
Lecture #6

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

Schedulability analysis

Recall from an earlier lecture that we have:
•  The priority assignment problem

–  Given a set of tasks, does there exist an assignment of
priorities to these tasks satisfying the property that the
system can be scheduled by a priority-based run-time
system such that all task instances will complete by their
deadlines?

•  The feasibility testing problem
–  Given a set of tasks, and an assignment of priorities to

these tasks, can the system be scheduled by a priority-
based run-time system such that all task instances will
complete by their deadlines?

Schedulability analysis

Complexity of feasibility testing: (Leung, 1989; Baruah et al 1990)

The problem of deciding the feasibility of a schedule
produced on m ≥ 1 processors by a particular static or

dynamic priority assignment is NP-hard in the strong sense.

Observation:
•  If an optimal priority assignment can be found in polynomial

time, the complexity of schedulability analysis reduces to
that of the feasibility testing problem.

•  For single-processor systems, there exist optimal priority
assignments that can be generated in polynomial time, and
there exist pseudo-polynomial time exact feasibility tests.

Feasibility testing revisited

Feasibility testing – exactness of test:
•  A feasibility test is sufficient if it with a positive answer

shows that a set of tasks is definitely schedulable
–  A negative answer says nothing! A set of tasks can still be

schedulable despite a negative answer
•  A feasibility test is necessary if it with a negative answer

shows that a set of tasks is definitely not schedulable
–  A positive answer says nothing! A set of tasks can still be

impossible to schedule despite a positive answer
•  An exact feasibility test is both sufficient and necessary

–  If the answer is positive the task set is definitely schedulable,
and if the answer is negative the task set is definitely not
schedulable

Feasibility testing revisited

Feasibility testing – existing techniques:
•  Hyper period analysis

–  In an existing schedule no task execution may miss its deadline

•  Guarantee bound analysis
–  The fraction of processor time that is used for executing the

task set must not exceed a given bound

•  Response time analysis
–  The worst-case response time for each task must not exceed

the deadline of the task

•  Processor demand analysis
–  The accumulated computation demand for the task set under

a given time interval must not exceed the length of the interval

Hyper period analysis

Hyper period analysis:
•  When it is not obvious which feasibility analysis should

be used for a given task set and a given scheduler it is
always possible to generate a schedule by simulating
the execution of the tasks, and then check feasibility
for individual tasks.

•  The schedule interval that is sufficient to investigate is
related to the hyper period of the task set, that is, the
least common multiple (LCM) of the task periods.

NOTE: Unless the periods of all tasks are harmonically
related (multiples of each other) hyper-period analysis
will in general have an exponential time complexity.

Hyper period analysis

Hyper period analysis – the trivial cases:
•  For synchronous task sets:

 It is sufficient to investigate the interval ,
where is the hyper period of the task set. 0,P[]

P

•  For asynchronous task sets: (special case)
It is sufficient to investigate the interval
if no task instance that arrives within the interval
executes beyond time .

 0,P[]

P
In all other cases it is necessary to investigate
more than one hyper period.

Hyper period analysis

Hyper period analysis – the non-trivial cases:
•  For asynchronous task sets: (general case)

 It is necessary to investigate an interval
where is the hyper period of the task set, is the
largest offset in the task set, and is the minimum
number of hyper periods required for the schedule to
start repeating itself (always ≥ 2).

	 0, Omax+ Nstable ⋅P⎡⎣ ⎤⎦
P Omax

 Nstable

Guarantee bound analysis

Guarantee bound analysis:
•  If the accumulated utilization U of all tasks does not exceed

a guarantee bound, all timing constraints will be met
•  The guarantee bound is expressed as a fraction of the

available processing capacity of the system
(= 100% multiplied by the number of processors)

•  The utilization Ui of a task is expressed as the fraction of
processing capacity used for executing the task
–  Thus, guarantee bound analysis has polynomial time complexity

task utilization =

Ci

Ti 	
accumulated utilization =

Ci

Tii=1

n

∑

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)
•  A sufficient condition for RM priority assignment is

	
U =

Ci

Tii=1

n

∑ ≤URM

•  The test is only valid if all of the following conditions apply:
1. Single-processor system, with fully preemptive scheduling
2. Synchronous task sets
3. Independent tasks
4. Periodic or sporadic tasks, where Di = Ti for all tasks

	 URM = n 21/n −1()

Guarantee bound analysis

Guarantee bound analysis for EDF: (Liu & Layland, 1973)
•  An exact condition for EDF priority assignment is

	
U =

Ci

Tii=1

n

∑ ≤UEDF

•  The test is only valid if all of the following conditions apply:
1. Single-processor system, with fully preemptive scheduling
2. Synchronous task sets
3. Independent tasks
4. Periodic or sporadic tasks, where Di = Ti for all tasks

	 UEDF = 1

Response time analysis

Response time analysis:
•  The response time for a task represents the worst-

case completion time of the task when execution
interference from other tasks are accounted for.

iR iτ

iii ICR += j
ihpj j

i
i C

T
RI ∑

∈∀ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
=

)(

∑
∈∀ ⎥

⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(ihpj
j

j

i
ii C

T
RCR

Here, is the set of tasks with higher priority than iτ)(ihp

Response time analysis

Response time analysis:
•  An iterative procedure can be used to calculate the

response time of a task:

	
Ri

k+1 =Ci +
Ri

k

Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
C j

∀j∈hp(i)
∑

•  The iteration starts with a value that is guaranteed to be
less than or equal to the final value of (e.g.) iR

0
i iR C=

•  The iteration completes at convergence () or if
the response time exceeds the deadline iD

1n n
i iR R+ =

Response time analysis

Response time analysis – the test: (Joseph & Pandya, 1986)
•  An exact condition for any static-priority assignment is

ii DRi ≤∀ :

•  The test is only valid if all of the following conditions apply:
1. Single-processor system, with fully preemptive scheduling
2. Synchronous task sets
3. Independent tasks
4. Periodic or sporadic tasks, where Di ≤ Ti for all tasks

Response time analysis

Recall from an earlier lecture that: (Leung & Whitehead, 1982)

There exists a pseudo-polynomial time algorithm to
decide if a synchronous task set can be scheduled using
static priorities on one processor in such a way that all

task instances will complete by their deadlines.

Proof:
•  The deadline-monotonic priority assignment is optimal for

synchronous task sets, and can be obtained in polynomial time
•  An exact feasibility test for synchronous task sets on a single

processor can be performed in pseudo-polynomial time (using
response-time analysis).

Response time analysis

Response time analysis – time complexity:

–  the longest period of a task is also the largest number in the
problem instance

Response time analysis has pseudo-polynomial time complexity

–  the procedure for calculating the response-time for each task
is therefore of time complexity O(max Ti{ })

Proof:
–  calculating the response-time for task requires no more

than iterations Di

iτ

–  since the number of iterations needed to calculate
the response-time for task is bounded above by Ti

Di ≤Ti
iτ

Processor demand analysis

Processor demand analysis:
•  The processor demand for a task in a given time

interval is the amount of processor time that the
task needs in the interval in order to meet the deadlines
that fall within the interval.

iτ
[]0,L

•  Let represent the number of instances of that must
complete execution before .

L
iN iτ

L
•  The total processor demand up to is L

1
(0,)

n
L

P i i
i

C L N C
=

=∑

Processor demand analysis

Processor demand analysis:
•  We can express as

•  The total processor demand is thus

L
iN

1iL
i

i

L DN
T
−⎢ ⎥= +⎢ ⎥⎣ ⎦

1
(0,) 1

n
i

P i
ii

L DC L C
T=

−⎛ ⎢ ⎥ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎣ ⎦ ⎠∑

Processor demand analysis

Processor demand analysis – the test: (Baruah et al., 1990)
•  An exact condition for EDF priority assignment is

: (0,)PL K C L L∀ ∈ ≤

•  The test is only valid if all of the following conditions apply:
1. Single-processor system, with fully preemptive scheduling
2. Synchronous task sets
3. Independent tasks
4. Periodic or sporadic tasks, where Di ≤ Ti for all tasks

Processor demand analysis

Processor demand analysis – the test: (Baruah et al., 1990)
•  The set of control points K is in the general case:

K = Di
k Di

k = kTi +Di , Di
k ≤ Lmax, 1≤ i ≤ n, k ≥ 0{ }

 Lmax = LCM T1,…,Tn{ }

Observation:
The general case of processor demand analysis has the same
time complexity as hyper period analysis, i.e., exponential time
in the worst case.

Processor demand analysis

Recall from an earlier lecture that: (Baruah et al, 1990)

Proof:
•  The earliest-deadline-first priority assignment is optimal for

synchronous task sets, and can be obtained in polynomial time
•  An exact feasibility test for synchronous task sets on a single

processor can be performed in pseudo-polynomial time (using
processor-demand analysis) if the total task utilization is < 1.

There exists a pseudo-polynomial time algorithm to
decide if a synchronous task set can be scheduled using
dynamic priorities on one processor in such a way that all

task instances will complete by their deadlines.

Processor demand analysis

Processor demand analysis – the test: (Baruah et al., 1990)
•  The set of control points K is in most cases:

K = Di
k Di

k = kTi +Di , Di
k ≤ Lmax, 1≤ i ≤ n, k ≥ 0{ }

Lmax =max D1, ... , Dn ,
(Ti −Di)Uii=1

n
∑

1−U

#
$
%

&%

'
(
%

)%

Lmax ≤max max Di{ },
U
1−U

max Ti −Di{ }
#
$
%

&
'
(
≤max max Ti{ },

U
1−U

max Ti{ }
#
$
%

&
'
(

Observation:

Processor demand analysis

Processor demand analysis – time complexity:

Processor demand analysis has pseudo-polynomial time
complexity if total task utilization is less than 100%

Proof:
–  the number of control points needed to check the processor

demand is bounded above by

–  since is a constant the procedure for calculating the
processor demand is therefore of time complexity O(max Ti{ })

U / (1−U)

QL
max =max max Ti{ },

U
1−U

max Ti{ }
"
#
$

%
&
'
=max 1, U

1−U
"
#
$

%
&
'
imax Ti{ }

–  the longest period of a task is also the largest number in the
problem instance

Schedulability analysis

Recall from an earlier lecture that we have:
•  The priority assignment problem

–  Given a set of tasks, does there exist an assignment of
priorities to these tasks satisfying the property that the
system can be scheduled by a priority-based run-time
system such that all task instances will complete by their
deadlines?

•  The feasibility testing problem
–  Given a set of tasks, and an assignment of priorities to

these tasks, can the system be scheduled by a priority-
based run-time system such that all task instances will
complete by their deadlines?

Schedulability analysis

Complexity of feasibility testing: (Leung, 1989; Baruah et al 1990)

The problem of deciding the feasibility of a schedule
produced on m ≥ 1 processors by a particular static or

dynamic priority assignment is NP-hard in the strong sense.

Observation:
•  If an optimal priority assignment can be found in polynomial

time, the complexity of schedulability analysis reduces to
that of the feasibility testing problem.

•  An optimal static-priority assignment can be generated in
pseudo-polynomial time, by using the OPA algorithm and
an OPA compatible pseudo-polynomial time feasibility test.

Schedulability analysis

OPA algorithm (Audsley, 1991)

for each priority level k, lowest first
{
 for each unassigned task 𝜏
 {
 if 𝜏 is schedulable at priority k
 according to schedulability test S
 with all unassigned tasks assumed to
 have higher priorities
 {
 assign 𝜏 to priority k
 break (continue outer loop)
 }
 }
 return unschedulable

}
return schedulable

Schedulability analysis

Condition 1: The schedulability of a task 𝜏 may, according to test S, depend
on any independent properties of tasks with priorities higher than 𝜏, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 2: The schedulability of a task 𝜏 may, according to test S, depend
on any independent properties of tasks with priorities lower than 𝜏, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become
unschedulable according to test S, if it was previously schedulable at
the lower priority.

Conditions for OPA compatibility: (Davis & Burns, 2009)

Schedulability analysis

Conditions for OPA compatibility:
•  Is the standard single-processor response-time test

OPA compatible?

	
Ri

k+1 =Ci +
Ri

k

Tj

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥
C j

∀j∈hp(i)
∑ ii DRi ≤∀ :

•  We need to check whether or not all three conditions for
OPA compatibility hold for the given test.

