyond time   . 

 0,P[ ]

P
In all other cases it is necessary to investigate  
more than one hyper period.  



Hyper period analysis 

Hyper period analysis – the non-trivial cases: 
•  For asynchronous task sets: (general case) 

 It is necessary to investigate an interval                             
where    is the hyper period of the task set,        is the 
largest offset in the task set, and          is the minimum 
number of hyper periods required for the schedule to 
start repeating itself (always ≥ 2). 

	  0, Omax+ Nstable ⋅P⎡⎣ ⎤⎦
P Omax

  Nstable



Guarantee bound analysis 

Guarantee bound analysis: 
•  If the accumulated utilization U of all tasks does not exceed 

a guarantee bound, all timing constraints will be met 
•  The guarantee bound is expressed as a fraction of the 

available processing capacity of the system 
(= 100% multiplied by the number of processors) 

•  The utilization Ui of a task is expressed as the fraction of 
processing capacity used for executing the task 
–  Thus, guarantee bound analysis has polynomial time complexity 

  
task utilization =

Ci

Ti 	  
accumulated utilization =

Ci
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n
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Guarantee bound analysis 

Guarantee bound analysis for RM: (Liu & Layland, 1973) 
•  A sufficient condition for RM priority assignment is 

	  
U =

Ci

Tii=1

n

∑ ≤URM

•  The test is only valid if all of the following conditions apply: 
1. Single-processor system, with fully preemptive scheduling 
2. Synchronous task sets 
3. Independent tasks 
4. Periodic or sporadic tasks, where Di = Ti  for all tasks 

	  URM = n 21/n −1( )



Guarantee bound analysis 

Guarantee bound analysis for EDF: (Liu & Layland, 1973) 
•  An exact condition for EDF priority assignment is 

	  
U =

Ci

Tii=1

n

∑ ≤UEDF

•  The test is only valid if all of the following conditions apply: 
1. Single-processor system, with fully preemptive scheduling 
2. Synchronous task sets 
3. Independent tasks 
4. Periodic or sporadic tasks, where Di = Ti  for all tasks 

	  UEDF = 1



Response time analysis 

Response time analysis: 
•  The response time     for a task    represents the worst-

case completion time of the task when execution 
interference from other tasks are accounted for. 
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Response time analysis 

Response time analysis: 
•  An iterative procedure can be used to calculate the 

response time of a task: 
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•  The iteration starts with a value that is guaranteed to be 
less than or equal to the final value of     (e.g.            ) iR

0
i iR C=

•  The iteration completes at convergence (              ) or if  
the response time exceeds the deadline iD

1n n
i iR R+ =



Response time analysis 

Response time analysis – the test: (Joseph & Pandya, 1986) 
•  An exact condition for any static-priority assignment is 

ii DRi ≤∀ :

•  The test is only valid if all of the following conditions apply: 
1. Single-processor system, with fully preemptive scheduling 
2. Synchronous task sets 
3. Independent tasks 
4. Periodic or sporadic tasks, where Di ≤ Ti  for all tasks 



Response time analysis 

Recall from an earlier lecture that: (Leung & Whitehead, 1982) 
 

There exists a pseudo-polynomial time algorithm to  
decide if a synchronous task set can be scheduled using  
static priorities on one processor in such a way that all  

task instances will complete by their deadlines.  

Proof: 
•  The deadline-monotonic priority assignment is optimal for 

synchronous task sets, and can be obtained in polynomial time 
•  An exact feasibility test for synchronous task sets on a single 

processor can be performed in pseudo-polynomial time (using  
response-time analysis). 



Response time analysis 

Response time analysis – time complexity:  

–  the longest period of a task is also the largest number in the 
problem instance 

Response time analysis has pseudo-polynomial time complexity 

–  the procedure for calculating the response-time for each task  
is therefore of time complexity O(max Ti{ })

Proof: 
–  calculating the response-time for task     requires no more  

than     iterations    Di

iτ

–  since            the number of iterations needed to calculate  
the response-time for task     is bounded above by  Ti

Di ≤Ti
iτ



Processor demand analysis 

Processor demand analysis: 
•  The processor demand for a task     in a given time 

interval          is the amount of processor time that the 
task needs in the interval in order to meet the deadlines 
that fall within the interval. 
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Processor demand analysis 

Processor demand analysis: 
•  We can express       as 

•  The total processor demand is thus 
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Processor demand analysis 

Processor demand analysis – the test: (Baruah et al., 1990) 
•  An exact condition for EDF priority assignment is 

: (0, )PL K C L L∀ ∈ ≤

•  The test is only valid if all of the following conditions apply: 
1. Single-processor system, with fully preemptive scheduling 
2. Synchronous task sets 
3. Independent tasks 
4. Periodic or sporadic tasks, where Di ≤ Ti  for all tasks 



Processor demand analysis 

Processor demand analysis – the test: (Baruah et al., 1990) 
•  The set of control points K is in the general case: 

K = Di
k Di

k = kTi +Di , Di
k ≤ Lmax, 1≤ i ≤ n, k ≥ 0{ }

   Lmax = LCM T1,…,Tn{ }

Observation: 
The general case of processor demand analysis has the same  
time complexity as hyper period analysis, i.e., exponential time  
in the worst case. 



Processor demand analysis 

Recall from an earlier lecture that: (Baruah et al, 1990) 
 

Proof: 
•  The earliest-deadline-first priority assignment is optimal for 

synchronous task sets, and can be obtained in polynomial time 
•  An exact feasibility test for synchronous task sets on a single 

processor can be performed in pseudo-polynomial time (using  
processor-demand analysis) if the total task utilization is < 1. 

There exists a pseudo-polynomial time algorithm to  
decide if a synchronous task set can be scheduled using  
dynamic priorities on one processor in such a way that all  

task instances will complete by their deadlines.  



Processor demand analysis 

Processor demand analysis – the test: (Baruah et al., 1990) 
•  The set of control points K is in most cases: 

K = Di
k Di

k = kTi +Di , Di
k ≤ Lmax, 1≤ i ≤ n, k ≥ 0{ }
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Observation: 



Processor demand analysis 

Processor demand analysis – time complexity:  

Processor demand analysis has pseudo-polynomial time  
complexity if total task utilization is less than 100% 

Proof: 
–  the number of control points needed to check the processor 

demand is bounded above by 

–  since                 is a constant the procedure for calculating the 
processor demand is therefore of time complexity O(max Ti{ })
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–  the longest period of a task is also the largest number in the 
problem instance 



Schedulability analysis 

Recall from an earlier lecture that we have:  
•  The priority assignment problem 

–  Given a set of tasks, does there exist an assignment of 
priorities to these tasks satisfying the property that the 
system can be scheduled by a priority-based run-time  
system such that all task instances will complete by their 
deadlines? 

•  The feasibility testing problem 
–  Given a set of tasks, and an assignment of priorities to  

these tasks, can the system be scheduled by a priority- 
based run-time system such that all task instances will 
complete by their deadlines? 



Schedulability analysis 

Complexity of feasibility testing: (Leung, 1989; Baruah et al 1990) 

The problem of deciding the feasibility of a schedule 
produced on m ≥ 1 processors by a particular static or 

dynamic priority assignment is NP-hard in the strong sense.  

Observation:  
•  If an optimal priority assignment can be found in polynomial 

time, the complexity of schedulability analysis reduces to  
that of the feasibility testing problem. 

•  An optimal static-priority assignment can be generated in 
pseudo-polynomial time, by using the OPA algorithm and  
an OPA compatible pseudo-polynomial time feasibility test. 



Schedulability analysis 

OPA algorithm (Audsley, 1991) 
 
for each priority level k, lowest first 
{ 
 for each unassigned task 𝜏 
 { 
  if 𝜏 is schedulable at priority k 
  according to schedulability test S 
  with all unassigned tasks assumed to 
  have higher priorities 
  { 
  assign 𝜏 to priority k 
  break (continue outer loop) 
  } 
 } 
 return unschedulable 

} 
return schedulable   



Schedulability analysis 

Condition 1: The schedulability of a task 𝜏 may, according to test S, depend 
on any independent properties of tasks with priorities higher than 𝜏, but 
not on any properties of those tasks that depend on their relative priority 
ordering. 

Condition 2: The schedulability of a task 𝜏 may, according to test S, depend 
on any independent properties of tasks with priorities lower than 𝜏, but 
not on any properties of those tasks that depend on their relative priority 
ordering. 

Condition 3: When the priorities of any two tasks of adjacent priority are 
swapped, the task being assigned the higher priority cannot become 
unschedulable according to test S, if it was previously schedulable at 
the lower priority. 

Conditions for OPA compatibility: (Davis & Burns, 2009) 
 



Schedulability analysis 

Conditions for OPA compatibility: 
•  Is the standard single-processor response-time test  

OPA compatible? 
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•  We need to check whether or not all three conditions for  
OPA compatibility hold for the given test.   


