5 UNIVERSITY OF GOTHENBURG

CHALMERS | {

Dependable
<. Real-Time Systems
Lecture #5

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Evaluating a real-time system

Recall from an earlier lecture that:

What performance metrics exist for real-time systems?

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Performance metrics

Traditional performance metrics:
Throughput

Average # of operations/data processed by system per time unit
Reliability

Probability that system will not fail in a given time interval
Availability

Fraction of time for which system is up (providing service)

Makespan

Length of schedule for non-periodic task graph

These metrics do not take deadlines into account!

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Performance metrics

Suitable real-time performance metrics:

Laxity X =min__, {Dl. — Cl.}

Amount of time that the start of a task can be delayed without
it missing its deadline (calculated before scheduling)

Lateness L=max, (R -D,}

Amount of time by which a task completes after its deadline
(calculated after scheduling)

Successful tasks N =|{7,eT:R - D <0}

Number of tasks that complete on or before their deadline
(calculated after scheduling)

Jltter Joutput = maX’L'ieT,kZI { (J(i,k+1 o ik) _ T; }
Amount of deviation from expected periodicity of a task’s completion
(calculated after scheduling)

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Performance metrics

Cost function — a general real-time performance metric
Cumulative value: C=) v(/f)

7,eT

Value associated with a task as a function of its completion time

(/)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Performance metrics

Cost function — a general real-time performance metric

Cumulative value: C=) v(f)

7,eT

Value associated with a task as a function of its completion time

(/)

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Performance metrics

Cost function — a general real-time performance metric

Cumulative value: C=) v(f)

;€T

Value associated with a task as a function of its completion time

(/)

(&%) UNIVERSITY OF GOTHENBURG

Evaluating a real-time system

Recall from an earlier lecture that:

How do we compare the “capability of schedulability” of two
scheduling algorithms??

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Comparing schedulability

Consider two scheduling algorithms, A and B:

e A dominates B

— If B can generate a feasible schedule for some task set, then
A can also always generate a feasible schedule for the same
task set, but not necessarily vice versa.
e Ais equivalentto B

— If B can generate a feasible schedule for some task set, then
A can also generate a feasible schedule for the same task set,
and also vice versa.

e Aisincomparable to B
— If none dominates the other and they are not equivalent.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Comparing schedulability

Consider two scheduling algorithms, A and B:

e Some conclusions:

— If both A and B are optimal scheduling algorithm, then
they are equivalent.

— If A'is optimal but B is not optimal, then A dominates B.
— If neither A nor B are optimal, then we cannot conclude.

CHALMERS |

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Schedulability analysis

Complexity of uniprocessor schedulability analysis:
(Baruah et al, 1990)

Complexity of multiprocessor schedulability analysis:
(Leung & Whitehead, 1982)

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Schedulability analysis

Main aspects of schedulability analysis:

e The priority assignment problem

— Given a set of tasks, does there exist an assignment of
priorities to these tasks satisfying the property that the
system can be scheduled by a priority-based run-time
system such that all task instances will complete by their
deadlines?

e The feasibility testing problem

— Given a set of tasks, and an assignment of priorities to
these tasks, can the system be scheduled by a priority-
based run-time system such that all task instances will
complete by their deadlines?

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Schedulability analysis

Complexity of feasibility testing:
(Leung, 1989; Baruah et al 1990)

Observation:

e If an optimal priority assignment can be found in polynomial
time, the complexity of schedulability analysis reduces to
that of the feasibility testing problem.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priority assignment

Observations:

e The definition is applicable to both sufficient feasibility tests and
exact feasibility tests; optimal performance is still provided with
respect to the limitations of the test itself.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priority assignment

Relaxing the zero offset assumption:

e |n a synchronous task set the offsets of tasks are
identical, that is: Vi, j:0, =0,

This is the assumption for RM, DM and EDF to be optimal for
the single-processor case.

e |n an asynchronous task set the offsets of at least one
pair of tasks are not identical, thatis: 3i,j:i=j,0, =0,

A priority-assignment policy that is shown to be optimal
for synchronous task sets is not necessarily optimal for
asynchronous task sets.

For example, it is known that RM and DM are not optimal for
asynchronous task systems. (Leung & Whitehead, 1982)

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Priority assignment

Non-optimality of DM for asynchronous tasks:

Missed deadline Missed deadline
Tl h / h h /
DM
T2 5 \\;'_;_:';’ ,
0 5 15 |
' i h - i !
Tl
Inverse DM A A
TZ 5-'--'--5-'--'--5-'--'-1 .-..-.'.'-..-..-.'.'-..-..-..

v

0 5 10 15 t

CHALMERS |

RM

RM

(alternate
tie-breaking
rule)

(&%) UNIVERSITY OF GOTHENBURG

Priority assignment

Non-optimality of RM for asynchronous tasks:

¢
I | >
15 20 t
4 . .
] Missed deadline
A Tee-T ¢
| | | s
0 5 15 20 t

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Leung & Whitehead, 1982)

Proof:

e The deadline-monotonic priority assignment is optimal for
synchronous task sets, and can be obtained in polynomial time

e An exact feasibility test for synchronous task sets on a single

processor can be performed in pseudo-polynomial time (using
response-time analysis).

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Baruah et al, 1990)

Proof:

e The earliest-deadline-first priority assignment is optimal for
synchronous task sets, and can be obtained in polynomial time

e An exact feasibility test for synchronous task sets on a single
processor can be performed in pseudo-polynomial time (using
processor-demand analysis) if the total task utilization is < 1.

CHALMERS | {®%) UNIVERSITY OF GOTHENBURG

Priority assignment

Complexity of uniprocessor schedulability analysis:
(Baruah et al, 1990)

Observations:

o If the tasks are ever simultaneously released (can be decided
in pseudo-polynomial time), the synchronous case applies and
schedulability can be decided in pseudo-polynomial time.

e If the tasks are never simultaneously released it is necessary to
find an optimal priority assignment and an exact test for that
priority assignment.

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Priority assignment

Optimal Priority Assignment (OPA) algorithm: (Audsley, 1991)

1. The tasks are divided in two sets: an assigned set A, consisting
of lower-priority tasks with given priorities, and an unassigned
set U consisting of tasks with no given priority (but assumed to
have higher priority than tasks in A). Initially, all tasks are in U.

2. All tasks in U are chosen in turn and temporarily placed as the
highest-priority task in A and tested for schedulability.

3. If the chosen task is schedulable the tentative priority of the task
IS established, and the task is permanently moved to A. If the

task is not schedulable it is returned to U.

4. This continues until either all tasks in U have been checked and
found to be unschedulable, or all tasks have been moved to A

and thus have the final priority assignment.

CHALMERS | ’3 UNIVERSITY OF GOTHENBURG

Priority assignment

(8%) UNIVERSITY OF GOTHENBURG

CHALMERS |

Priority assignment

Properties of the OPA algorithm:

e The time complexity of OPA is O(n’+ n), for n tasks, ...
This is significantly better than having to consider all n! possible
priority orderings.

... times the time complexity of the schedulability test.

e Optimality of the OPA algorithm is provided with respect
to the limitations of the schedulability test used.

If a non-exact schedulability test is used the priority ordering
will reflect the quality of the test.

e The OPA algorithm only works under certain assumptions.

For example, a task being assigned a higher priority cannot
become unschedulable according to the schedulability test,
if it was previously deemed schedulable at the lower priority.

