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Is this a good schedule? 

Evaluating a real-time system 

An important part of real-time system design is to 
have techniques that generate good schedules. 
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What do we need to decide the quality? 



Evaluating a real-time system 

A scheduling algorithm is said to be optimal with respect 
to a performance metric if it can always find a schedule 
that maximizes/minimizes that metric value. 

Recall from an earlier lecture that: 

What performance metrics exist for real-time systems? 



Performance metrics 

Traditional performance metrics: 
 Throughput 

 Average # of operations/data processed by system per time unit 

 Reliability  
 Probability that system will not fail in a given time interval  

 Availability  
 Fraction of time for which system is up (providing service) 

 Makespan 
 Length of schedule for non-periodic task graph 

These metrics do not take deadlines into account! 



Performance metrics 

Suitable real-time performance metrics: 
 Laxity 

 Amount of time that the start of a task can be delayed without  
it missing its deadline (calculated before scheduling) 

   
X = minτ i∈T Di −Ci{ }

 Lateness 
 Amount of time by which a task completes after its deadline  
(calculated after scheduling) 

   
L = maxτ i∈T Ri − Di{ }

 Successful tasks 
 Number of tasks that complete on or before their deadline  
(calculated after scheduling) 

   
Nsuccess = τ i ∈T : Ri − Di ≤ 0{ }

 Jitter 
 Amount of deviation from expected periodicity of a task’s completion 
(calculated after scheduling) 

   
Joutput = maxτ i∈T,k≥1 fi,k+1 − fi,k( )−Ti{ }



Performance metrics 

Cost function – a general real-time performance metric 

 Cumulative value: 

 Value associated with a task as a function of its completion time 
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Soft real-time 
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Performance metrics 

Cost function – a general real-time performance metric 

 Cumulative value: 

 Value associated with a task as a function of its completion time 
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Hard real-time 

iD

Performance metrics 

Cost function – a general real-time performance metric 

 Cumulative value: 

 Value associated with a task as a function of its completion time 
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Evaluating a real-time system 

Recall from an earlier lecture that: 

How do we compare the “capability of schedulability” of two 
scheduling algorithms?  

A scheduling algorithm is said to be optimal with respect 
to schedulability if it can always find a feasible schedule 
whenever any other scheduling algorithm can do so. 



Comparing schedulability 

Consider two scheduling algorithms, A and B: 
•  A dominates B  

–  If B can generate a feasible schedule for some task set, then  
A can also always generate a feasible schedule for the same 
task set, but not necessarily vice versa. 

•  A is equivalent to B  
–  If B can generate a feasible schedule for some task set, then  

A can also generate a feasible schedule for the same task set,  
and also vice versa. 

•  A is incomparable to B 
–  If none dominates the other and they are not equivalent.  



Comparing schedulability 

Consider two scheduling algorithms, A and B: 
•  Some conclusions: 

–  If both A and B are optimal scheduling algorithm, then  
they are equivalent. 

–  If A is optimal but B is not optimal, then A dominates B. 
–  If neither A nor B are optimal, then we cannot conclude. 



Schedulability analysis 

Schedulability analysis: 
   The process of determining whether a task set can be 
scheduled by a given run-time scheduler in such a manner 
that all task instances will complete by their deadlines.  

Schedulability analysis typically 
involves a feasibility test that is 
customized for the actual run-time 
scheduler used. 



Schedulability analysis 

Complexity of uniprocessor schedulability analysis: 
(Baruah et al, 1990) 

The problem of deciding if a task set can be scheduled on 
one processor so that all task instances will complete by 

their deadlines is NP-hard in the strong sense.  

Complexity of multiprocessor schedulability analysis: 
(Leung & Whitehead, 1982) 

The problem of deciding if a task set can be scheduled on  
m processors is NP-complete in the strong sense.  



Schedulability analysis 

Main aspects of schedulability analysis:  
•  The priority assignment problem 

–  Given a set of tasks, does there exist an assignment of 
priorities to these tasks satisfying the property that the 
system can be scheduled by a priority-based run-time  
system such that all task instances will complete by their 
deadlines? 

•  The feasibility testing problem 
–  Given a set of tasks, and an assignment of priorities to  

these tasks, can the system be scheduled by a priority- 
based run-time system such that all task instances will 
complete by their deadlines? 



Schedulability analysis 

Complexity of feasibility testing:  
(Leung, 1989; Baruah et al 1990) 

The problem of deciding the feasibility of a schedule 
produced on m ≥ 1 processors by a particular static or 

dynamic priority assignment is NP-hard in the strong sense.  

Observation:  
•  If an optimal priority assignment can be found in polynomial 

time, the complexity of schedulability analysis reduces to  
that of the feasibility testing problem. 



Priority assignment 

A priority assignment policy P is said to be optimal with respect  
to a feasibility test S and a given task model, if and only if the 
following holds: P is optimal if there are no task sets that are 
compliant with the task model that are deemed schedulable by 
test S using another priority assignment policy, that are not also 
deemed schedulable by test S using policy P. 

Observations: 
•  The definition is applicable to both sufficient feasibility tests and 

exact feasibility tests; optimal performance is still provided with 
respect to the limitations of the test itself. 



Priority assignment 

Relaxing the zero offset assumption: 
•  In a synchronous task set the offsets of tasks are 

identical, that is: 
 ∀i, j :Oi =Oj

•  In an asynchronous task set the offsets of at least one  
pair of tasks are not identical, that is:   ∃i, j : i≠ j,Oi ≠Oj

A priority-assignment policy that is shown to be optimal  
for synchronous task sets is not necessarily optimal for  
asynchronous task sets. 
For example, it is known that RM and DM are not optimal for 
asynchronous task systems. (Leung & Whitehead, 1982) 

This is the assumption for RM, DM and EDF to be optimal for  
the single-processor case.   



Priority assignment 

Non-optimality of DM for asynchronous tasks: 

Missed deadline Missed deadline 
 τ1 : (2,2,3,4)

 τ 2 : (0,3,4,8)

  τ i : (Oi ,Ci , Di ,Ti )
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Priority assignment 

Non-optimality of RM for asynchronous tasks:  τ1 : (10,1,12)

 τ 2 : (0,6,12)

  τ i : (Oi ,Ci ,Ti )

 τ 3 : (0,3,8)
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Priority assignment 

Complexity of uniprocessor schedulability analysis: 
(Leung & Whitehead, 1982) 

 There exists a pseudo-polynomial time algorithm to  
decide if a synchronous task set can be scheduled using  
static priorities on one processor in such a way that all  

task instances will complete by their deadlines.  

Proof: 
•  The deadline-monotonic priority assignment is optimal for 

synchronous task sets, and can be obtained in polynomial time 
•  An exact feasibility test for synchronous task sets on a single 

processor can be performed in pseudo-polynomial time (using  
response-time analysis). 



Priority assignment 

Complexity of uniprocessor schedulability analysis: 
(Baruah et al, 1990) 

 

Proof: 
•  The earliest-deadline-first priority assignment is optimal for 

synchronous task sets, and can be obtained in polynomial time 
•  An exact feasibility test for synchronous task sets on a single 

processor can be performed in pseudo-polynomial time (using  
processor-demand analysis) if the total task utilization is < 1. 

There exists a pseudo-polynomial time algorithm to  
decide if a synchronous task set can be scheduled using  
dynamic priorities on one processor in such a way that all  

task instances will complete by their deadlines.  



Priority assignment 

Complexity of uniprocessor schedulability analysis: 
(Baruah et al, 1990) 

 
The problem of deciding if an asynchronous task set can be 
scheduled on one processor so that all task instances will  

complete by their deadlines is NP-hard in the strong sense.  

Observations: 
•  If the tasks are ever simultaneously released (can be decided  

in pseudo-polynomial time), the synchronous case applies and 
schedulability can be decided in pseudo-polynomial time. 

•  If the tasks are never simultaneously released it is necessary to 
find an optimal priority assignment and an exact test for that 
priority assignment.  



Priority assignment 

Optimal Priority Assignment (OPA) algorithm: (Audsley, 1991) 

1.  The tasks are divided in two sets: an assigned set A, consisting  
of lower-priority tasks with given priorities, and an unassigned  
set U consisting of tasks with no given priority (but assumed to 
have higher priority than tasks in A). Initially, all tasks are in U.  

2.  All tasks in U are chosen in turn and temporarily placed as the 
highest-priority task in A and tested for schedulability. 

3.  If the chosen task is schedulable the tentative priority of the task 
is established, and the task is permanently moved to A. If the  
task is not schedulable it is returned to U. 

4.  This continues until either all tasks in U have been checked and 
found to be unschedulable, or all tasks have been moved to A 
and thus have the final priority assignment.   



Priority assignment 

OPA algorithm (Audsley, 1991) 
 
for each priority level k, lowest first 
{ 
 for each unassigned task 𝜏 
 { 
  if 𝜏 is schedulable at priority k 
  according to schedulability test S 
  with all unassigned tasks assumed to 
  have higher priorities 
  { 
  assign 𝜏 to priority k 
  break (continue outer loop) 
  } 
 } 
 return unschedulable 

} 
return schedulable   



Priority assignment 

Properties of the OPA algorithm: 
•  The time complexity of OPA is                , for    tasks, … 

 This is significantly better than having to consider all      possible 
 priority orderings. 

	  O(n2+ n) n
	 n!

•  Optimality of the OPA algorithm is provided with respect 
to the limitations of the schedulability test used. 

 If a non-exact schedulability test is used the priority ordering 
 will reflect the quality of the test. 

… times the time complexity of the schedulability test.  

•  The OPA algorithm only works under certain assumptions. 
 For example, a task being assigned a higher priority cannot 
 become unschedulable according to the schedulability test,  
 if it was previously deemed schedulable at the lower priority. 


