
Lecture #2

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

Dependability ...

Dependability in real-time systems

IFIP Working Group 10.4 on Dependable Computing and Fault Tolerance

“… is that property of a computer system �
which allows reliance to be justifiably �

placed on the service it delivers …”

Jean-Claude Laprie

“… includes as special cases the notions �
of reliability and safety …”

Components of dependability: [Laprie]
•  Attributes:

–  The ways and measures by which the quality of a dependable
service can be appraised

–  Reliability, Availability, Safety (+ Confidentiality, Integrity, Maintainability)

•  Threats:
–  Circumstances causing or resulting in non-dependability
–  Faults, Errors, Failures

•  Means:
–  The methods, tools and solutions required to deliver a

dependable service with the required confidence
–  Fault prevention, Fault removal, Fault tolerance

Dependability in real-time systems

Attributes of dependability:
•  Reliability:

–  The ability of a system to continuously deliver the service
that is expected (according to specifications).

•  Availability:
–  The ability of a system to deliver its expected service at the

time instant the service is requested.

•  Safety:
–  The ability of a system to guarantee that an incident does not

occur, whether or not the system delivers its expected service.
Incident: unplanned event or series of events that may result in
death, injury, occupational illness, damage to (or loss of) equipment
(or property), or environmental harm.

Dependability in real-time systems

Attributes of dependability: (in terms of probability)
•  Reliability:

–  The probability that the system is still functioning at time t, given
that it was functioning at time t = 0.

•  Availability:
–  The probability that the system is functioning at the time instant

its service is requested.

•  Safety:
–  The probability that the system is either functioning, or are in a

safe (non-functioning) state.

Dependability in real-time systems

Attributes of dependability: (in terms of probability)
•  Reliability:

–  The probability that the system is still functioning at time t, given
that it was functioning at time t = 0.

–  Expected life time: MTTF = 1 / λ [hours] (mean time to failure)
 λ : fault intensity [faults / hour] (typically, faults per million hours)

•  Availability:
–  The probability that the system is functioning at the time instant

its service is requested.
–  Expected repair time: MTTR = 1 / µ [hours] (mean time to repair)

 µ : repair intensity [repairs / hour]

–  Availability = MTTF / (MTTF + MTTR)

Dependability in real-time systems

Threats against dependability:
•  Fault:

–  The system has encountered a condition that may lead to an
undesired system state (error).

–  The condition may be permanent, transient or intermittent.

•  Error:
–  The system has changed into an undesired state that may

lead to an inability to deliver expected service (failure).

•  Failure:
–  The system does not deliver the service that is expected,

according to specification.
–  The failure can be in the time domain or value domain.

Dependability in real-time systems

What causes faults?
•  Design faults:

–  Incomplete specifications
–  Erroneous system models (e.g., underestimated WCET)
–  Insufficient formal checking (e.g., no schedulability analysis)

•  Component defects:
–  Manufacturing effects (in hardware or software)
–  Wear and tear due to component use (“aging”)

•  Environmental effects:
–  High stress (temperature, G-forces, vibrations)
–  Electromagnetic or elementary-particle radiation

Dependability in real-time systems

What types of (hardware) faults are there?
•  Permanent faults:

–  Total failure of a component
–  Remains until component is repaired or replaced
–  Caused by, e.g., short circuit, broken wire, depleted battery

•  Transient faults:
–  Temporary malfunction of a component
–  Caused by, e.g., radiation, power fluctuations

•  Intermittent faults:
–  Repeated occurrences of transient faults
–  Caused by, e.g., overheating, loose wires

Dependability in real-time systems

Dependability in real-time systems

What types of (software) faults are there?
•  Permanent faults:

–  Total failure of software code
–  Remains until software is repaired or restarted
–  Caused by, e.g., corrupt data structures, unterminated tasks

•  Transient faults:
–  Temporary malfunction of software code
–  Caused by, e.g., data-dependent bugs in the code

•  Intermittent faults:
–  Repeated occurrences of transient faults
–  Caused by, e.g., memory-pointer problems

Examples of fault → error → failure chains:
•  Scenario #1:

1. A temporary bit flip occurs in a processor register due to
elementary-particle radiation (hardware fault)

2. The bit flip occurs in a register which is being used as a loop
counter, leading to a too high number of loop iterations in a
high-priority task, thereby causing the real execution time of
the task to exceed the predicted WCET (error)

3. The additional interference by the high-priority task leads to a
deadline miss in a lower-priority task which in turn negatively
affects system behavior (failure)

Dependability in real-time systems

Examples of fault → error → failure chains:
•  Scenario #2:

1. A piece of software code contains an unintentional bug that
may try to store a string of n+1 characters into a buffer that
only has reserved space for n characters (software fault)

2. A string store operation involving n+1 characters has been
done to the under-dimensioned buffer, causing the last stored
character to overwrite the value of another variable (error)

3. The variable whose value was overwritten is of integer type,
and its new value changes the program behavior in such a way
that a set of CAN messages are transmitted more frequently
than stated in the system specification (failure)

Dependability in real-time systems

Examples of fault → error → failure chains:
•  Scenario #2b: (in another system on the same CAN bus)

1. A burst of messages occurs on the CAN bus, causing the
inter-arrival time of two subsequent CAN messages to be
shorter than assumed in the specification (design fault)

2. The unexpectedly-short message inter-arrival time causes
the CAN interrupt handler (a high-priority task) to execute
more frequently than predicted (error)

3. The additional interference by the interrupt handler task
causes a lower-priority task to miss its deadline, which in
turn negatively affects system behavior (failure)

Dependability in real-time systems

Thus, a failure of one system can cause a fault in another system!

Examples of fault → error → failure chains:
•  These examples all led to time failures.

Failures in the time domain means that service is delivered in
an untimely manner with respect to the system specification.
Fail late/early: the system produces correct services in the value
domain, but may suffer from a ‘late’ or ‘early’ timing error.

Fail silent: the system produces correct services until it suddenly
produces no service at all (a k a “omission failure”)

•  Give examples that can lead to value failures.
Failures in the value domain means that some data resulting
from the service is wrong with respect to the system specification.

Dependability in real-time systems

Means for dependability:
•  Fault prevention:

–  Introduction of faults in the system is avoided by means of
reliable hardware and software components, and formal
methods for verifying the correctness of these components.

•  Fault removal:
–  Existing faults are identified by testing and removed by repair.

•  Fault tolerance:
–  Faults that occur (despite any preventive measures) while the

system is in mission are handled by means of component
redundancy, implemented as fault masking or error detection.

Dependability in real-time systems

Fault prevention:
•  High-quality hardware:

–  Military specified components that can withstand extra abuse
from the environment (MIL-SPEC), and physical screening to
protect components from radiation.

•  High-quality software:
–  Programming languages with strong type checking, data

abstraction, and modularity, and software engineering
methods with revision control, etc.

•  Formal methods:
–  Schedulability analysis to prove timing correctness, and model

checkers to prove absence of deadlock, in concurrent software.

Dependability in real-time systems

Fault tolerance:
•  Full fault tolerance: (no fail)

Fault masking: uses static redundancy with active backup
components; completely transparent to the system.

Error detection: uses dynamic redundancy with passive backup
components; requires the system to take suitable action.

•  Graceful degradation: (fail soft)
–  Combines error detection with a subsequent action that takes

the system into a service mode with guarantees of lower quality.

•  Controlled shutdown: (fail safe)
–  Combines error detection with a subsequent action that takes

the system into a (non-functioning) safe state.

Dependability in real-time systems

Detecting timing errors during task execution (no fail):
•  Caused by:

–  Overrun: inter-arrival times shorter than assumed (sporadic
overrun) or execution time exceeds WCET (execution overrun)

–  Silent failure: a task suddenly stops delivering service

•  Detect with:
–  Watchdog: time-out mechanism that monitors the temporal

behavior of tasks, and compares against expected behavior.

•  Action taken:
–  Allow: accept the overrun (if system service semantics allow)
–  Terminate: do not accept the overrun (if semantics allow)
–  Reconfigure: let other task replace the lost one (backup task)

Fault-tolerant techniques

Masking timing errors during task execution (no fail):
•  Caused by:

–  Sporadic overrun: real inter-arrival times shorter than assumed

•  Detect with:
–  Watchdog: time-out mechanism that monitors the temporal

behavior of tasks, and compares against expected behavior.

•  Action taken:
–  Regulate: adjust inter-arrival times (restore intended behavior)

Fault-tolerant techniques

Detecting value errors during task execution (no fail):
•  Caused by:

–  Hardware or software faults: bit flips in registers, bugs in code

•  Detect with:
–  Duplex components: compare results between two identical

calculations executed by redundant hardware or software.
–  Constraint check: compare result against known value bounds.

•  Action taken:
–  Dispose: do not use value (if system service semantics allow)
–  Replace: with a reasonable value (if semantics allow)
–  Re-execute calculation (if system service time allows)

Fault-tolerant techniques

Masking value errors during task execution (no fail):
•  Caused by:

–  Hardware or software faults: bit flips in registers, bugs in code

•  Masking (correction) with:
–  Voting: compare results between three identical calculations

executed by redundant hardware or software and pick the
value that dominates (majority voting).

–  Error correction: restore to original value (using, e.g., error
correcting codes).

•  Action taken:
–  None: masking is transparent to system!

Fault-tolerant techniques

To extend real-time computing towards fault-tolerance,
the following issues must be considered:

1. What is the fault model used?
–  What type of fault is assumed?
–  How and when are errors detected?

2. How should fault-tolerance be implemented?
–  Using temporal redundancy (re-execution)
–  Using spatial redundancy (replicated tasks/processors)

3. What scheduling policy should be used?
–  Extend existing policies (cyclic executive / priority scheduler)
–  Suggest new policies …

Fault-tolerant scheduling

What fault model is used?
Type of fault:

–  Transient, intermittent and/or permanent faults
–  For transient or intermittent faults: is there a minimum

inter-arrival time between two subsequent faults?

Error detection:
–  Comparison (after task execution)
–  Constraint checking (during task execution)
–  Watchdogs (during task execution)

Fault-tolerant scheduling

How is the fault-tolerance implemented?
Temporal redundancy:

–  Tasks are re-executed to provide replicas for voting decisions
–  Tasks are re-executed to recover from a fault
–  Re-execution may be from beginning or from check-point
–  Re-executed task may be original or simplified version

Spatial redundancy:
–  Replicas of tasks are distributed on multiple processors
–  Identical implementations or different implementations

(N-version programming) of tasks
–  Voting decisions are made to detect errors or mask faults

Fault-tolerant scheduling

How do we make existing techniques fault-tolerant?
Single-processor scheduling:

–  Use a state-of-the-art scheduler and use any surplus capacity
(slack) to re-execute tasks that experience errors during their
execution.

–  Alt #1: The slack is reserved a priori and can be accounted
for in a schedulability test. This allows for hard real-time
guarantees (under the assumed fault model)

–  Alt #2: re-executions can be modeled as aperiodic tasks. The
slack is then extracted dynamically at run-time by dedicated
aperiodic servers. This allows for statistical guarantees.

Fault-tolerant scheduling

How do we make existing techniques fault-tolerant?
Multiprocessor scheduling:

–  Generate a multiprocessor schedule that includes primary
and backup (active or passive) tasks.

–  Execute the primary tasks in the normal course of things.

–  Active backup tasks always execute in parallel with the primary.
–  Passive backup tasks are only activated if the primary fails.

–  Trick #1: Let a passive backup handle multiple primaries in the
schedule (overloading).

–  Trick #2: De-allocate resources reserved for a passive backup
if its primary completes successfully.

Fault-tolerant scheduling

