
Lecture #4

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

N
P

-h
ar

d
pr

ob
le

m
s

NP-hard problems

Assuming P ≠ NP

P

NP

NP-complete

NP-hard

NP-hard problems:
Problems that are “at least as hard” as the hardest
problems in class NP.

NP-hard problems

NP-hard problems

Turing reducibility:
•  A problem Π’ is Turing reducible to problem Π if there

exists an algorithm A that solves Π’ by using a
hypothetical subroutine S for solving Π such that, if S
were a polynomial time algorithm for Π, then A would
be a polynomial time algorithm for Π’ as well.

 When Π’ is Turing reducible to Π, we write Π’ ∝T Π

A search problem Π is said to be NP-hard if there exists
some NP-complete problem Π’ that Turing-reduces to Π.

NP-hard problems

Observations:
•  All NP-complete problems are NP-hard
•  All co-NP-complete problems are NP-hard

Turing reduction from Π to ΠC (and vice versa) is trivial.

•  Given an NP-complete decision problem, the
corresponding optimization problem is NP-hard
To see this, imagine that the optimization problem (that is,

finding the optimal cost) could be solved in polynomial time.
The corresponding decision problem (i.e., determining whether

there exists a solution with a cost no more than B) could then
be solved by simply comparing the found optimal cost to the
bound B. This comparison is a constant-time operation.

N
P

-h
ar

d
pr

ob
le

m
s

NP-hard problems

Assuming P ≠ NP

P

NP

NP-complete

NP-hard

co-NP-complete Exponential time

NP-hard problems

Observations for the Traveling Salesman Problem:
•  The original Traveling Salesman Problem is NP-hard
•  The complement Traveling Salesman Problem is NP-hard

•  The Traveling Salesman Optimization Problem is NP-hard
To see this, imagine that the shortest tour could be found in

polynomial time.
The original Traveling Salesman problem (i.e., does there exist

a tour with total length no more than B) could then be solved
by simply comparing the found shortest tour to the bound B.
This comparison is a constant-time operation.

10

9

9

5

6
3

1c

3c

4c
2c

NP-hard problems

The Traveling Salesman Optimization Problem:

Minimum “tour” length = 27

Minimize the length of the “tour” that visits each city in
sequence, and then returns to the first city.

NP-hard problems

Observations relating to scheduling problems:
•  NP-complete scheduling problems are NP-hard
•  Co-NP-complete scheduling problems are NP-hard
•  Exponential-time decision problems are NP-hard

Example: hyper-period analysis, which is known to have an
exponential time complexity in the general case.

•  Metric-optimizing scheduling algorithms are NP-hard
Example: searching for a schedule that has minimum task

lateness (response time minus deadline), which requires
an exponential time branch-and-bound algorithm in the
general case.

NP-hard problems

Observations relating to scheduling problems:
•  NP-complete scheduling problems are NP-hard
•  Co-NP-complete scheduling problems are NP-hard
•  Exponential-time decision problems are NP-hard

Example: hyper-period analysis, which is known to have an
exponential time complexity in the general case.

•  Metric-optimizing scheduling algorithms are NP-hard
To see this, imagine that a schedule with minimum task lateness

could be found in polynomial time.
Schedulability of a task set could then be determined by simply

checking whether or not the found minimum task lateness is
less than or equal to 0.

History of NP-completeness

S. Cook: (1971)
“The Complexity of Theorem Proving Procedures”
 Every problem in the class NP of decision problems
polynomially reduces to the SATISFIABILITY problem:
 Given a set U of Boolean variables and a collection C of

clauses over U, is there a satisfying truth assignment for C ?

R. Karp: (1972)
“Reducibility among Combinatorial Problems”
 Decision problem versions of many well-known
combinatorial optimization problems are “just as hard”
as SATISFIABILITY.

History of NP-completeness

D. Knuth: (1974)
“A Terminological Proposal”
 Initiated a researcher’s poll in search of a better term for
“at least as hard as the polynomial complete problems”.

 One suggestion by S. Lin was PET problems:

–  “Probably Exponential Time” (if P = NP remain open question)
–  “Provably Exponential Time” (if P ≠ NP)
–  “Previously Exponential Time” (if P = NP)

Some original NP-complete problems

3-SATISFIABILITY

SATISFIABILITY

3-DIMENSIONAL
MATCHING

CLIQUE

VERTEX COVER HAMILTONIAN
CIRCUIT

PARTITION

MINIMUM COVER

KNAPSACK

MULTIPROCESSOR
SCHEDULING

LONGEST PATH

3-PARTITION

TRAVELING
SALESMAN

MAX CUT

CLUSTERING

PREEMPTIVE
SCHEDULING

BIN PACKING

GRAPH
COLORABILITY

INTEGER
PROGRAMMING

DEADLOCK
AVOIDANCE

REGISTER
SUFFICIENCY

JOB-SHOP
SCHEDULING

ANNIHILATION

Proving NP-completeness

Proving NP-completeness for a decision problem Π:

 1. Show that Π is in NP

 2. Select a known NP-complete problem Π’

 3. Construct a transformation ∝ from Π’ to Π

 4. Prove that ∝ is a (polynomial) transformation

The book “Computers and Intractability – A Guide to the Theory of
NP-Completeness” (Garey and Johnson, 1979) contains a
categorized list of 300+ NP-complete problems, with problem
statements and how each problem was proven NP-complete.

Proving NP-completeness

Transformations for real-time scheduling problems:
In published results regarding the time complexity of known
real-time scheduling problems, the following NP-complete
problems are predominantly used for the transformations:
•  3-PARTITION

–  NP-complete in the strong sense.
–  Used in the proofs for multiprocessor scheduling, and in the

proof for non-preemptive uniprocessor scheduling.

•  SIMULTANEOUS CONGRUENCES (SCP)
–  NP-complete in the strong sense.
–  Used in the proofs for preemptive uniprocessor scheduling,

by employing a reverse logic (co-NP) strategy.

Proving NP-completeness

3-PARTITION decision problem:
•  Set of elements

– 
– 

•  Element size constraints using a bound
– 
– 

•  Question:
– 

 Let A = a1,…,a3m{ }be a set of 3m elements.

 Each element ai ∈A has a positive integer "size" s(ai).

Each s(ai) satisfies B / 4 < s(ai) < B / 2 and s(ai)ai∈A∑ = mB.
 Let B be a positive integer.

 Can A be partitioned into m disjoint sets S1,…,Sm such

that, for each 1≤ j ≤ m, it applies that s(ai)ai∈S j

∑ = B?

 Note: constraints dictate that each disjoint set must contain exactly 3 elements!

Proving NP-completeness

SIMULTANEOUS CONGRUENCES decision problem:
•  Set of ordered pairs

– 
– 

•  Minimum bound
– 

•  Question:
– 

 Let A = (a1,b1),…,(an ,bn){ }be a set of n ordered pairs.

 Each pair (ai ,bi)∈A consists of positive integers.

 Let B be a positive integer, such that 2 ≤ B ≤ n.

 Does there exist a subset A'∈A of at least B pairs and

 applies that x ≡ ai (mod bi)?

 Note: x ≡ ai (mod bi) means x = ai + ki ⋅bi for some non-negative integer ki

 a positive integer x such that, for each (ai ,bi)∈A', it

Complexity in real-time scheduling

General complexity results:
•  Any type of scheduling of periodic tasks

–  NP-hard (exponential time)

•  Any type of non-preemptive scheduling
–  NP-complete in the strong sense (reduction from 3-PARTITION)

•  Any type of preemptive multiprocessor scheduling
–  NP-complete in the strong sense (reduction from 3-PARTITION)
–  Note: applies to both partitioned and global approaches

•  Preemptive uniprocessor scheduling of asynchronous tasks
–  Co-NP-complete in the strong sense (reduction from SCP)

Complexity in real-time scheduling

Preemptive uniprocessor scheduling:
•  Scheduling of synchronous tasks w/ dynamic task priorities

–  Co-NP-complete in the strong sense (reduction from SCP)
–  Co-NP-complete in the weak sense for U < 1
–  Special cases:

–  Pseudo-polynomial time for constrained-deadline tasks for U < 1
–  Polynomial time for implicit-deadline tasks

•  Scheduling of synchronous tasks w/ static task priorities
–  NP-hard for arbitrary-deadline tasks (exponential time)
–  NP-complete in the weak sense for constrained-deadline tasks
–  Special cases:

–  Pseudo-polynomial time for constrained-deadline tasks
–  Polynomial time for implicit-deadline tasks for U ≤ ln 2

SATISFIABILITY

The original NP-complete decision problem:
•  Variables and literals

–  Let U be a set of Boolean variables.
–  If u is a variable in U then u and u’ are literals over U.

•  Conjunctive normal form
–  A formula is in conjunctive normal form (CNF) if it is a

conjunction of one or more clauses, where a clause is a
disjunction of literals.

•  SATISFIABILITY question:
–  Given a formula in CNF does there exist a truth assignment

for the variables in U that yields a True statement?

SATISFIABILITY

Some variations of the conjunctive viewpoint:
•  FALSIFIABILITY decision problem

–  Given a formula in CNF does there exist a truth assignment
for the variables in U that yields a False statement?

•  CONTRADICTION decision problem
–  Given a formula in CNF does every possible truth assignment

for the variables in U yield a False statement?

•  TAUTOLOGY decision problem
–  Given a formula in CNF does every possible truth assignment

for the variables in U yield a True statement?

What are the time complexities of these variations?

SATISFIABILITY

SATISFIABILITY from a disjunctive viewpoint:
•  Variables and literals

–  Let U be a set of Boolean variables.
–  If u is a variable in U then u and u’ are literals over U.

•  Disjunctive normal form
–  A formula is in disjunctive normal form (DNF) if it is a

disjunction of one or more clauses, where a clause is a
conjunction of literals.

•  (DNF) SATISFIABILITY question:
–  Given a formula in DNF does there exist a truth assignment

for the variables in U that yields a True statement?

SATISFIABILITY

Some variations of the disjunctive viewpoint:
•  (DNF) FALSIFIABILITY decision problem

–  Given a formula in DNF does there exist a truth assignment
for the variables in U that yields a False statement?

•  (DNF) CONTRADICTION decision problem
–  Given a formula in DNF does every possible truth assignment

for the variables in U yield a False statement?

•  (DNF) TAUTOLOGY decision problem
–  Given a formula in DNF does every possible truth assignment

for the variables in U yield a True statement?

What are the time complexities of the DNF variations?

