
Lecture #5

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

Is this a good schedule?

Evaluating a real-time system

An important part of real-time system design is to
have techniques that generate good schedules.

1τ

2τ

t 5 10 15 20 25 0

What do we need to decide the quality?

Evaluating a real-time system

A scheduling algorithm is said to be optimal with respect
to a performance metric if it can always find a schedule
that maximizes/minimizes that metric value.

Recall from an earlier lecture that:

What performance metrics exist for real-time systems?

Performance metrics

Traditional performance metrics:
 Throughput

 Average # of operations/data processed by system per time unit

 Reliability
 Probability that system will not fail in a given time interval

 Availability
 Fraction of time for which system is up (providing service)

 Makespan
 Length of schedule for non-periodic task graph

These metrics do not take deadlines into account!

Performance metrics

Suitable real-time performance metrics:
 Laxity

 Amount of time that the start of a task can be delayed without
it missing its deadline (calculated before scheduling)

X = minτ i∈T Di −Ci{ }

 Lateness
 Amount of time by which a task completes after its deadline
(calculated after scheduling)

L = maxτ i∈T Ri − Di{ }

 Successful tasks
 Number of tasks that complete on or before their deadline
(calculated after scheduling)

Nsuccess = τ i ∈T : Ri − Di ≤ 0{ }

 Jitter
 Amount of deviation from expected periodicity of a task’s completion
(calculated after scheduling)

Joutput = maxτ i∈T,k≥1 fi,k+1 − fi,k()−Ti{ }

Performance metrics

Cost function – a general real-time performance metric

 Cumulative value:

 Value associated with a task as a function of its completion time

()
i

iC v f
τ ∈

=∑
T

Non real-time

()iv f

if

Soft real-time

iD

Performance metrics

Cost function – a general real-time performance metric

 Cumulative value:

 Value associated with a task as a function of its completion time

()
i

iC v f
τ ∈

=∑
T

()iv f

if

Hard real-time

iD

Performance metrics

Cost function – a general real-time performance metric

 Cumulative value:

 Value associated with a task as a function of its completion time

()
i

iC v f
τ ∈

=∑
T

()iv f

if

Evaluating a real-time system

Recall from an earlier lecture that:

How do we compare the “capability of schedulability” of two
scheduling algorithms?

A scheduling algorithm is said to be optimal with respect
to schedulability if it can always find a feasible schedule
whenever any other scheduling algorithm can do so.

Comparing schedulability

Consider two scheduling algorithms, A and B:
•  A dominates B

–  If B can generate a feasible schedule for some task set, then
A can also always generate a feasible schedule for the same
task set, but not necessarily vice versa.

•  A is equivalent to B
–  If B can generate a feasible schedule for some task set, then

A can also generate a feasible schedule for the same task set,
and also vice versa.

•  A is incomparable to B
–  If none dominates the other and they are not equivalent.

Comparing schedulability

Consider two scheduling algorithms, A and B:
•  Some conclusions:

–  If both A and B are optimal scheduling algorithm, then
they are equivalent.

–  If A is optimal but B is not optimal, then A dominates B.
–  If neither A nor B are optimal, then we cannot conclude.

Schedulability analysis

Schedulability analysis:
 The process of determining whether a task set can be
scheduled by a given run-time scheduler in such a manner
that all task instances will complete by their deadlines.

Schedulability analysis typically
involves a feasibility test that is
customized for the actual run-time
scheduler used.

Schedulability analysis

Complexity of uniprocessor schedulability analysis:
(Baruah et al, 1990)

The problem of deciding if a task set can be scheduled on
one processor so that all task instances will complete by

their deadlines is NP-hard in the strong sense.

Complexity of multiprocessor schedulability analysis:
(Leung & Whitehead, 1982)

The problem of deciding if a task set can be scheduled on
m processors is NP-complete in the strong sense.

Schedulability analysis

Main aspects of schedulability analysis:
•  The priority assignment problem

–  Given a set of tasks, does there exist an assignment of
priorities to these tasks satisfying the property that the
system can be scheduled by a priority-based run-time
system such that all task instances will complete by their
deadlines?

•  The feasibility testing problem
–  Given a set of tasks, and an assignment of priorities to

these tasks, can the system be scheduled by a priority-
based run-time system such that all task instances will
complete by their deadlines?

Schedulability analysis

Complexity of feasibility testing:
(Leung, 1989; Baruah et al 1990)

The problem of deciding the feasibility of a schedule
produced on m ≥ 1 processors by a particular static or

dynamic priority assignment is NP-hard in the strong sense.

Observation:
•  If an optimal priority assignment can be found in polynomial

time, the complexity of schedulability analysis reduces to
that of the feasibility testing problem.

Priority assignment

A priority assignment policy P is said to be optimal with respect
to a feasibility test S and a given task model, if and only if the
following holds: P is optimal if there are no task sets that are
compliant with the task model that are deemed schedulable by
test S using another priority assignment policy, that are not also
deemed schedulable by test S using policy P.

Observations:
•  The definition is applicable to both sufficient feasibility tests and

exact feasibility tests; optimal performance is still provided with
respect to the limitations of the test itself.

Priority assignment

Relaxing the zero offset assumption:
•  In a synchronous task set the offsets of tasks are

identical, that is:
 ∀i, j :Oi =Oj

•  In an asynchronous task set the offsets of at least one
pair of tasks are not identical, that is: ∃i, j : i≠ j,Oi ≠Oj

A priority-assignment policy that is shown to be optimal
for synchronous task sets is not necessarily optimal for
asynchronous task sets.
For example, it is known that RM and DM are not optimal for
asynchronous task systems. (Leung & Whitehead, 1982)

This is the assumption for RM, DM and EDF to be optimal for
the single-processor case.

Priority assignment

Non-optimality of DM for asynchronous tasks:

Missed deadline Missed deadline
 τ1 : (2,2,3,4)

 τ 2 : (0,3,4,8)

 τ i : (Oi ,Ci , Di ,Ti)

DM

t 0 5 10 15

 τ1

 τ 2

t 0 5 10 15

 τ1

 τ 2

Inverse DM

Priority assignment

Non-optimality of RM for asynchronous tasks: τ1 : (10,1,12)

 τ 2 : (0,6,12)

 τ i : (Oi ,Ci ,Ti)

 τ 3 : (0,3,8)

t 0 5 10 15

 τ 2

 τ 3

RM

 τ1

20

RM
(alternate

tie-breaking
rule)

t 0 5 10 15

 τ 2

 τ 3

 τ1

20

Missed deadline

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Leung & Whitehead, 1982)

 There exists a pseudo-polynomial time algorithm to
decide if a synchronous task set can be scheduled using
static priorities on one processor in such a way that all

task instances will complete by their deadlines.

Proof:
•  The deadline-monotonic priority assignment is optimal for

synchronous task sets, and can be obtained in polynomial time
•  An exact feasibility test for synchronous task sets on a single

processor can be performed in pseudo-polynomial time (using
response-time analysis).

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Baruah et al, 1990)

Proof:
•  The earliest-deadline-first priority assignment is optimal for

synchronous task sets, and can be obtained in polynomial time
•  An exact feasibility test for synchronous task sets on a single

processor can be performed in pseudo-polynomial time (using
processor-demand analysis) if the total task utilization is < 1.

There exists a pseudo-polynomial time algorithm to
decide if a synchronous task set can be scheduled using
dynamic priorities on one processor in such a way that all

task instances will complete by their deadlines.

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Baruah et al, 1990)

The problem of deciding if an asynchronous task set can be
scheduled on one processor so that all task instances will

complete by their deadlines is NP-hard in the strong sense.

Observations:
•  If the tasks are ever simultaneously released (can be decided

in pseudo-polynomial time), the synchronous case applies and
schedulability can be decided in pseudo-polynomial time.

•  If the tasks are never simultaneously released it is necessary to
find an optimal priority assignment and an exact test for that
priority assignment.

Priority assignment

Optimal Priority Assignment (OPA) algorithm: (Audsley, 1991)

1.  The tasks are divided in two sets: an assigned set A, consisting
of lower-priority tasks with given priorities, and an unassigned
set U consisting of tasks with no given priority (but assumed to
have higher priority than tasks in A). Initially, all tasks are in U.

2.  All tasks in U are chosen in turn and temporarily placed as the
highest-priority task in A and tested for schedulability.

3.  If the chosen task is schedulable the tentative priority of the task
is established, and the task is permanently moved to A. If the
task is not schedulable it is returned to U.

4.  This continues until either all tasks in U have been checked and
found to be unschedulable, or all tasks have been moved to A
and thus have the final priority assignment.

Priority assignment

OPA algorithm (Audsley, 1991)

for each priority level k, lowest first
{
 for each unassigned task 𝜏
 {
 if 𝜏 is schedulable at priority k
 according to schedulability test S
 with all unassigned tasks assumed to
 have higher priorities
 {
 assign 𝜏 to priority k
 break (continue outer loop)
 }
 }
 return unschedulable

}
return schedulable

Priority assignment

Properties of the OPA algorithm:
•  The time complexity of OPA is , for tasks, …

 This is significantly better than having to consider all possible
 priority orderings.

	 O(n2+ n) n
	 n!

•  Optimality of the OPA algorithm is provided with respect
to the limitations of the schedulability test used.

 If a non-exact schedulability test is used the priority ordering
 will reflect the quality of the test.

… times the time complexity of the schedulability test.

•  The OPA algorithm only works under certain assumptions.
 For example, a task being assigned a higher priority cannot
 become unschedulable according to the schedulability test,
 if it was previously deemed schedulable at the lower priority.

