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NP-hard problems

Turing reducibility:

e A problem IT is Turing reducible to problem II if there
exists an algorithm A that solves II' by using a
hypothetical subroutine S for solving II such that, if S
were a polynomial time algorithm for I1, then A would
be a polynomial time algorithm for IT" as well.

When IT' is Turing reducible to I1, we write IT o, I

A search prc
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NP-hard problems

Observations:
e All NP-complete problems are NP-hard

e All co-NP-complete problems are NP-hard
Turing reduction from II to II€ (and vice versa) is trivial.

e Given an NP-complete decision problem, the
corresponding optimization problem is NP-hard

To see this, imagine that the optimization problem (that is,
finding the optimal cost) could be solved in polynomial time.

The corresponding decision problem (i.e., determining whether
there exists a solution with a cost no more than B) could then
be solved by simply comparing the found optimal cost to the
bound B. This comparison is a constant-time operation.
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NP-hard problems

Exponential time  co-NP-complete

NP-hard

NP-complete

_____________
- ~,
7 ~,

Assuming P # NP



CHALMERS | &%) UNIVERSITY OF GOTHENBURG

NP-hard problems

Observations for the Traveling Salesman Problem:
e The original Traveling Salesman Problem is NP-hard

e The complement Traveling Salesman Problem is NP-hard

e The Traveling Salesman Optimization Problem is NP-hard

To see this, imagine that the shortest tour could be found in
polynomial time.

The original Traveling Salesman problem (i.e., does there exist
a tour with total length no more than B) could then be solved
by simply comparing the found shortest tour to the bound B.
This comparison is a constant-time operation.
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NP-hard problems

The Traveling Salesman Optimization Problem:

Minimum “tour” length = 27

Minimize the length of the “tour” that visits each city in
sequence, and then returns to the first city.
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NP-hard problems

Observations relating to scheduling problems:
e NP-complete scheduling problems are NP-hard

e Co-NP-complete scheduling problems are NP-hard

e Exponential-time decision problems are NP-hard

Example: hyper-period analysis, which is known to have an
exponential time complexity in the general case.

e Metric-optimizing scheduling algorithms are NP-hard

Example: searching for a schedule that has minimum task
lateness (response time minus deadline), which requires
an exponential time branch-and-bound algorithm in the
general case.
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NP-hard problems

Observations relating to scheduling problems:

e Metric-optimizing scheduling algorithms are NP-hard

To see this, imagine that a schedule with minimum task lateness
could be found in polynomial time.

Schedulability of a task set could then be determined by simply
checking whether or not the found minimum task lateness is
less than or equal to O.
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History of NP-completeness

S. Cook: (1971)
“The Complexity of Theorem Proving Procedures”

Every problem in the class NP of decision problems
polynomially reduces to the SATISFIABILITY problem:

Given a set U of Boolean variables and a collection C of
clauses over U, is there a satisfying truth assignment for C ?

R. Karp: (1972)
“Reducibility among Combinatorial Problems”

Decision problem versions of many well-known
combinatorial optimization problems are “just as hard”
as SATISFIABILITY.
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History of NP-completeness

D. Knuth: (1974)
“A Terminological Proposal”

Initiated a researcher’s poll in search of a better term for
“at least as hard as the polynomial complete problems”.

One suggestion by S. Lin was PET problems:

— “Probably Exponential Time” (if P = NP remain open question)
— “Provably Exponential Time” (if P # NP)

— “Previously Exponential Time” (if P = NP)
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Some original NP-complete problems

SATISFIABILITY

7 I I

3-DIMENSIONAL VERTEX COVER HAMILTONIAN
MATCHING CIRCUIT
3-SATISFIABILITY CLIQUE PARTITION
KNAPSACK 3-PARTITION ANNIHILATION CLUSTERING
MINIMUM COVER LONGEST PATH BIN PACKING MAX CUT
INTEGER DEADLOCK JOB-SHOP REGISTER
PROGRAMMING AVOIDANCE SCHEDULING SUFFICIENCY
MULTIPROCESSOR TRAVELING GRAPH PREEMPTIVE

SCHEDULING SALESMAN COLORABILITY SCHEDULING
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Proving NP-completeness

Proving NP-completeness for a decision problem IT:

1. Show that IT is in NP
2. Select a known NP-complete problem IT’

3. Construct a transformation o« from IT’ to I1

4. Prove that « is a (polynomial) transformation
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Proving NP-completeness

Transformations for real-time scheduling problems:

In published results regarding the time complexity of known
real-time scheduling problems, the following NP-complete
problems are predominantly used for the transformations:

o 3-PARTITION

— NP-complete in the strong sense.

— Used in the proofs for multiprocessor scheduling, and in the
proof for non-preemptive uniprocessor scheduling.

e SIMULTANEOUS CONGRUENCES (SCP)

— NP-complete in the strong sense.

— Used in the proofs for preemptive uniprocessor scheduling,
by employing a reverse logic (co-NP) strategy.
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Proving NP-completeness

3-PARTITION decision problem:

e Set of elements
- Let4={a,,...,a,, } be a set of 3m elements.

— Each element a. € 4 has a positive integer "size" s(a.).
e Element size constraints using a bound

— Let B be a positive integer.
- Each s(a,) satisfies B/4<s(a)<B/2and ), _ s(a)=mB.

e Question:
— Can 4 be partitioned into m disjoint sets S ,...,S such
that, for each 1< j <m, it applies that ) s(a)=B?

Note: constraints dictate that each disjoint set must contain exactly 3 elements!
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Proving NP-completeness

SIMULTANEOUS CONGRUENCES decision problem:

e Set of ordered pairs
~ LetA={(a,.b)....,(a,,b)} be a set of n ordered pairs.

— Each pair (a,,b,) € A consists of positive integers.

e Minimum bound
— Let B be a positive integer, such that 2 < B <n.

e Question:
— Does there exist a subset 4'€ A4 of at least B pairs and
a positive integer x such that, for each (a ,b) e 4', it
applies that x = a. (modb,)?

Note: x = a (modb,) means x = a. + k.- b, for some non-negative integer k.
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Complexity in real-time scheduling

General complexity results:

e Any type of scheduling of periodic tasks
— NP-hard (exponential time)

e Any type of non-preemptive scheduling
— NP-complete in the strong sense (reduction from 3-PARTITION)

e Any type of preemptive multiprocessor scheduling
— NP-complete in the strong sense (reduction from 3-PARTITION)
— Note: applies to both partitioned and global approaches

e Preemptive uniprocessor scheduling of asynchronous tasks
— Co-NP-complete in the strong sense (reduction from SCP)
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Complexity in real-time scheduling

Preemptive uniprocessor scheduling:

e Scheduling of synchronous tasks w/ dynamic task priorities
— Co-NP-complete in the strong sense (reduction from SCP)
— Co-NP-complete in the weak sense for U < 1

— Special cases:
— Pseudo-polynomial time for constrained-deadline tasks for U < 1

— Polynomial time for implicit-deadline tasks

e Scheduling of synchronous tasks w/ static task priorities
— NP-hard for arbitrary-deadline tasks (exponential time)
— NP-complete in the weak sense for constrained-deadline tasks

— Special cases:
— Pseudo-polynomial time for constrained-deadline tasks
— Polynomial time for implicit-deadline tasks for U < In 2
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SATISFIABILITY

The original NP-complete decision problem:

e Variables and literals
— Let U be a set of Boolean variables.
— Ifuis a variable in U then u and u’ are literals over U.

e Conjunctive normal form

— A formula is in conjunctive normal form (CNF) if it is a
conjunction of one or more clauses, where a clause is a
disjunction of literals.

o SATISFIABILITY question:

— Given a formula in CNF does there exist a truth assignment
for the variables in U that yields a True statement?
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SATISFIABILITY

Some variations of the conjunctive viewpoint:

e FALSIFIABILITY decision problem

— Given a formula in CNF does there exist a truth assignment
for the variables in U that yields a False statement?

e CONTRADICTION decision problem

— Given a formula in CNF does every possible truth assignment
for the variables in U yield a False statement?

e TAUTOLOGY decision problem

— Given a formula in CNF does every possible truth assignment
for the variables in U yield a True statement?

What are the time complexities of these variations?
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SATISFIABILITY

SATISFIABILITY from a disjunctive viewpoint:

e Variables and literals
— Let U be a set of Boolean variables.
— Ifuis a variable in U then u and u’ are literals over U.

e Disjunctive normal form

— A formula is in disjunctive normal form (DNF) if it is a
disjunction of one or more clauses, where a clause is a
conjunction of literals.

o (DNF) SATISFIABILITY question:

— Given a formula in DNF does there exist a truth assignment
for the variables in U that yields a True statement?
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SATISFIABILITY

Some variations of the disjunctive viewpoint:

o (DNF) FALSIFIABILITY decision problem

— Given a formula in DNF does there exist a truth assignment
for the variables in U that yields a False statement?

e (DNF) CONTRADICTION decision problem

— Given a formula in DNF does every possible truth assignment
for the variables in U yield a False statement?

e (DNF) TAUTOLOGY decision problem

— Given a formula in DNF does every possible truth assignment
for the variables in U yield a True statement?

What are the time complexities of the DNF variations?



