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Schedule = resources + operations on a time line 

Scheduling 

Attempts to meet application constraints should be 
done in a proactive way through scheduling. 
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Scheduling is used in many disciplines: 
(a.k.a. ”operations research”) 

•  Production pipelines (“Ford’s automotive assembly line”) 
Actors: workers + car parts 
Goal: generate schedules that maximizes system throughput 
(cars per time unit)  
Technique: job- and flow-shop scheduling 

•  Real-time systems 
Actors: processors, data structures, I/O hardware + tasks 
Goal: generate schedules that meet timing constraints 
(deadlines, periods, jitter) 
Technique: priority-based task scheduling 

Scheduling 



Scheduling is used in many disciplines: 
(a.k.a. ”operations research”) 

•  Classroom scheduling 
Actors: classrooms, teachers + courses 
Goal: generate periodic schedules within 7-week blocks  
Technique: branch-and-bound algorithms 

•  Airline crew scheduling 
Actors: aircraft, staff + routes 
Goal: generate periodic schedules that minimizes the number of 
aircraft and staff used, and fulfill union regulations for staff  
Technique: advanced branch-and-bound algorithms 

Scheduling 



Scheduling 

Scheduling: 
•  Implementation: 

–  A scheduling algorithm generates a schedule for a given set  
of tasks and a certain type of run-time system. 

–  The scheduling algorithm is implemented by a scheduler that 
uses a ready queue, where tasks are sorted according to 
desired execution order.   

–  A dispatcher starts the execution of the task in the front of  
the ready queue, whenever a task switch is possible. 

scheduling 

dispatching 

preemption 

task arrival task termination 
execution 



Scheduling 

Classification of scheduling constraints: 
•  Processor-related constraints: 

–  How may tasks be executed when multiple processors are 
available? 

•  Dispatch-related constraints: 
–  What information is known regarding the current and future  

task set, and how may the dispatcher act based on that 
information? 

•  Preemption-related constraints: 
–  What other tasks, if any, may preempt the currently-executing 

task? 



Scheduling constraints 

Processor-related constraints: 
•  No processor sharing: 

–  A processor can only execute one task at a time 
–  Each core in multi-core processor viewed as separate processor 

•  No dynamic task parallelism: 
–  A task can only execute on one processor at a time 
–  Realistic assumption for any practical programming model 

•  No task migration: 
–  A task can only execute on one given processor, or cannot  

change processor once it has started its execution 
–  Assumption made for distributed systems, and also for some 

AUTOSAR multi-core processor designs 



Scheduling constraints 

Dispatch-related constraints: 
•  Myopic scheduling: 

–  Scheduling algorithm only knows about currently ready tasks 

•  Clairvoyant scheduling: 
–  Scheduling algorithm knows all future arrival times of all tasks 

•  Work-conserving scheduling: 
–  As long as there are tasks in the ready queue the dispatcher  

must execute a task on a processor 

•  Non-work-conserving scheduling: 
–  Although there are tasks in the ready queue the dispatcher  

may choose not to execute a task (“inserted idle time”) 



Scheduling constraints 

Preemption-related constraints: 
•  Fully preemptive scheduling: 

–  An executing task can be preempted by other tasks at any time 

•  Non-preemptive scheduling: 
–  Once a task has started executing, it cannot be preempted by  

any other task 

•  Greedy scheduling: 
–  Once a task has started executing, it cannot be preempted by  

a lower-priority task 

•  Fair scheduling: 
–  Although a task has started executing, lower-priority tasks  

receive a guaranteed time quantum per time unit for execution 



Preemption constraints 

Fully preemptive scheduling: 
•  Advantages: 

–  Gives highest flexibility in making scheduling decisions 

•  Disadvantages: 
–  Guaranteeing mutual exclusion requires special run-time  

support (e.g., semaphores) 
–  Typically incurs higher number of ready queue operations  

(e.g., insert, remove, dispatch) than for non-preemptive 
scheduling 

–  WCET analysis becomes more complicated since cache and 
pipeline contents will be affected by a task switch 



Preemption constraints 

Non-preemptive scheduling: 
•  Advantages: 

–  The only practical approach to implement scheduling of 
messages on communication networks 

–  Guaranteeing mutual exclusion becomes a trivial problem, 
and can be solved without special run-time support 

–  Results from WCET analysis correspond very well with real 
WCET behavior (“undisturbed execution” assumption) 

•  Disadvantages: 
–  Once a task starts executing, all other tasks on the same 

processor will be blocked until execution is complete 



Preemption constraints 

Greedy scheduling: 
•  Approach: ”traditional” priority scheduling 

–  Once a task has started executing, it cannot be preempted by 
tasks with priorities lower than the currently executing task 

–  Note: this is a fundamental assumption in all single- and multi-
processor feasibility tests presented so far 

•  Advantages: 
–  Run-time scheduler relatively simple to implement 

•  Disadvantages: 
–  Lower-priority tasks may starve and hence miss their deadlines 



Preemption constraints 

Fair scheduling: 
•  Approach: p-fair scheduling (Baruah et al. 1996) 

–  Although a task has started executing, lower-priority tasks 
receive a guaranteed time quantum per time unit for execution 

–  Hence: all tasks make some kind of progress per time unit 

•  Advantages: 
–  Multiprocessor schedulability guaranteed for 100% task load 

(assuming that task-switch cost is negligible) 

•  Disadvantages: 
–  Requires a more advanced run-time scheduler 
–  Requires a more advanced approach to feasibility testing 
–  Incurs significantly more task switches than greedy scheduling 



Preemption constraints (recent results) 

Limited preemption scheduling: (see Buttazzo et al. 2013) 

•  Preemption thresholds: 
–  Allows a task to disable preemption by tasks with priorities  

lower than a specified threshold 
–  Special case: “traditional” (greedy) priority scheduling, where  

the threshold is the priority of the currently executing task 

•  Deferred preemption: 
–  Allows a task to postpone preemption for a given amount of time 
–  Special case: non-preemptive scheduling (“postpone until done”) 

•  Fixed preemption points: 
–  Allows a task to specify that preemption can only occur at given 

places in the program code (a k a “cooperative scheduling”) 



Scheduling algorithms revisited 

A schedule is said to be feasible if it fulfills all 
application constraints for a given set of tasks. 

A set of tasks is said to be schedulable if there 
exists at least one scheduling algorithm that can 
generate a feasible schedule. 



Scheduling algorithms revisited 

A scheduling algorithm is said to be optimal with respect 
to schedulability if it can always find a feasible schedule 
whenever any other scheduling algorithm can do so. 

A scheduling algorithm is said to be optimal with respect 
to a performance metric if it can always find a schedule 
that maximizes/minimizes that metric value. 



Scheduling algorithms revisited 

Methods for generating schedules: 
•  Cyclic executives: 

–  Schedule generated ”off-line” before the tasks becomes ready, 
sometimes even before the system is in mission. 

–  Schedule is generated by (i) simulating a pseudo-parallel 
scheduler or (ii) applying a search algorithm that finds a 
feasible schedule (whenever one exists) by considering all 
possible execution scenarios. 

•  Pseudo-parallel execution: 
–  Schedule generated ”on-line” as a side effect of tasks being 

executed by the run-time system. 
–  Resource conflicts at run-time are resolved by using priorities, 

possible combined with time quanta. 



NP-complete problems: 
Problems that are “just as hard” as a large number of 
other problems that are widely recognized as being 
difficult by algorithmic experts. 

NP-completeness revisited 



NP-completeness revisited 

The theory of NP-completeness applies only to decision problems, 
where the solution is either a “Yes” or a “No”. 

If an optimization problem asks for a solution that has minimum 
“cost”, we can associate with that problem a decision problem that 
includes a numerical bound B as an additional parameter and that 
asks whether there exists a solution having cost no more than B. 
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NP-completeness revisited 

Example: The Traveling Salesman Problem: 

Is there a “tour” of all the cities in C having a total 
length of no more than B? 



NP-completeness revisited 

Deterministic algorithm: (Deterministic Turing Machine) 
•  Finite-state control:  

–  The algorithm can pursue only one computation at a time 
–  Given a problem instance I, some solution S  

is derived by the algorithm 
–  The correctness of S is inherent in the algorithm 

The class P is the class of all decision problems Π 
that can be solved by polynomial-time  

deterministic algorithms. 



NP-completeness revisited 

Non-deterministic algorithm: (Non-Deterministic Turing Machine) 
  1. Guessing stage:  

–  Given a problem instance I, some solution S is “guessed”. 
–  The algorithm can pursue an unbounded number of  

independent computational sequences in parallel. 

  2. Checking stage:  
–  The correctness of S is verified in a normal deterministic manner 

The class NP is the class of all decision problems Π 
that can be solved by polynomial-time  

non-deterministic algorithms. 



NP-completeness revisited 

Reducibility: 
•  A problem Π’ is reducible to problem Π if, for any 

instance of Π’, an instance of Π can be constructed in 
polynomial time such that solving the instance of Π will 
solve the instance of Π’ as well. 

 When Π’ is reducible to Π, we write Π’ ∝ Π 

A decision problem Π is said to be NP-complete  
if Π ∈ NP and, for all other decision problems  
Π’ ∈ NP, Π’ reduces to Π in polynomial time. 



Relationship between P and NP 

Observations: 
  1. P ⊆ NP 

–  Proof: use a polynomial-time deterministic algorithm as the 
checking stage and ignore the guess .... 

  2. P ≠ NP 
–  This is a wide-spread belief, but … 
–  … no proof of this conjecture exists! 

The question of whether or not the NP-complete problems are 
intractable is now considered to be one of the foremost open 

questions of contemporary mathematics and computer science! 



Strong NP-completeness 

Pseudo-polynomial time complexity: 
•  Number problems 

–  This is a special type of NP-complete problems for which 
the largest number (parameter value) in a problem instance  
is not bounded by the input length (size) of the problem. 

•  Number problems are often quite tractable 
–  If the time complexity of a number problem can be shown to  

be a polynomial-time function of both the input length and  
the largest number, that number problem is said to have  
pseudo-polynomial time complexity. 
That is, the time-complexity function is proportional to p(max,n) for 
some polynomial function p, where max is the largest number and  
n is the input length. 



Strong NP-completeness 

If a decision problem Π is NP-complete and is not a number problem, then it 
cannot be solved by a pseudo-polynomial-time algorithm unless P = NP.  

Assuming P ≠ NP, the only NP-complete problems that are potential 
candidates for being solved by pseudo-polynomial-time algorithms  

are those that are number problems.  

A decision problem Π which cannot be solved by a pseudo-
polynomial-time algorithm, unless P = NP, is said to be  

NP-complete in the strong sense.  



Strong NP-completeness 

NP-complete problems that are number problems ... 
•  ... but are NP-complete in the strong sense regardless 

–  Multiprocessor scheduling (partitioned and global) 

–  Uniprocessor scheduling of asynchronous tasks, or 
synchronous tasks with dynamic task priorities 

–  3-Partition, Simultaneous Congruences, Traveling Salesman 

•  ... and that do have pseudo-polynomial time complexity 
–  Uniprocessor scheduling of synchronous constrained-deadline 

tasks with static priorities (using response-time analysis)  
–  Uniprocessor scheduling of synchronous constrained-deadline 

tasks with dynamic task priorities and total utilization U < 1 
(using processor-demand analysis) 



Co-NP-complete problems 

Class co-NP: 
•  Complement problem:  

–  The complement of a decision problem Π is the problem ΠC 
having the same solution domain as Π, but with the outcome 
from solving the problem logically reversed. 

–  That is, given the same problem instance, a “yes” outcome  
from solving problem Π would imply a “no” outcome from  
solving problem ΠC (and vice versa) 

A decision problem Π ∈ co-NP if and only if its 
complement problem ΠC ∈ NP.  



Co-NP-complete problems 

NP vs co-NP: 
•  Problems in NP 

–  The class of problems for which there exists a polynomial-time 
algorithm that can verify a solution that makes the binary 
problem statement true (“yes” outcome). 

•  Problems in co-NP 
–  The class of problems for which there exists a polynomial-time 

algorithm that can verify a counterexample solution that makes 
the binary problem statement false (“no” outcome). 

•  Co-NP-complete problems 
–  Decision problems for which it applies that their complement 

problem is an NP-complete problem. 
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Co-NP-complete problems 

The Complement Traveling Salesman Problem: 

Does every “tour” of all the cities in C have a total 
length that exceeds B? 



Co-NP-complete problems 

The Complement Traveling Salesman Problem: 
•  Verifying a “yes” outcome 

–  Requires checking that all possible solutions (”tours”) to the 
problem instance fulfills the problem statement. Can in general 
only be done in exponential time (need to show that every 
possible “tour” length > B). 

•  Verifying a “no” outcome 
–  Requires checking that one solution (the counterexample “tour”) 

to the problem instance does not fulfil the problem statement. 
Can be done in polynomial time (only need to show that the 
counterexample “tour” length ≤ B). 

–  This corresponds exactly to verifying a “yes” outcome in the 
original Traveling Salesman Problem (which is NP-complete). 
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Co-NP-complete problems 

The Complement Traveling Salesman Problem: 

Does every “tour” of all the cities in C have a total 
length that exceeds 30? 



10 

9 

9 

5 

6 
3 

1c

3c

4c
2c

Co-NP-complete problems 

The Original Traveling Salesman Problem: 

Is there a “tour” of all the cities in C having a total 
length of no more than 30? 



Proving NP-completeness 

Proving NP-completeness for a decision problem Π: 

 1. Show that Π is in NP 

  2. Select a known NP-complete problem Π’ 

 3. Construct a transformation ∝ from Π’ to Π 

 4. Prove that ∝ is a (polynomial) transformation 

Highlighted article: 
Read the paper by Jeffay, Stanat and Martel (RTSS’91) 
Study particularly how the transformation from 3-PARTITION is 

used for proving strong NP-completeness (Theorem 5.2) 


