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NP-hard problems 

Assuming P ≠ NP 

P 

NP 

NP-complete 

NP-hard 

NP-hard problems: 
Problems that are “at least as hard” as the hardest 
problems in class NP. 

NP-hard problems 



NP-hard problems 

Turing reducibility: 
•  A problem Π’ is Turing reducible to problem Π if there 

exists an algorithm A that solves Π’ by using a 
hypothetical subroutine S for solving Π such that, if S 
were a polynomial time algorithm for Π, then A would 
be a polynomial time algorithm for Π’ as well. 

 When Π’ is Turing reducible to Π, we write Π’ ∝T Π 

A search problem Π is said to be NP-hard if there exists 
some NP-complete problem Π’ that Turing-reduces to Π.  



NP-hard problems 

Observations: 
•  All NP-complete problems are NP-hard 
•  All co-NP-complete problems are NP-hard 

Turing reduction from Π to ΠC (and vice versa) is trivial. 

•  Given an NP-complete decision problem, the 
corresponding optimization problem is NP-hard 
To see this, imagine that the optimization problem (that is,  

finding the optimal cost) could be solved in polynomial time.  
The corresponding decision problem (i.e., determining whether 

there exists a solution with a cost no more than B) could then  
be solved by simply comparing the found optimal cost to the 
bound B. This comparison is a constant-time operation. 
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NP-hard problems 

Assuming P ≠ NP 
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co-NP-complete Exponential time 



NP-hard problems 

Observations for the Traveling Salesman Problem: 
•  The original Traveling Salesman Problem is NP-hard 
•  The complement Traveling Salesman Problem is NP-hard 

•  The Traveling Salesman Optimization Problem is NP-hard 
To see this, imagine that the shortest tour could be found in 

polynomial time.  
The original Traveling Salesman problem (i.e., does there exist 

a tour with total length no more than B) could then be solved  
by simply comparing the found shortest tour to the bound B. 
This comparison is a constant-time operation. 
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NP-hard problems 

The Traveling Salesman Optimization Problem: 

Minimum “tour” length = 27 

Minimize the length of the “tour” that visits each city in 
sequence, and then returns to the first city. 



NP-hard problems 

Observations relating to scheduling problems: 
•  NP-complete scheduling problems are NP-hard 
•  Co-NP-complete scheduling problems are NP-hard 
•  Exponential-time decision problems are NP-hard 

Example: hyper-period analysis, which is known to have an 
exponential time complexity in the general case. 

•  Metric-optimizing scheduling algorithms are NP-hard 
Example: searching for a schedule that has minimum task 

lateness (response time minus deadline), which requires 
an exponential time branch-and-bound algorithm in the  
general case. 



NP-hard problems 

Observations relating to scheduling problems: 
•  NP-complete scheduling problems are NP-hard 
•  Co-NP-complete scheduling problems are NP-hard 
•  Exponential-time decision problems are NP-hard 

Example: hyper-period analysis, which is known to have an 
exponential time complexity in the general case. 

•  Metric-optimizing scheduling algorithms are NP-hard 
To see this, imagine that a schedule with minimum task lateness 

could be found in polynomial time.  
Schedulability of a task set could then be determined by simply 

checking whether or not the found minimum task lateness is 
less than or equal to 0. 



History of NP-completeness 

S. Cook: (1971)  
“The Complexity of Theorem Proving Procedures” 
 Every problem in the class NP of decision problems 
polynomially reduces to the SATISFIABILITY problem:  
    Given a set U of Boolean variables and a collection C of  

clauses over U, is there a satisfying truth assignment for C ? 

R. Karp: (1972)  
“Reducibility among Combinatorial Problems” 
 Decision problem versions of many well-known 
combinatorial optimization problems are “just as hard”  
as SATISFIABILITY. 



History of NP-completeness 

D. Knuth: (1974)  
“A Terminological Proposal” 
 Initiated a researcher’s poll in search of a better term for 
“at least as hard as the polynomial complete problems”. 

 
 One suggestion by S. Lin was PET problems: 

–  “Probably Exponential Time”  (if P = NP remain open question) 
–  “Provably Exponential Time”  (if P ≠ NP) 
–  “Previously Exponential Time” (if P = NP) 



Some original NP-complete problems 

3-SATISFIABILITY 
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Proving NP-completeness 

Proving NP-completeness for a decision problem Π: 

 1. Show that Π is in NP 

  2. Select a known NP-complete problem Π’ 

 3. Construct a transformation ∝ from Π’ to Π 

 4. Prove that ∝ is a (polynomial) transformation 

The book “Computers and Intractability – A Guide to the Theory of 
NP-Completeness” (Garey and Johnson, 1979) contains a 
categorized list of 300+ NP-complete problems, with problem 
statements and how each problem was proven NP-complete. 



Proving NP-completeness 

Transformations for real-time scheduling problems: 
In published results regarding the time complexity of known  
real-time scheduling problems, the following NP-complete 
problems are predominantly used for the transformations: 
•  3-PARTITION 

–  NP-complete in the strong sense. 
–  Used in the proofs for multiprocessor scheduling, and in the 

proof for non-preemptive uniprocessor scheduling. 

•  SIMULTANEOUS CONGRUENCES (SCP) 
–  NP-complete in the strong sense. 
–  Used in the proofs for preemptive uniprocessor scheduling,  

by employing a reverse logic (co-NP) strategy. 



Proving NP-completeness 

3-PARTITION decision problem: 
•  Set of elements 

–    
–    

•  Element size constraints using a bound 
–     
–     

•  Question: 
–    

    Let A = a1,…,a3m{ }be a set of 3m elements.

   Each element ai ∈A has a positive integer "size" s(ai).

   
Each s(ai) satisfies B / 4 < s(ai) < B / 2 and s(ai)ai∈A∑ = mB.
  Let B be a positive integer.

    Can A be partitioned into m disjoint sets S1,…,Sm such

   
that, for each 1≤ j ≤ m, it applies that s(ai)ai∈S j

∑ = B?

 Note: constraints dictate that each disjoint set must contain exactly 3 elements!



Proving NP-completeness 

SIMULTANEOUS CONGRUENCES decision problem: 
•  Set of ordered pairs 

–    
–    

•  Minimum bound 
–     

•  Question: 
–    

    Let A = (a1,b1),…,(an ,bn ){ }be a set of n ordered pairs.

   Each pair (ai ,bi )∈A consists of positive integers.

   Let B be a positive integer, such that 2 ≤ B ≤ n.

   Does there exist a subset A'∈A of at least B pairs and

   applies that x ≡ ai (mod bi )?

   Note: x ≡ ai (mod bi ) means x = ai + ki ⋅bi  for some non-negative integer ki

   a positive integer x such that, for each (ai ,bi )∈A',  it



Complexity in real-time scheduling 

General complexity results: 
•  Any type of scheduling of periodic tasks 

–  NP-hard (exponential time) 

•  Any type of non-preemptive scheduling 
–  NP-complete in the strong sense (reduction from 3-PARTITION) 

•  Any type of preemptive multiprocessor scheduling 
–  NP-complete in the strong sense (reduction from 3-PARTITION) 
–  Note: applies to both partitioned and global approaches 

•  Preemptive uniprocessor scheduling of asynchronous tasks 
–  Co-NP-complete in the strong sense (reduction from SCP) 



Complexity in real-time scheduling 

Preemptive uniprocessor scheduling: 
•  Scheduling of synchronous tasks w/ dynamic task priorities 

–  Co-NP-complete in the strong sense (reduction from SCP) 
–  Co-NP-complete in the weak sense for U < 1 
–  Special cases: 

–  Pseudo-polynomial time for constrained-deadline tasks for U < 1 
–  Polynomial time for implicit-deadline tasks 

•  Scheduling of synchronous tasks w/ static task priorities 
–  NP-hard for arbitrary-deadline tasks (exponential time) 
–  NP-complete in the weak sense for constrained-deadline tasks  
–  Special cases: 

–  Pseudo-polynomial time for constrained-deadline tasks 
–  Polynomial time for implicit-deadline tasks for U ≤ ln 2 



SATISFIABILITY 

The original NP-complete decision problem: 
•  Variables and literals 

–  Let U be a set of Boolean variables. 
–  If u is a variable in U then u and u’ are literals over U. 

•  Conjunctive normal form 
–  A formula is in conjunctive normal form (CNF) if it is a 

conjunction of one or more clauses, where a clause is a 
disjunction of literals. 

•  SATISFIABILITY question: 
–  Given a formula in CNF does there exist a truth assignment   

for the variables in U that yields a True statement? 



SATISFIABILITY 

Some variations of the conjunctive viewpoint: 
•  FALSIFIABILITY decision problem 

–  Given a formula in CNF does there exist a truth assignment   
for the variables in U that yields a False statement? 

•  CONTRADICTION decision problem 
–  Given a formula in CNF does every possible truth assignment   

for the variables in U yield a False statement? 

•  TAUTOLOGY decision problem 
–  Given a formula in CNF does every possible truth assignment   

for the variables in U yield a True statement? 

What are the time complexities of these variations? 



SATISFIABILITY 

SATISFIABILITY from a disjunctive viewpoint: 
•  Variables and literals 

–  Let U be a set of Boolean variables. 
–  If u is a variable in U then u and u’ are literals over U. 

•  Disjunctive normal form 
–  A formula is in disjunctive normal form (DNF) if it is a  

disjunction of one or more clauses, where a clause is a 
conjunction of literals. 

•  (DNF) SATISFIABILITY question: 
–  Given a formula in DNF does there exist a truth assignment   

for the variables in U that yields a True statement? 



SATISFIABILITY 

Some variations of the disjunctive viewpoint: 
•  (DNF) FALSIFIABILITY decision problem 

–  Given a formula in DNF does there exist a truth assignment   
for the variables in U that yields a False statement? 

•  (DNF) CONTRADICTION decision problem 
–  Given a formula in DNF does every possible truth assignment   

for the variables in U yield a False statement? 

•  (DNF) TAUTOLOGY decision problem 
–  Given a formula in DNF does every possible truth assignment   

for the variables in U yield a True statement? 

What are the time complexities of the DNF variations? 


