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Abstract: This paper examines a fundamental problem in 
the theory of real-time scheduling, that of scheduling a set 
of periodic or sporadic tasks on a uniprocessor without 
preemption and without inserted idle time. We exhibit a 
necessary and sufficient set of conditions C for a set of 
periodic or sporadic tasks to be schedulable for arbitrary 
release times of the tasks. We then show that any set of 
periodic or sporadic tasks that satisfies conditions C can 
be scheduled with an earliest deadline first (EDF) 
scheduling algorithm. 

We also address the question of schedulability of a set of 
tasks with specified release times. For sets of sporadic 
tasks with specified release times, we show that the 
conditions C are again necessary and sufficient for 
schedulability. However, for sets of pcriodic tasks with 
specified release times, the conditions C, while sufficient, 
are not necessary. In fact, we show that determining 
whether a set of periodic tasks with specified release times 
is schedulable is intractable (i.e., NP-hard in the strong 
sense). Moreover, we show that the existence of a 
universal algorithm for scheduling periodic tasks with 
specified release times would imply that P = Np. 

1 .  Introduction 

The concept of a task that is invoked repeatedly is central 
to both the design and analysis of real-time systems. In 
particular, formal studies of real-time systems frequently 
represent the time-constrained processing requirements of 
the system as a set of periodic or sporadic tasks with 
deadlines [Liu & Layland 73, h u n g  & Memll 80, Mok 
831. A periodic task is invoked at regular intervals, while a 
sporadic task is invoked at arbitrary times but with a 
specified minimum time interval between invocations. 
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In practice, periodic tasks are commonly found in 
applications such as avionics and process control when 
accurate control requires continual sampling and 
processing of data. Sporadic tasks are associated with 
event-driven processing such as responding to user inputs 
or non-periodic device interrupts; these events occur 
repeatedly, but the time interval between consecutive 
occurrences varies and can be arbitrarily large. Periodic and 
sporadic tasks were used, for example, to represent the 
timing constraints in an interactive 3-dimensional graphics 
display system used for research in virtual worlds [Chung 
er al. 89, Jeffay 911. The graphics system uses a head- 
mounted display system consisting of a helmet with 
miniature television monitors embedded in it, and hardware 
for tracking the position of the helmet and a hand-held 
pointing device. A computer generated image of a 3- 
dimensional “virtual world” is displayed on the television 
monitors in the helmet. The goal of the system is to track 
the user’s head and the pointing device in real-time and to 
update the image displayed in the helmet so as to maintain 
the illusion that the user is immersed in an artificial 
world. There are two separate real-time concerns in this 
application. First, the system must provide an image to 
update the display approximately every 30 milliseconds. 
Generaling a ncw iinaye is naturally represented as a 
periodic process. Second, as the user’s head or the pointing 
device is moved, the motions must be tracked and the 
consequences incorporated into the generation of the next 
image. Because both the user’s head and the pointing 
device may remain stationary for some time, the process 
associated with tracking them is invoked sporadically. 

Given a real-time system, the goal is to schedule the 
system’s tasks on a processor, or processors, so that each 
task completes execution before a specified deadline. In 
this paper we consider a fundamental real-time scheduling 
problem, that of non-preemptive scheduling of a set of 
periodic or sporadic tasks on a uniprocessor. Non- 
preemptive scheduling on a uniprocessor is important for a 
variety of reasons: 
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In many practical real-time scheduling problems such 
as I/O scheduling, properties of device hardware and 
software either make preemption impossible or 
prohibitively expensive. 
Non-preemptive scheduling algorithms are easier to 
implement than preemptive algorithms, and can exhibit 
dramatically lower overhead at run-time. 
The overhead of preemptive algorithms is more 
difficult to characterize and predict than that of non- 
preemptive algorithms. Since scheduling overhead is 
often ignored in scheduling models (including ours), an 
implementation of a non-preemptive scheduler will be 
closer to the formal model than an implementation of a 
preemptive scheduler. 

Non-preemptive scheduling on a uni-processor 
naturally guarantees exclusive access to shared 
resources and data, thus eliminating both the need for 
synchronization and its associated overhead. 
The problem of scheduling all tasks without 
preemption forms the theoretical basis for more general 
tasking models that include shared resources [Jeffay 
89b, 901. 

Many others have looked at variations of this problem; 
most describe sufficient conditions for scheduling tasks. 
We give necessary and sufficient conditions. Furthermore, 
we show that a particular algorithm can always be used for 
scheduling a large class of sets of tasks. (We will review 
related work in more delail in Section 3.) 

The remainder of this paper is composed of five major 
sections. The following section presents our scheduling 
model. Section 3 briefly reviews the literature in real-time 
scheduling. Section 4 proves the non-preemptive EDF 
algorithm is universal for sets of tasks, whether they be 
periodic or sporadic. Section 5 demonstrates the absence of 
a universal algorithm for periodic tasks with specified 
release times and proves that the problem of deciding 
schedulability of a set of concrete periodic tasks is 
intractable. Section 6 discusses these results. 

2 .  The Model 

A task is a sequential program that is invoked by each 
occurrence of a particular event. An event is a stimulus 
generated by a process that is either external to the system 
( e .g . ,  interrupts from a device) or internal to the system 
(e .g . ,  clock ticks). We assume that events are generated 
repeatedly with some maximum frequency; thus, the time 
interval bctween successive invocations of a task will be 
of some minimal length. Each invocation of a task results 
in a single execution of the task at a time specified by a 
scheduling algorithm. 

Formally, a task T is a pair (c, p )  where 

c is the computational cost: the maximum amount of 
processor time required to execute (the sequential 
program of) task T to completion on a dedicated 
uniprocessor, and 
p is the p e r i o d :  the minimal interval between 
invocations of task T. 

Throughout this paper we assume time is discrete and 
clock ticks are indexed by the natural numbers. Task 
invocations occur and task executions begin at clock ticks; 
each of the parameters c and p is expressed as a multiple of 
(the interval between) clock ticks. If a task with cost c 
begins execution at time r and is executed without 
interruption on a uniprocessor, then the execution is 
completed at time f + c. 

We consider two paradigms of task invocation: periodic 
and sporadic. If T is periodic,  the period p specifies a 
constant interval between invocations. If T is sporadic, p 
specifies a minimum interval between invocations. 

The definition of the behavior of a task depends on 
whether i t  is periodic or sporadic. The behavior ofa 
periodic task T = (c, p )  is given by the following rules 
for thc invocation and execution of T. If t k  is the time of 
the kfh invocation of task T ,  then 

i) The (k+ l )" '  invocation of task T will occur at time 

ii) The kfh execution of task 7' must begin no earlier than 
t k  and be completed no later than the deadline of t k  + p .  
This requires that c units of processor time be allocated 
to the execution of T in the interval [ t k ,  t k  + p ] .  

t k + l  = l k  p. 

The behavior of a sporadic task is slightly less constrained 
than that o l  a periodic task. The b e h a v i o r  of  a 
sporadic rask T = (c, p) is given by the following rules 
for thc invocation and execution of T .  If fk is the time of 
the kth invocation of task T,  then 

i) The (k+l)fh invocation of T will occur no earlier than 

ii) The krh execution of task T must begin no earlier than 
t k  and be completed no later than the deadline of ik + p .  

time t k  + p ;  thus, t k + l  2 t k  -t p .  

Thus the behaviors of periodic and sporadic tasks differ 
only in the first rule. We assume invocations of sporadic 
tasks are independent in the sense that the time a sporadic 
task is invoked depends only upon the time of its last 
invocation and not upon the invocation times of any other 
task. 



Note that the worst case behavior of a sporadic task T = 
(c, p )  (“worst” in the sense of requiring the most processor 
time), occurs when T behaves like a periodic task, that is, 
T is invoked every p time steps. 

We wish to investigate the scheduling of sets of tasks that 
compete for processing resources. The difficulty of 
scheduling tasks can be affected by the times that tasks are 
first invoked. A concrete task is a pair ( T ,  R ) ,  where T 
is a task, and R is a non-negative integer that is the time 
of the first invocation, or the release t ime, of T .  The 
behavior  of ( T ,  R )  is the behavior of T constrained 
further by the rule that the first invocation of T occurs at 
time R .  Once released, tasks are invoked repeatedly 
forever. 

A set  of p e r i o d i c  ( s p o r a d i c )  t a sks  T = ( T , ,  T z ,  ..., 
T,) is a set of tasks indexed from 1 to n, where for each i ,  
1 I i 2 n ,  T ,  = (c,, p l ) .  A c o n c r e t e  se t  of p e r i o d i c  
(sporadic) tasks w = ( ( T I , / ? , ) ,  (T2 ,R2)  ..., (T,,,R,,)) is a 
set of concrete tasks indexed from 1 to n ,  where R,  is the 
release time of task T1.l There is a natural many-to-one 
relation between concrete tasks and tasks. We say the task 
Tgenerates a concrete task (T ,  R )  and a concrete task (T,  
R )  is generated f r o m  the task T.  This relation extends 
naturally to a relation between concrete task sets and task 
sets. Let T = ( T , ,  T z ,  ..., T , )  be a task set and let w = 
((T,,R,), (T2P2) ..., (T,,P,,)) be a concrete task set. Then 
the task set  generates the concrete task set w and w is 
generated f r o m  T. 

If an execution of a task has a deadline of time t d ,  and 
execution is not complete at time i d ,  then we say the task 
has m i s s e d  a d e a d l i n e .  A scheduling algorithm 
specifies, at each time t ,  which task i f  any shall begin, 
continue, or resume execution. A concrete task set w is 
schedulable if  it is possible to schedule the executions 
of tasks of o so that no task ever misses a deadline when 
tasks are released at their specified release times. A task sei 
T is schedulable if every concrete task set o generated 
from T is schedulable. A scheduling algorithm schedules 
a concrete task set w if no task of w ever misses a deadline 
when the algorithm is applied. 

In this paper, we restrict ourselves to the case of non- 
preemptive scheduling on a uniprocessor; that is, we 
assume a scheduling algorithm that does not interrupt the 
execution of any task once it has begun. We also restrict 

More properly. 5 and w are multisets since there can exist 
more than one task in 5 with the same cost and period and 
more than one task in w with the same cost, period, and 
release time. 

ourselves to scheduling on a uniprocessor without inserted 
idle time; which means that the scheduling algorithm does 
not permit the processor to be idle if there is a task that 
has been invoked but has not completed execution. To 
save space and avoid tedium, we will not mention these 
restrictions in the remainder of the paper. 

Note that a task set is schedulable if and only if the tasks 
can be scheduled for any set of release times. In contrast, 
each member of a concrete task set has a specified release 
time, and showing that a concrete task set is schedulable 
only establishes that its specified release times can be 
accommodated. For example, under the restrictions of no 
preemption and no inserted idle time, a periodic task set 
that is not schedulable may generate sets of concrete tasks 
that are schedulable as well as sets which are not. For 
example, the set of two periodic tasks T =  ( ( 3 , 5 ) ,  (4, 10)) 
generates both schedulable and unschedulable concrete task 
sets: the set consisting of U’ = ( ( ( 3 3 ,  0), ((4,10), 0)) is 
schedulable but the set consisting of w“ = (((35). l ) ,  
((4,10), 0)) is not. 

A scheduling algorithm is said to be u n i v e r s a l f o r  
concrete  periodic  ( sporad ic )  tasks if the algorithm 
schedules every schedulable set of concrete periodic 
(sporadic) tasks. A scheduling algorithm is said to be 
universal  f o r  p e r i o d i c  ( s p o r a d i c )  t a s k s  i f  the 
algorithm schedules any concrete periodic (sporadic) task 
set gencrated from a set of schedulable tasks. We will 
show that a deadline-driven scheduling algorithm that is a 
non-preemptive version of the earliest deadline first (EDF) 
algorithm [Liu & Layland 731, is universal for either 
periodic or sporadic tasks as well as for concrete sporadic 
tasks. For concrete periodic tasks, however, things are 
more complex. If a set of concrete periodic tasks w is 
generated from a periodic task set T that is schedulable, 
then w i ?  schcdulahle (and indeed can be scheduled by the 
EDF algorithm). But if T is not schedulable, then w may 
or not be schedulable. In the general case, we show that 
determining whether w is schedulable is NP-hard in the 
strong sense. Moreover, we establish that if there exists a 
universal Scheduling algorithm for concrete periodic m k s  
that takes only a polynomial amount of time to make each 
scheduling decision, then P = NP. Thus it is unlikely that 
there exists a universal algorithm for scheduling concrete 
periodic tasks. 

3 .  Previous Work 

Previous work in the area of real-time scheduling has 
mainly focused on the analysis of preemptive scheduling 
algorithms. A well-known result is that the preemptive 



EDF algorithm is universal for all sets of concrete periodic 
tasks for which the release times are all 0 [Liu & Layland 
731. This result generalizes to all periodic task sets (i .e. ,  
for concrete periodic tasks with arbitrary release times) 
[Jeffay 89al. The extension of the preemptive problem to 
multiprocessors was considered in [Dhall & Liu 781 and 
[Bertossi & Bonuccelli 831. 

Work with non-preemptive scheduling algorithms has 
typically been confined to consideration of models where 
processes are invoked only once, there is a precedence order 
between the processes, and each process requires only a 
single unit of computation time and must be completed 
before a deadline [Garey el al. 81, Frederickson 831. 

A more general characterization of periodic tasks has been 
considered in [Leung & Merrill80], [Lawler & Martel 811, 
[Leung & Whitehead 821, and [Mok 831. In these works, 
when a task is invoked, it may have a deadline nearer than 
the time of the next task invocation. For this more general 
model, Mok has shown that the problem of deciding 
schedulability of a set of periodic tasks which use 
semaphores to enforce mutual exclusion constraints is Np- 
hard [Mok 831. Our paper demonstrates the intractability 
of deciding schedulability for an even simpler characteriza- 
tion of periodic tasks and additionally provides strong 
evidence that there may not exist a universal non- 
preemptive scheduling algorithm for periodic tasks with 
specified release times. 

4 .  Non-Preemptive Scheduling of 
Periodic and Sporadic Tasks 

We first consider the problem of scheduling a set of 
periodic or sporadic tasks non-preemptively on a single 
processor. We begin by developing a set of relations on 
the costs and periods of tasks that must hold if  a task set 
is to be schedulable. If  the elements of a task set do not 
satisfy these relationships then no scheduling algorithm 
can schedule the tasks. We show that periodic and sporadic 
task sets have the same requirements for schedulability. 
Having identified necessary conditions for schedulability, 
we then exhibit an algorithm which schedules any set of 
periodic or sporadic tasks that satisfy the necessity 
conditions. This establishes directly that the algorithm is 
universal for scheduling sets of tasks and proves that the 
necessary conditions are also sufficient. 

The following theorem establishes necessary conditions 
for schedulability for a periodic task set. Our development 
of these conditions is motivated by the early work of 
Sorenson [Sorenson 74, Sorenson & Hamacher 751. 

Theorem 4.1: Let 7,, = ( T I ,  T2 ,  ..., T n ) ,  where Ti = (ci. 
pi), be a set of periodic tasks sorted in non-decreasing order 
by period (i .e. ,  for any pair of tasks Ti and Ti, if i > j ,  
then pi 2 pj). If rp is schedulable then 

n 

1) &; 5 1, 

2) V i ,  1 < i 5 n; V L , p l  < L < pi: 
i- 1 L - 1  

Informally, condition ( 1 )  can be thought of as a 
requirement that the processor not be overloaded. If a 
periodic task T has a cost c and period p,  then c/p is the 
fraction of processor time consumed by T over the lifetime 
of the system ( i . e . ,  the utilization of the processor by 0. 
The first condition simply stipulates that the cumulative 
processor utilization cannot exceed unity; reflecting our 
restriction to a uniprocessor.2 

Condition (2) reflects our restriction to non-preemptive 
scheduling without inserted idle time. The right hand side 
of the inequality in condition (2) is a least upper bound on 
the processor demand that can be realized in an interval of 
length L starting at the time an invocation of a task Ti is 
scheduled, and ending sometime before the deadline for the 
invocation. For a set of tasks to be schedulable, the 
demand in the interval L must always be less than or equal 
to the length of the interval. Although this is semantically 
similar to the requirement that the processor not be over- 
utilized, it can easily be shown that conditions (1) and (2) 
are in fact not related. It is possible to conceive of both 
schedula6le task sets that have a processor utilization of 
1 .O, and unschedula6le task sets that have arbitrarily small 
processor utilization. 

Proof: We prove the contrapositive of the Theorem: if a 
set of periodic tasks 7p does not satisfy condition (1) or 
condition (2) then there exists a concrete set of periodic 
tasks, generated from rp that is not schedulable. 

For a concrete set of tasks w, define the processor demand 
in the time interval [a, 61, written d.,b. as the maximum 
amount of processing time required by w in the interval 
[a, 61 to complete execution of all invocations of tasks 
with deadlines in the interval [a, 61. The processor demand 
in the interval [a, 61 will be a function of costs and periods 

In [Liu & Layland 731 it was shown that a concrete set of 
periodic tasks op = { (T I , /? / ) ,  (T2,Rz). .... (Tn,Rn),  ) where 
R i  = 0 for all i (i.e., all tasks are released at time 0). is 
schedulable on a uniprocessor when preemption is allowed at 
arbitrary points in time if and only if condition (1) alone is 



of the tasks in w, the length of the interval, the invocation 
times of tasks prior to or at time a ,  and the amount of 

or before time b that have not completed execution by 

TI I, ... 

T2 I.. 

I\ ... Ti- 1 
T,  I ,,. 

Ti+, I .. 

computation time required to complete execution of task 
invocations that occurred prior to time a with deadlines at 

time a. o is schedulable if and only if for all intervals 
[U ,  b ] ,  da,b I b - U.  

Consider the concrete set of periodic tasks wp = ( (TIJ l ) ,  
(T2Jr2), ..., (T,,Jr,,)), generated from T~ where Ri = 0 for 
all i ,  1 I i I n (i.e., the concrete set of tasks wherein all 
tasks are released at time 0). Let f = pip2 . . . p , , .  In the 

interval [O,I ] ,  task i must receive - ci units of processor 

time to ensure it does not miss a deadline in the interval 
[O, I ] .  Therefore, in the interval [0, tl 

I 

Pi 

n 

and hence 

If condition (1) does not hold then do,, > I ,  and hence wp is 
not schedulable. 

For condition ( 2 ) ,  consider the concrete set of periodic 
tasks up = ( (TIPl) ,  (T2P2),  ..., (TnRn)J  generated from 
T ~ ,  where for some value of i ,  1 < i I n ,  RI = 0 ,  and R, = 
1 for 1 I j  I n , j  # i. This gives rise to the pattem of task 
invocations shown in Figure 4.1.  Since neither 
preemption nor inserted idle time are allowed, task T; must 
execute in the interval [0, c i ] .  For all L, p I  < L < p,. in 
the interval [0, L ] ,  the processor demand, is given by 

The demand consists of the cost of executing the initial 
invocation of task TI  plus the processor demand due to 
tasks 1 through i-1 in the interval 11, L].  (Note that tasks 
with periods greater than or equal to p1 have no 
invocations with deadlines in the interval [O, L] and hence 
do not contribute to the processor demand in the interval 
[O, LI .I 
If condition (2) does not hold then doL > L ,  and hence op 

is not schedulable. 0 

Conditions (1) and (2) from Theorem 4.1 are also 
necessary for scheduling a set of sporadic tasks non- 
preemptively. 

T n  I 
Time I : 

0 1 C l  PI 
Figure 4.1 

Corollary 4.2: If a set of sporadic tasks T~ = {TI ,  T2,  
..., T , } ,  sorted in non-decreasing order by period, is 
schedulable then rS satisfies conditions (1) and (2) from 
Theorem 4.1. 

Proof This can be proved independently of Theorem 4.1, 
however, it follows from Theorem 4.1 using the fact that 
one of the behaviors of a concrete set of sporadic tasks is 

0 as a concrete set of periodic tasks. 

The constructions used in the proof of Theorem 4.1, in 
fact, precisely characterize the worst case pattem of task 
invocations for any set of tasks. We will show that if a set 
of tasks can be scheduled (without preemption) when 
invoked as shown in Figure 4.1, then the tasks are indeed 
schedulable. Specifically, we demonstrate the existence of 
a non-preemptive scheduling algorithm which is 
guaranteed to schedule any periodic or sporadic task set 
that satisfies the necessity conditions. 

The basic scheduling algorithm we consider is the earliest 
deadfinefirst (EDF) algorithm [Liu & Layland 731. When 
selecting a task for execution, an EDF scheduling 
algorithrii chooses the task with an uncompleted 
invocation with the earliest deadline. Ties between tasks 
with identical deadlines are broken arbitrarily. With a non- 
preemptive formulation of the EDF algorithm, once a task 
is selected, the task is immediately executed to 
completion. Unless the processor is idle, such a scheduler 
will make dispatching decisions only when a task 
terminates an execution. If the processor is idle then the 
first task to be invoked is scheduled. If multiple tasks are 
invoked simultaneously then the one with the nearest 
deadline is scheduled. We assume that both the task 
selection process and the process of dispatching a task take 
no time in our discrete time system. 

We next demonstrate the universality of the EDF 
algorithm for scheduling sporadic tasks without 
preemption. This means if any non-preemptive algorithm 

satisfied. 
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schedules a set of sporadic tasks, then the EDF algorithm 
will as well. To prove universality, it suffices to show 
that conditions (1) and (2) are sufficient to ensure that the 
EDF algorithm schedules any concrete set of sporadic 
tasks generated from a set of schedulable sporadic tasks. 

Theorem 4.3: Let rS be a set of sporadic m k s  ((cl,pl), 
(cz. p 2 ) ,  ..., (c,,, p , ) )  sorted in non-decreasing order by 
period. If r, satisfies conditions (1) and (2) from Theorem 
4.1 then the non-preemptive EDF scheduling algorithm 
will schedule any concrete set of sporadic tasks generated 
from rs. 

Proof By contradiction. Assume the contrary, i.e., that 
r, satisfies conditions (1) and ( 2 )  from Theorem 4.1 and 
yet there exists a concrete set of sporadic tasks w, 
generated from r,, such that a task in w, misses a deadline 
at some point in time when w, is scheduled by the EDF 
algorithm. The proof proceeds by deriving upper bounds 
on the processor demand for an interval ending at the time 
at which a task misses a deadline. 

Let f d  be the earliest point in time at which a deadline is 
missed. w, can be partitioned into three disjoint subsets: 

SI = the set of tasks that have an invocation with a 
deadline at time f d ,  

S 2  = the set of tasks that have an invocation occurring 
prior to time td  with dcadline after td ,  and 

S3 = the set of tasks not in S, or S 2 .  

Tasks in S3 either have a release time greater than t d ,  or 
they have not been invoked immediately prior to time f d .  

As will shortly become apparent, to bound the processor 
demand prior to f d ,  it suffices to concentrate on the tasks 
in S 2 .  Let b l ,  b 2 ,  ..., bk  be the invocation times 
immediately prior to id  of the tasks in S2. There are two 
cases to consider. 

Case 1: None of the invocations of tasks in S 2  occurring 
at times bl ,  b2, ..., bk are scheduled prior to i d .  

Let to  be the end of the last period prior to f d  in which the 
processor was idle. If the processor has never been idle let 
to = 0. In the interval [io, i d ] ,  the processor demand is the 
total processing requirement of the tasks that are invoked 
at or after time to, with deadlines at or before time td .  This 
gives 

(Equality holds if all tasks are invoked at time to.) Since 
there is no idle period in the interval [to, t d ]  and since a 

task misses a deadline at td, it follows that d,,  > f d  - to. 

Therefore 

and hence 

However, this contradicts condition (1) and establishes the 
theorem for Case 1. 

Case 2: Some of the invocations of tasks in S2 occurring 
at times bl ,  b2, ..., bk are scheduled prior to td. 

Let Ti be the last task in S2 scheduled prior to time t d .  Let 
t ,  < f d  be the point in time at which the invocation of T,  
occurring immediately prior to td  commences execution. 
Note that if the processor is ever idle in the interval [t,,  
f d ] .  then the analysis of Case 1 can be applied directly to 
the interval [ to, t d ] ,  where t ,  < to < f d  is the end of the last 
idle period prior to time t d ,  to reach a contradiction of 
condition (1). Therefore, assume the processor is fully 
utilized during the interval [t,, f d ] .  

Let Tk be a task that misses a deadline at time t d .  Because 
of our choice of task T, and our use of EDF scheduling, it 
follows that t ,  < f d  - pk.  That is, the invocation of the 
task Tk that does not complete execution by timc f d  occurs 
within thc interval [t , ,  t d ] .  We now show that i f  the 
invocation in question of task T, is scheduled prior to time 
t d ,  then there must have existed enough processor time in 
[t,, t d ]  to schedule dl invocations of tasks occurring after 
time f ,  with deadlines at or before time t d .  To begin, we 
derive an upper bound on dI,,ld, the processor demand for 
the interval [ t i ,  f d ] .  

The following facts hold for Case 2: 

i) Oilicr than task 7, ,  no task with period greater than 
or equal to td  - t ,  executes in the interval [t,, t d ] .  

Since the invocation of task TI scheduled at time t ,  has a 
deadline after time i d  and is the last such invocation 
scheduled prior to to td ,  every other task executed in [t,,  id ]  

must have a deadline at or before td because of the EDF 
discipline. 

ii) Other than task T I ,  no task which is scheduled in 
[ f , ,  i d ]  could have been invoked at time ti. 

Again, as a consequence of the definition of task T,, other 
than T,, every task scheduled in [t,, t d ]  has a deadline at or 
before Id. Therefore, if a task T, . ,  that is scheduled in [t,, 
t d ]  had been invoked at I , ,  the EDF algorithm would have 



scheduled task TI, instead of task TI at time f , .  

Since p ,  > td  - t , ,  fact (i) above indicates that only tasks 
TI ... TI need be considered in computing df,,fd. Since the 
invocation of task T I  that is scheduled at time t ,  has a 
deadline after time td ,  all task invocations occurring prior 
to time t ,  with deadlines at or before td  must have been 
satisfied by t ,  and hence do not contribute to dl , , fd.  
Similarly, since TI has the last invocation with deadline 
after fd that executes prior to t d ,  all invocations of tasks 
T I  - TI-, occurring prior to time fd with deadlines after t d ,  

need not be considered. Lastly, since none of the 
invocations of tasks T I  - TI- ,  that are scheduled in the 
interval [t, ,  td]  occurred at time f,, the demand due to tasks 
T I  - in  the interval [ t , ,  t d ]  is the same as in the 
interval [ I , +  1, fd]. These observations, plus the fact the 
invocation of task T I  scheduled at time t ,  must be 
completed before time t d ,  indicate that the processor 
demand in [t, ,  tJ  is bounded by 

k t  L = td  - t i .  Substituting L into the (4.1) yields 

Since there is no idle time in [ t , ,  t d ] .  and since a task 
missed a deadline at i d ,  i t  follows that dl,, ld > t d  - I ,  or 
simply dlz,ld > L. Combining this with (4.2) yields 

Since p i  > td  - t i ,  we have p i  > L. Since t ,  < fd - p k  (recall 
that k is the index of a task that missed a deadline at time 
td) we have f d  - ti  > Pk 2 P I ,  and hence L > P I .  Therefore 
(4.3) contradicts condition (2) and establishes the theorem 
for Case 2. 

We have shown that in either case, if an clement of a 
concrete set of sporadic tasks generated from T, misses a 
deadline when scheduled by the non-preemptive EDF 
algorithm, then either condition (1) or condition (2) from 
Theorem 4.1 must have been violated. This proves the 
theorem. 0 

The following corollary shows that the EDF scheduling 
algorithm is universal for scheduling periodic tasks. 

Corollary 4.4: Let T~ be a set of periodic tasks ( ( c l ,  
p I ) ,  (cz, pz), ..., (cn,  pn))  sorted in non-decreasing order 
by period. If T~ satisfies conditions (1) and (2) from 
Theorem 4.1 then the non-preemptive EDF scheduling 
algorithm will schedule any concrete set of periodic tasks 
generated from zp. 

Proof Recall that one of the behaviors of a sporadic task 
is as a periodic task. Therefore, if conditions (1) and (2) are 
sufficient to guarantee the non-preemptive EDF algorithm 
will schedule a concrete set of sporadic tasks, then the 
conditions are also sufficient to guarantee the algorithm 

0 will schedule a concrete set of periodic tasks. 

Since the non-preemptive EDF algorithm is universal for 
both periodic and sporadic tasks, in order to decide if  a set 
of tasks is schedulable, one need only consider if 
conditions (1) and (2) from Theorem 4.1 hold. Deciding if 
condition (1) holds is straightforward and can be performed 
in time O(n). A set of tasks can be tested against condition 
(2) in pseudo-polynomial time Ob,,) by using a dynamic 
programming technique [Jeffay 89al. (Recall that p,, is the 
period of the “largest” task.) 

5 .  Non-Preemptive Scheduling of 
Concrete Tasks 

The non-preemptive EDF algorithm is universal for both 
periodic and sporadic tasks. In this section we examine the 
problem of scheduling a concrete set of periodic or 
sporadic tasks. Recall that a concrete task set consists of a 
task set together with release times of the tasks. For 
concrete sporadic tasks we show that the non-preemptive 
EDF scheduling algorithm is again universal. However, 
for concrete periodic tasks the situation is more complex. 
We show that the problem of deciding if a concrete set of 
periodic tasks is schedulable for any non-preemptive 
scheduling algorithm (including those that allow inserted 
idle time) is intractable (i .e. ,  NP-hard in the strong sense). 
Moreover, we show that if a universal algorithm exists for 
scheduling concrete periodic tasks without preemption 
then P = NP. 

To begin, we con\idcr schcduling concrete sporadic tasks. 
By thc tlcfinition ol schcdulability, if a set of sporadic 
tasks T~ is schedulable then any set of concrete sporadic 
tasks w, generated from T, is schedulable. The following 
theorem demonstrates that the schedulability of a concrete 
set of sporadic tasks is not a function of the assignment of 
release times to tasks. 

Theorem 5.1: Let w, = ( ( T I , R l ) ,  (T2,R2) ,  ..., (Tn,R, , ) )  
be a concrete set of sporadic tasks generated from the set of 
sporadic tasks 7, = ( T I ,  T, ,  ..., T,). Then w, is 
schedulable if and only if rS is schedulable. 

Proof: (a) This follows immediately from the definition 
of schedulability. (e) We must show that if the tasks of 
z, can be scheduled so as to not miss any deadlines when 
the task release times are given by Rl...R,,, then the same 



is true for any other set of release times. Suppose this is 
not the case, that is, for some set of release times 
R’,...R;, there exists some pattern of task invocations for 
which some task of z, must miss a deadline. By the 
definition of the behavior of a sporadic task, an arbitrary 
time interval may elapse between a task’s deadline and its 
next invocation. Let D be the maximum value of Ri + pi ,  
where pi is the period of task Z i .  Note that all initial 
invocatioris of tasks with release times R1 ... R ,  are 
completed at or prior to D. We can now map the pattern of 
task invocations with release times of R’, ... R’,, to a 
similar pattern of task invocations that begins at time D, 
in effect, starting 7, over again with a set of “release 
times” R :  + D unrelated to the original release times. 
Clearly if some pattern of task invocations could force 
some task to miss a deadline for release times R ;... R ‘,,, 
the same pattern of invocations shifted in time by D will 
cause some task of the concrete task set us to miss a 
deadline sometime after D. But this contradicts the 
hypotheses that w, is schedulable and establishes the 
theorem. 0 

Theorem 5.1 shows that the problem of scheduling 
sporadic tasks is equivalent to the problem of scheduling 
concrete sporadic tasks. It follows that conditions (1) and 
(2) from Theorem 4.1 are necessary and sufficient for 
schedulability of concrete sporadic task sets. Moreover, the 
non-preemptive EDF scheduling algorithm is universal for 
these task sets. 

Unlike concrete sporadic tasks, schedulability of concrete 
periodic tasks is a function of the assignment of release 
times. A periodic task set that is not schedulable may 
generate sets of concrete tasks that are schedulable as well 
as sets which are not (an example was given in Section 2) .  
In order to properly study the problem of scheduling 
concrete periodic tasks, the definition of universality 
presented in Section 2 must be refined to include some 
notion of efficiency. It has been assumed that a scheduling 
algorithm can select a task to execute in zero time. 
Therefore, a scheduler that enumerated all possible 
schedules would be a universal, albeit uninteresting, 
scheduler. In addition to scheduling all schedulable sets of 
tasks, a reasonable requirement for a universal scheduling 
algorithm is that each scheduling decision be made in time 
polynomial in the number of tasks. For this refined notion 
of universality, we will show that i f  there exists a 
universal non-preemptive scheduling discipline for 
scheduling concmte periodic tasks then P = NP. 

The following theorem shows that the complexity of 
deciding if a set of concrete periodic tasks is schedulable 
when one is allowed to consider any non-preemptive 

scheduling discipline (including those that allow inserted 
idle time) is NP-hard in the strong sense. This means that 
unless P = NP, a pseudo-polynomial time algorithm does 
not exist for deciding this question [Garey & Johnson 791. 
This provides strong evidence that the problem is 
intractable. This decision problem can be formally stated 
as follows. 

NON-PREEMPTIVE SCHEDULING OF CONCRETE 
PERIODIC TASKS (SCE):  Let ?p = ( ( c l ,  p l ) ,  (CZ. p 2 ) .  ..., 
(c,,, pa)) be a set of periodic tasks and let up = ( T ~ ,  p )  be a 
set of concrete periodic tasks generated from T ~ .  Is it 
possible to schedule q, non-preemptively? 

Theorem 5.2: NON-PREEMPTIVE SCHEDULING OF 
CONCRETE PERIODIC TASKS is NP-hard in the slrong 
sense. 

Proofi We will give a polynomial time transformation 
from the 3-PARTITION problem [Garey & Johnson 791 to 
SCPT. 

An instance of the 3-PARTITION problem consists of a 
finite set A of 3m elements, a bound B E Z+, and a “size” 
s(a) E Z+ for each a E A ,  such that each s(a) satisfies 
B/4 < s(a) < B/2, and Z Z  s(a,) = Bm.  The problem is to 
determine if A can be partitioned into m disjoint sets SI, 
S 2 ,  ..., S ,  such that, for 1 I i I m ,  znes, s(u) = B. (With 
the above constraints on the element sizes, note that every 
S, will contain exactly three elements from set A.) 

The transformation is performed as follows. Let A = (a,, 

0 2 ,  a3, ..., a3,,,Ir B E Z+, and s(a11, s ( a 2 > ,  s(aj), ..., s(a3,) 
E Z+, constitute an arbitrary instance of the 3-PARTITION 
problem. We create an instance of the SCPT problem by 
constructing a set wp of n = 3m + 2 concrete periodic 
tasks. LCL T~ = ( T I ,  T 2 ,  ..., T 3 m + 2 ] ,  where (recall T = 
(cost, period)) 

T I  = ((8B, 20B), 
T 2  = ((23B, 40B), and 

V J ,  3 I J  I 3m+2: TI = ( ( S ( U ] - ~ ) ,  40Bm), 

be a set of sporadic tasks, and let up = ( (T , ,R, ) ,  ( T 2 , R 2 ) ,  

..., ( T 3 m + 2 8 3 m + 2 ) )  where 
R j  = 0 ,  
R ,  =9B,md 

Vj ,3  < j I  3m+2: R,  = 0 ,  

be a set of concrete sporadic tasks. The construction of the 
set wp can clearly be done in polynomial time with the 
largest number created in the new problem instance being 
40Bm. In this instance of SCPT, note that the processor 
utilization is 
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Figure 5.1 

By our choice of release times for T I  and T 2 ,  up can be 
scheduled by a non-preemptive scheduling algorithm only 
if T2 is scheduled at points in time 9B + 40Bk, for all 
k 2 0, and all the invocations of T I  occurring at time 
20B + 40Bk, are scheduled at time 40B(k+l) - 8B,  for all 
k 2 0. ( S e e  Figure 5.1.) This must bc the case since if the 
execution of the i fh invocation of T2 is scheduled at some 
time other than 9B + 4OB(i-1). then the invocation of T I  
occurring at time 20B + 40B(i-1) will miss its deadline. 
Similarly, if the execution of an invocation of 7'/ 
occurring at time 20B + 40Bk ,  for some k ,  k 2 0, is 
scheduled at some time other than at 40B(k+l) - 88, then 
the invocation of T2 occurring at time 9B + 40Bk will 
miss its deadline. 

Note that with these scheduling constraints, if we consider 
only tasks T I  and T 2 ,  then for all k ,  k > 0, in each 
interval [40B(k-1), 40Bk], the processor will be idle for 
exactly B time units. It follows that in the interval [O, 
40Bm1, there will be I disjoint idle periods, m 5 1 I 2m, 
whose total duration is exactly Bm time units. For 
example, Figure 5.1 depicts a simulation of the scheduling 
of up by the non-preemptive EDF algorithm. When EDF 

scheduling is used, in the interval [0,40Bm] there will be 
exactly m disjoint idle periods, each of duration B. In this 
case, wp will be schedulable if and only if the EDF 
algorithm can schedule tasks T3 - T3m+2 in these m idle 
periods. 

In the general case, up will be schedulable by a non- 
preemptive scheduling algorithm if and only if thcrc exists 
a partition of tasks TJ - T3m+2 into m disjoint sets S I ,  Sz. 
..., S,, such that for each set S,, C T ~ S  c, = B .  Therefore, 

a solution to SCPT can be used to solve an arbitrary 
instance of the 3-PARTITION problem by simply 
constructing the se1 of concrete periodic tasks up, and then 
presenting these tasks to a decision procedure for SCPT. 
The answer from the SCPT decision procedure is the 
answer to the 3-PARTITION question for this problem 
instance. Since 3-PARTITION is known to be NP-complete 
in the strong sense [Garey & Johnson 791, SCPT is NP- 

0 

1 1  

hard in the strong sense. 

Note that the proof did not assume anything about the use 
of inserted idle time. 

Although one cannot efficiently decide schedulability for 
concrete periodic tasks, recall that conditions (1) and (2) 
are sufficient for the EDF algorithm to schedule such 
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Sets Of ‘OnCrete 
Tasks 

Sets of Tasks 

Periodic 

Non-preemptive Non-preemptive EDF 11 I EDF 

If a polynomial 
time algorithm Non-preemptive EDF 

exists, then P = NP 

tasks. (These conditions are, however, not necessary.) 

The construction of up in Theorem 5.2 can be used to 
show that if a universal non-preemptive scheduling 
algorithm existed for scheduling concrete periodic tasks, 
and this algorithm took only a polynomial amount of 
time (in the length of the input) to make each scheduling 
decision, then P = NP. That is, if there exists a universal 
non-preemptive scheduling algorithm for concrete periodic 
tasks (possibly using inserted idle time), then we can give 
a pseudo-polynomial time algorithm for deciding 3- 
PARTITION. The key observation is that if  a 3-PARTITION 
problem instance is embedded in SCPT as described above, 
then only a pseudo-polynomial length portion of the 
schedule generated by a universal non-preemptive 
algorithm when scheduling wp, needs to be checked in 
order to decide the embedded 3-PARTITION problem 
instance. 

Corollary 5.3: If there exists an universal, non- 
preemptive, uniprocessor scheduling algorithm for 
scheduling concrete periodic tasks then P = NP. 

Proof: Assume there exists such a universal scheduling 
algorithm. From an instance of the 3-PARTITION 
problem, construct a set up of concrete periodic tasks as 
described in the proof of Theorem 5.2. Note that if up is 
not schedulable, then some task in up will miss a deadline 
in the interval [O, 9B+40Bm]. Therefore we can simulate 
the universal scheduling algorithm on up over the interval 
[0,9B+40Bm] and simply check to see if any tasks miss a 
deadline in this interval. The simulation and the checking 
of the schedule produced by the universal algorithm can 
clearly be performed in time proportional to Bm. By the 
reasoning employed in the proof of Theorem 5.2, if some 
task missed a deadline then there is a negative answer to 
the %PARTITION problem instance. If no task missed a 
deadline then there is an affirmative answer. Therefore, 
since 3-PARTITION is NP-complete in the strong sense 
and since we have given a pseudo-polynomial time 

Sets of Tasks Sets of Concrete 1 Tasks 
I 
I 

Pseudo-polynomial Pseudo-polynomial 
time time 

NP-hard in the Pseudo-polynomial 
strong sense. time 

Table 6.2: Complexity of deciding schedulability. 

algorithm for deciding 3-PARTITION, P = NP. 0 

Unless P = NP, Corollary 5.3 shows that we will not be 
able to develop a universal non-preemptive scheduling 
algorithm for scheduling concrete periodic tasks. 

6 .  Summary 

Non-preemptive scheduling problems arise in many forms 
in concurrent and real-time systems. Moreover, as non- 
preemptive schedulers are easier to implement and analyze 
(e.g., assess the overhead of scheduling), it is important to 
understand the requirements of scheduling tasks non- 
preemptively. In this paper we have examined the problem 
of scheduling a set of periodic or sporadic tasks without 
preemption on a uniprocessor. The following fundamental 
results have been demonstrated. The earliest deadline first 
algorithm is universal for sets of sporadic and periodic 
tasks and for sets of concrete sporadic tasks. The 
universality is with respect to the class of scheduling 
algorithms that do not use inserted idle time. Unless P = 
NP, there does not exist a universal non-preemptive 
scheduling algorithm for concrete periodic tasks. 

Given a set of sporadic, periodic, or concrete sporadic 
tasks, one can efficiently determine if the tasks will be 
schedulable. The problem of deciding schedulability for a 
set of concrete periodic tasks is intractable (NP-hard in the 
strong sense). 

These results demonstrate that a fundamental distinction 
exists between periodic and sporadic tasking models. 
Specifically, the schedulability of a set of concrete 
sporadic tasks is not a function of their release times. 

Our results are further summarized in the Tables 6.1 and 
6.2. 
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