Chapter 13
Tolerating timing faults

13.1 Dynamic redundancy and 13.5 Overrun of resource usage
timing faults 13.6 Damage confinement

13.2 Deadline miss detection 13.7 Error recovery

13.83 Overrun of worst-case Summary
execution time Further reading

13.4 Overrun of sporadic events Exercises

Throughout this book it has been assumed that real-time systems have high
reliability requirements. One method of achieving this reliability is to incorporate
fault tolerance into the software. The inclusion of timing constraints introduces the
possibility of these constraints being broken at run-time and failures occurring in
the time domain. With soft systems, a task may need to know if a timing constraint
has been missed, even though it can accommodate this under normal execution.
More importantly, in a hard system (or subsystem), where deadlines are critical,
a missed deadline needs to trigger some error recovery routine.

If the system has been shown to be schedulable under worst-case execu-
tion times then it is arguable that deadlines cannot be missed. However, the dis-
cussions of reliability in Chapter 2 indicated strongly the need for a multifaceted
approach to reliability; that is, prove that nothing can go wrong and include rou-
tines for adequately dealing with the problems that arise when they do.

This chapter considers the causes of timing faults and how they can be tol-
erated within the context of the dynamic redundancy approach to fault tolerance
introduced in Chapter 2.

13.1 Dynamic redundancy and timing faults

In Chapter 2, the four phases of dynamic software fault tolerance were introduced. These
are now reviewed in the context of timing faults.

(1) Error detection — Most timing faults will eventually manifest themselves in the
form of missed deadlines.

(2) Damage confinement and assessment — When deadlines have been missed, it
must be decided which tasks in the system are at fault. Ideally confinement tech-
niques should ensure that only faulty tasks miss their deadlines.

457

458
3)

“

TOLERATING TIMING FAULTS

Error recovery — The response to deadline misses requires that the application
undertakes some recovery, perhaps providing a degraded service.

Fault treatment and continued service — Timing errors often result from transient
overloads. Hence they can often be ignored. However, persistent deadline misses
may indicate more serious problems and require some form of maintenance to be
undertaken.

In a system that has been ‘proved’ correct in the timing domain via the schedula-

bility analysis techniques presented in Chapter 11, deadlines could still be missed if:

worst-case execution time (WCET) calculations were inaccurate (optimistic rather
than pessimistic);

blocking times were underestimated;

assumptions made in the schedulability checker were not valid;

the schedulability checker itself had an error;

the scheduling algorithm could not cope with a load even though it is theoretically
schedulable;

the system is working outside its design parameters, for example sporadic events
occurring more frequently than was assumed in the schedulability analysis.

In this latter case (for instance, an information overflow manifesting itself as an unac-
ceptable rate of interrupts), the system designers may still wish for fail-soft or fail-safe
behaviour.

Chapter 2 introduced the fault — error — failure chain. Assuming the schedula-

bility analysis is correct, the following chains are possible in the context of priority-based
systems (dos Santos and Wellings, 2008).

M

2

3

C))

&)

Fault (in task t;’s WCET calculation or assumptions) — error (overrun of 7;’s
WCET) — error propagation (deadline miss of ;) — failure (to deliver service
in a timely manner).

Fault (in task 7;’s WCET calculation or assumptions) — error (overrun of t;’s
WCET) — error propagation (greater interference on lower-priority tasks) —
error propagation (deadline miss of lower priority tasks) — failure (to deliver
service in a timely manner).

Fault (in task t;’s minimum inter-arrival time assumptions) — error (greater com-
putation requirement for t;) — error propagation (deadline miss of t;) — failure
(to deliver service in a timely manner).

Fault (in task 7;’s minimum inter-arrival time assumptions) — error (greater in-
terference on lower priority tasks) — error propagation (deadline miss of lower-
priority tasks) — failure (to deliver service in a timely manner).

Fault (in task 7;’s WCET calculation or assumptions when using a shared re-
source) — error (overrun of t;’s resource usage) — error propagation (greater
blocking time of higher-priority tasks sharing the resource) — error propagation
(deadline miss of higher-priority tasks) — failure (to deliver service in a timely
manner).

DEADLINE MISS DETECTION 459

Similar chains will exist for other scheduling approaches and faults, where instead of
the term ‘lower/higher priority’ the corresponding eligibility criterion can be substituted
(e.g. ‘later/earlier absolute deadline’).

To be tolerant of timing faults, it is necessary to be able to detect:

e miss of a deadline — the final error in all the above error propagation chains;

e overrun of a worst-case execution time — potentially causing the task and/or lower
eligibility tasks to miss their deadlines (error chains 1 and 2);

e asporadic event occurring more often than predicted — potentially causing the task
and/or lower eligibility tasks to miss their deadlines (error chains 3 and 4);

e overrun in the usage of a resource — potentially causing higher eligibility tasks to
miss their deadlines (error chain 5).

Of course the last three error conditions do not necessarily indicate that deadlines will be
missed; forexample, an overrun of WCET in one task might be compensated by a sporadic
event occurring less often than the maximum allowed. Hence, the damage confinement
and assessment phase of providing fault tolerance (introduced in Section 2.5) must
determine what actions to take. Both forward and backward recovery are then possible.

If timing faults are to be handled, their associated error conditions have to be
detected first. If the run-time environment or operating system is aware of the salient
characteristics of a task (as it is in the Real-Time Java approach, for example), it will be
able to detect problems and bring them to the attention of the application. Alternatively, it
is necessary to provide primitive facilities that will allow the application to detect its own
timing errors. With all error detection mechanisms, the earlier the problem can be detected
the more chance there is to pinpoint the problem and the more time there is to recover.

The following sections will discuss error detection mechanisms for the above
timing faults, consider possible error confinement approaches, and identify strategies
for recovery. Fault treatment typically involves maintenance, which is a topic outside the
scope of this book. However, it is noted that for non-stop real-time applications some
form of dynamic change management or mode change is required. The impact of this
can have serious real-time implications.

13.2 Deadline miss detection

Deadline miss detection is the minimum that is required if a real-time system is to tolerate
timing failures. It is a ‘catch all” mechanism that will detect even problems outside the
failure hypothesis. For example, it will detect problems resulting from errors in the
schedulability analysis. Of course, with all ‘catch all’ mechanisms, it may be difficult to
pinpoint the cause of the problem and it leaves little time for recovery.

This section discusses how deadline miss detection is facilitated in Ada, Real-Time
Java and C/Real-Time POSIX. Strategies for dealing with deadline misses are considered
in Section 13.7.

13.2.1 Ada

Ada 2005 allows the deadline of a task to be specified and this parameter can be used
to influence scheduling (see Section 12.8). However, the Ada run-time support system

460 TOLERATING TIMING FAULTS

does not use this information to detect deadline misses. For this, the language provides
primitive mechanisms that the programmer has to use to detect the missed deadline it-
self. One way of achieving this is to use the asynchronous transfer of control facility
discussed in Section 7.6.1. Hence to detect a deadline overrun of the periodic task given
in Section 10.2 requires the main functionality of the task to be embedded in a ‘select
then abort’ statement.

task body Periodic_T is
Next_Release : Time;
Next_Deadline : Time;

Release_Interval : constant Time_Span := Milliseconds(...);
Deadline : constant Time_Span := Milliseconds(...);
begin

-- read clock and calculate the next
-- release time (Next_Release) and
-- next deadline (Next_Deadline)
loop
select
delay until Next_Deadline;
-- deadline miss detected here
-- perform recovery
then abort
-- sample data (for example) or
-- calculate and send a control signal
end select;
delay until Next_Release;

Next_Release := Next_Release + Release_Interval;
Next_Deadline := Next_Release + Deadline;
end loop;

end Periodic_T;

A similar approach can be used to detect a deadline miss in a sporadic task.

One of the problems with this approach is that it combines detection with a par-
ticular recovery strategy, that of stopping the task from what it is doing. This is, clearly,
one option. Another is to use a different task to handle the deadline miss. The possi-
ble recovery strategies could include extending the deadline, lowering the errant task’s
priority, or some other action short of terminating it (see Section 13.7).

To simply detect a deadline miss, the Ada timing event facility that was discussed
in Section 10.4 can be used (see Program 10.6). In Section 2.5.1, the watchdog timer
approach to fault detection was presented. This can be easily programmed using Ada’s
timing events. The essential idea is that on initializing the watchdog with a first deadline
and a period, the watchdog sets up a timing event for the first deadline. The task must
now call the watchdog to reset the timing event before its deadline has expired. If it does
s0, the watchdog sets the event to expire at the next deadline, and so on. If the task does
not call to reset the event, the event will be triggered.

The specification of the watchdog is given first:

protected type Watchdog(Event : access Timing Event) is
procedure Initialize(First_Deadline : Time;
Required_Period : Time_Span) ;
entry Alarm_Control (T: out Task_Identity);
—- Called by alarm handling task

DEADLINE MISS DETECTION 461

procedure Call_TIn;
-- Called by application code when it completes.

pragma Interrupt_Priority (Interrupt_Priority’Last);
private

procedure Timer (Event : in out Timing_Event) ;

-- Timer event code, ie the handler.

Alarm : Boolean := False;

Tid : Task_Identifier;

Next_Deadline : Time;

Period : Time_Span;
end Watchdog;

This watchdog object has a common structure. An entry with an initially closed
barrier holds back a monitoring task that will be released by the handler if the handler
executes. In this example the handler is actually never executed unless there is a missed
deadline. Each time the monitored task calls Call_In, the timing event is reset to a
point in the future. Only if another call does not occur before its next deadline will the
handler be executed and the barrier opened releasing the monitoring task.

protected body Watchdog is
procedure Initialize(First_Deadline : Time;
Required_Period : Time_Span) is

begin
Next_Deadline := First_Deadline;
Period := Required_Period;

Set_Handler (Event.all, Next_Deadline, Timer'’Access)
Tid = Current_Task;
end Initialize;

entry Alarm_Control (T: out Task_Identity) when Alarm is
begin

T &= Tid;

Alarm := False;
end Alarm_Control;

procedure Timer (Event : in out Timing_Event) is
begin
Alarm := True;

-- Note no use is made of the parameter in this example
end Timer;

procedure Call_in is
begin
Next_Deadline := Next_Deadline + Period;
Set_Handler (Event.all, Next_Deadline, Timer’Access);
-- Note this call to Set_Handler cancels the previous call
end Call_in;
end Watchdog;

The revised structure of the periodic task is shown below:
with Watchdogs; use Watchdogs;

Watch : Watchdog;

462 TOLERATING TIMING FAULTS

Deadline_Miss_Event : aliased Timing_Event;
Set_Handler (Deadline_Miss_Event, Next_Deadline, Timer'’Access) ;

task body Periodic_T is
Next_Release : Time;

Release_Interval : comnstant Duration := ...; -- or
Release_Interval : constant Time_Span := Milliseconds(...);
begin

-- read clock and calculate the next
-- release time (Next_Release)
-- and first deadline (First_Deadline)
Watch.Initialize(First_Deadline, Release_Interval);
loop
-- sample data (for example) or
-- calculate and send a control signal
Watch.Call_1In;
delay until Next_Release;
Next_Release := Next_Release + Release_Interval;
end loop;
end Periodic_T;

13.2.2 Real-Time Java

Unlike the Ada run-time system, the Real-Time Java virtual machine does monitor
the deadlines of real-time threads and will release asynchronous event handlers when
periodic or sporadic tasks are still executing when their deadlines have passed, the
handlers (missHandler) being identified with the release parameters associated with
the real-time threads (see Program 10.3).

The full semantics of Real-Time Java’s deadline miss detection are somewhat
complex. Program 13.1 shows the associated methods. Recall the structure of a period
real-time thread from Chapter 10:

public class Periodic extends RealtimeThread {
public Periodic(PeriodicParameters P)

{ - b

public void run() {
boolean deadlineMet = true;
while (deadlineMet) {
// code to be run each period

deadlineMet = waitForNextPeriod();

}
}

An aperiodic or sporadic thread has a similar structure only with a call to
waitForNextRelease instead of waitForNextPeriod.
The full semantics can be summarized by the following points.

e If the real-time thread misses its deadline, and it has an associated deadline miss
handler, this is released at the point the deadline expires. The real-time thread is

DEADLINE MISS DETECTION 463

Program 13.1 An extract of the RealtimeThread class showing methods used for
deadline miss detection.

package javax.realtime;
public class RealtimeThread extends Thread
implements Schedulable {

// the following methods are used with periodic execution
public boolean waitForNextPeriod() ;
public void deschedulePeriodic() ;
// deschedules the periodic thread at the end
// of its current release
public void schedulePeriodic() ;
// reschedules the periodic thread at its next release event

// used for aperiodic and sporadic execution
public boolean waitForNextRelease();
public void deschedule() ;
// deschedules the aperiodic thread at the end
// of its current release
public void schedule() ;
// reschedules the aperiodic thread at its next release event

automatically de-scheduled — this means that at the end of its current release (when
it calls waitForNextPeriod/waitForNextRelease), the scheduler will
no longer consider the thread for possible execution until it has been explicitly
rescheduled by the application via a call to schedulePeriodic/schedule.
At this point the thread becomes eligible for execution at its next release
event.

e If there is no associated handler, when the deadline miss occurs a count (called
deadlineMiss) of the number of missed deadlines is incremented.

e The waitForNextPeriod method (WFNP) has the following semantics
(waitForNextRelease has similar semantics):

— If no deadlines have been missed, wFNP returns true when its next release
event occurs.

— When the deadlineMiss count is greater than zero and the previous call
to wEFNP returned true, wFNP decrements the deadlineMiss count and
returns false immediately. This situation indicates that the current release
has missed its deadline. At this point, the current release is still active.

— When the deadlineMiss count is greater than zero and the previous call
to wENP returned false, wFNP decrements the deadl ineMiss count and
returns false immediately. This situation indicates that the next release time
has already passed and the next deadline has already been missed. At this
point, the current release has completed and the next release is active.

464 TOLERATING TIMING FAULTS

— When a deadline miss handler has been released and the deadlineMiss
count equals zero and no call to the schedulePeriodic method has oc-
curred since the deadline miss handler was released, wFNP de-schedules the
real-time thread until an explicit call to the schedulePeriodic method
occurs (probably by the released handler); wfNP then returns true at the point
of the next release after the call to schedulePeriodic. At this point,
the next release is active.

An example of using the Real-Time Java facilities will be given in Section 13.7
where strategies for recovery are considered.

13.2.3 C/Real-Time POSIX

C/Real-Time POSIX allows timers to be created and set which will generate user-defined
signals (SIGALRM by default) when they expire. Hence this will allow the process to
decide what is the correct course of action to pursue. Program 10.7 shows a typical C
interface.

The watchdog timer approach to fault detection can be easily programmed using
POSIX signals. For example, consider the case where one thread (monitor) creates
another thread (server) and wishes to monitor its progress to see if it meets a dead-
line. The deadline of the server is givenby struct timespec deadline. The
monitor thread creates a per process timer indicating a signal handler to be executed
if the timer expires. It then creates the server thread and passes a pointer to the timer.
The server thread performs its action and then deletes the timer. If the alarm goes off,
the server is late.

#include <signal.h>
#include <timer.h>
#include <pthread.h>

timer_t timer; /* timer shared between monitor and server */

struct timespec deadline = ...;
struct timespec zero = ...;

struct itimerspec alarm_time, old_alarm;
struct sigevent s;
void server (timer_t *watchdog) {

/* perform required service */
TIMER_DELETE (*watchdog) ;

}

void watchdog_handler (int signum, siginfo_t *data,
void *extra)
{

/* SIGALRM handler */

/* server is late: undertake recovery */

}

DEADLINE MISS DETECTION 465

void monitor () {
pthread_attr_t attributes;
pthread_t serve;

sigset_t mask, omask;
struct sigaction sa, osa;
int local_mode;

SIGEMPTYSET (&mask) ;
SIGADDSET (&mask, SIGALRM) ;

sa.sa_flags = SA_SIGINFO;
sa.sa_mask = mask;
sa.sa_sigaction = &watchdog_handler;

SIGACTION (SIGALRM, &sa, &osa); /* assign handler */

alarm_time.it_value = deadline;
alarm_time.it_interval = zero; /* one shot timer */

s.sigev_notify = SIGEV_SIGNAL;
s.sigev_signo = SIGALRM;

TIMER_CREATE (CLOCK_REALTIME, &s, &timer);
TIMER_SETTIME (timer, TIMER_ABSTIME, &alarm_time, &old_alarm);

PTHREAD_ATTR_INIT(&attributes) ;
PTHREAD_CREATE (&serve, &attributes, (void *)server, &timer);

However, as noted in Section 7.5.1, if a process is multithreaded, the signal is sent to the
whole process, not an individual thread. In general, therefore, to generalize the above
approach it is necessary to pass a value with the signal being generated to indicate the
associated thread (via the sigev_value component of the sigevent structure).

13.2.4 Timing error detection at the block level

Task-level deadlines are the most common deadlines. However, as noted in Section 9.6,
deadlines can occur at a finer granularity, for example at the block level. The watchdog
approach given in the previous sections allows this block-level detection to be achieved.
However, neither Ada, Real-Time Java or C/Real-Time POSIX provides direct support for
block-level deadlines. The research language DPS considered in Section 10.6.3 illustrates
the type of support that could be given.

In DPS, timing errors are associated with exceptions:

start <timing constraints> do
-- statements
exception

466 TOLERATING TIMING FAULTS

-- handlers
end

In addition to the necessary computations required for damage limitation, error recovery
and so on, the handler may wish to extend the deadline period and continue execution
of the original block. Thus a resumption rather than termination model may be more
appropriate (see Chapter 3).

In a time-dependent system, it may also be necessary to give the deadline con-
straints of the handlers. Usually the execution time for the handler is taken from the
temporal scope itself; for example, in the following, the statement sequence will be
prematurely terminated after 19 time units:

start elapse 22 do
-- statements
exception
when elapse_error within 3 do
-- handler
end

As with all exception models, if the handler itself gives rise to an exception this
can only be dealt with at a higher level within the program hierarchy. If a timing error
occurs within a handler at the task level then the task must be terminated (or at least the
current iteration of the task). There might then be some system-level handlers to deal
with failed tasks or it may be left to the application software to recognize and cope with
such events.

If exception handlers are added to the coffee-making example given with DPS
in Section 10.6.3, the code would have the following form (exceptions for logic errors
such as ‘no cups available’ are not included). It is assumed that only boil_water and
drink_cof fee have any significant temporal properties; timing errors are, therefore,
due to overrun on these activities.

from 9:00 to 16:15 every 45 do
start elapse 11 do
get_cup
boil_water
put_coffee_in_cup
put_water_in_cup

exception
when elapse_error within 1 do
turn_off_kettle -- for safety

report_fault
get_new_cup
put_orange_in_cup
put_water_in_cup
end
end

start after 3 elapse 26 do
drink

exception
when elapse_error within 1 do

OVERRUN OF WORST-CASE EXECUTION TIME 467

empty_cup
end
end
replace_cup
exception
when any_exception do
null -- go on to next iteration
end
end

13.3 Overrun of worst-case execution time

Good fault tolerance practices attempt to confine the consequences of an error to a well-
defined region of the program. Facilities such as modules, packages and atomic actions
help with this goal. However, if a task consumes more of the CPU resource than has
been anticipated, then it may not be that task that misses its deadline. For example, in
the case of a high-priority task with a fair amount of slack time, the tasks that will miss
their deadlines may be lower-priority tasks with less slack available. Ideally, it should
be possible to catch the timing error in the task that caused it. This implies that it is
necessary to be able to detect when a task overruns the worst-case execution time that
the implementer has allowed for it. Of course, if a task is non-preemptively scheduled
(and does not block waiting for resources), its CPU execution time is equal to its elapse
time and the same mechanisms that were used to detect deadline overrun can be used.
However, tasks are usually preemptively scheduled, and this makes measuring CPU
time usage more difficult. It usually has to be supported explicitly in the host operating
system.

13.3.1 Execution-time clocks in Real-Time POSIX

POSIX supports execution-time monitoring using its clock and timer facilities. Two
clocks are defined: CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_
CPUTIME_ID. These can be used in the same way as CLOCK_REALTIME. Each pro-
cess/thread has an associated execution-time clock; calls to:

clock_settime (CLOCK_PROCESS_CPUTIME_ID, &some_timespec_value);
clock_gettime (CLOCK_PROCESS_CPUTIME_ID, &some_timespec_value);

clock_getres (CLOCK_PROCESS_CPUTIME_ID, &some_timespec_value) ;

will set/get the execution-time or get the resolution of the execution-time clock associated
with the calling process (similarly for threads).

Two functions allow a process/thread to obtain and then access the clock of another
process/thread.

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

int pthread_getcpuclockid (pthread_t thread_id, clockid_t *clock_id);

468 TOLERATING TIMING FAULTS

The timers defined in Program 10.7 can be used to create timers which, in turn,
can be used to generate process-signals when the execution time set has expired. It is
implementation-defined what happens if a timer_create is used witha clock_id
different from that of the calling process/thread. As the signal generated by the expiry
of the timer is directed at the process, it is application-dependent which thread will get
the signal if a thread’s execution-time timer expires. An application can disallow the use
of the timer for a thread (because of the overhead in supporting the facility).

As with all execution-time monitoring, it is difficult to guarantee the accuracy of
the execution-time clock in the presence of context switches and interrupts.

13.3.2 Execution-time clocks in Ada

Ada 2005 directly supports execution-time clocks for tasks, and supports timers that
can be fired when tasks have used a defined amount of execution time. Indeed it
has added a clock per task that measures the task’s execution time. A package,
Ada.Execution_Time — see Program 13.2, is defined that is similar in structure
to Ada .Calendar and Ada .Real_Time.

Program 13.2 An abridged version of the Ada . Execution_Time package.

with Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;

package Ada.Execution_Time is
type CPU_Time is private;
CPU_Time_First : constant CPU_Time;
CPU_Time_Last : constant CPU_Time;
CPU_Time_Unit : constant :=
<implementation-defined-real-numbers>;
CPU_Tick : constant Time_Span;

function Clock
(T : Ada.Task_Identification.Task_ID
:= Ada.Task_Identification.Current_Task)
return CPU_Time;

function "+" (Left : CPU_Time; Right : Time_Span) return CPU_Time;
function "+" (Left : Time_Span; Right : CPU_Time) return CPU_Time;
__ similarly for n_m mem mg_m Ay and ">="

procedure Split
(T : CPU_Time; SC : out Seconds_Count; TS : out Time_Span) ;

function Time_Of (SC : Seconds_Count; TS : Time_Span)
return CPU_Time;
private
-—- Not specified by the language.
end Ada.Execution_Time;

OVERRUN OF WORST-CASE EXECUTION TIME 469

When a task is created so is an execution-time clock. This clock registers zero at
creation and starts recording the task execution time from the point at which the task
starts its activation (see Section 4.4). To read the value of any task’s clock a Clock
function is defined. So in the following a loop is allocated 7 ms of execution time before
exiting at the end of its current iteration:

Start : CPU_Time;

Interval : Time_Span := Milliseconds(7);

Start := Ada.Execution_Time.Clock;

while Ada.Execution_Time.Clock - Start < Interval loop
--code

end loop;

Note the ‘-’ operator returns a value of type Time_Span which can then be compared
with Interval.

To monitor the execution time of each invocation of a periodic task, for example,
is simple:

Last : CPU_Time;
Exe_Time : Time_Span;
Last := Execution_Time.Clock;
loop
-- code of task
Exe_Time := Ada.Execution_Time.Clock - Last;
Last := Ada.Execution_Time.Clock;
-- print out or store Exe_Time
delay until
end loop;

As well as monitoring a task’s execution time profile, it is also possible to trigger
an event if its execution-time clock gets to some specified value. A child package of
Ada.Execution_Time provides support for this type of event — see Program 13.3.

Each Timer event is strongly linked to the task that will trigger it. This static
linkage is ensured by the access discriminant for the type that is required to be constant
and not null.

The handler type is standard, but there is now a need to specify the minimum
ceiling priority the associated protected object must have if ceiling violation is to be
avoided. This priority will be set by the supporting implementation.

The Set _Hand1er procedures and the other routines all have the same properties
as those defined with timing events. However, in recognition that an implementation
may have a limited capacity for timers, or that only one timer per task is possible,
the exception Timer_Resource_Error may be raised when a Timer is defined
or when a Set_Handler procedure is called for the first time with a new Timer
parameter.

An example of using the Ada facilities will be givenin Section 13.7 where strategies
for recovery are considered.

470 TOLERATING TIMING FAULTS

Program 13.3 The Ada.Execution_Time.Timers package.

package Ada.Execution_Time.Timers is

type Timer (T : not null access constant
Ada.Task_Identification.Task_ID) is tagged
limited private;

type Timer_Handler is access protected
procedure(TM : in out Timer) ;

Min_Handler_Ceiling : constant System.Any_Priority :=
<Implementation Defined>;

procedure Set_Handler (TM: in out Timer;
Iq_Time : Time_Span; Handler : Timer_Handler);
procedure Set_Handler (TM: in out Timer;

At_Time : CPU_Time; Handler : Timer_Handler);

procedure Cancel_Handler (TM : in out Timer;
Cancelled : in out Boolean) ;

function Current_Handler (TM : Timer) return Timer_Handler;
function Time_Remaining (TM : Timer) return Time_Span;
Timer_Resource_Error : exception;

private

-- Not specified by the language.
end Ada.Execution_Time.Timers;

13.3.3 Execution-time monitoring in Real-Time Java

Unlike, Ada and Real-Time POSIX, Real-Time Java does not support explicitly CPU-
time clocks. Instead it allows a ‘cost’ value to be associated with the execution of a
schedulable object as one of the attributes in the ReleaseParameters class (see
Program 10.3). This is some measure of how much of the processor’s time is required
to execute the computation associated with the real-time thread’s release (that is, after it
has been released and until it has completed). An optional facility can be supported by
the real-time virtual machine that keeps track of the CPU time consumed by the thread
on each release. An asynchronous event can be fired if the real-time thread consumes
more than this CPU time.

Real-Time Java (as of RTSJ Version 1.1) also allows information on the amount
of execution time consumed by a real-time thread during its releases to be obtained via
the following methods in the Realt imeThread class:

RelativeTime getMaxConsumption ()
RelativeTime getMaxConsumption(RelativeTime dest) ;
// Returns the maximum amount of CPU time this

OVERRUN OF SPORADIC EVENTS 471

// schedulable object has used in a single release
// in a newly-allocated RelativeTime object or
// in an instance supplied by the caller.

RelativeTime getMinConsumption ()

RelativeTime getMinConsumption(RelativeTime dest)
// Returns the minimum amount of CPU time this

// schedulable object has used in a single release
// in a newly-allocated RelativeTime object or

// in an instance supplied by the caller.

Real-Time Java does not require that an implementation monitor the processing
time consumed by schedulable objects, as this requires support from the underlying
operating system. Many operating systems do not currently provide this support.

If cost monitoring is supported, then Version 1.02 of Real-Time Java requires
that the priority scheduler gives a real-time thread a CPU budget of no more than its
cost value on each release. Hence, if a real-time thread overruns its cost budget, it is
automatically de-scheduled (made not eligible for execution) immediately. It will not be
rescheduled until either its next release occurs (in which case its budget is replenished)
or its associated cost value is increased. In Version 1.1 of Real-Time Java, this will be
the default policy. However, there will also be a mechanism that allows just notification
rather than enforcement.

13.4 Overrun of sporadic events

A sporadic event firing more frequently than anticipated can have an enormous impact
on a system attempting to meet hard deadlines. Here the term sporadic overrun is used
to denote this fault. Where the event is the result of an interrupt, the consequences can be
potentially devastating. For example, during the first landing on the moon, the guidance
computer was reset after a CPU on the Lunar Landing Module was flooded with radar
data interrupts. The landing was nearly aborted as a result (Regehr, 2007).

There are a variety of techniques that have been developed over the years to deal
with this situation. The two basic approaches are either to stop the early firing from
occurring, or to bound the total amount of the CPU time allocated to all events from
the same source. The latter use ‘server’ technology which will be discussed in detail in
Section 13.6.1 in the context of damage confinement. The features provided by C/Real-
Time POSIX will also be considered there.

Here the focus is on what support can be provided to prohibit the firings or to
detect them when they occur and take some corrective action. Two types of events
are considered: those resulting from hardware interrupts and those resulting from the
software firing of an event.

13.4.1 Handling sporadic event overruns in Ada

In keeping with the overall Ada philosophy, low-level mechanisms can be used to handle
event overruns.

472 TOLERATING TIMING FAULTS

Where the event is triggered by a hardware interrupt, on most occasions the in-
terrupt can be inhibited from occurring by manipulating the associated device control
registers (see Chapter 14). A simple approach is illustrated below. Here, the assump-
tion is that there is a required minimum inter-arrival time (MIT) between interrupt
occurrences.

protected Sporadic_Interrupt_Controller is
procedure Interrupt; -- mapped onto interrupt
entry Wait_For_Next_Interrupt;

private
procedure Timer (Event : in out Timing_Event) ;
Call_Outstanding : Boolean := False;
MIT : Time_Span := Milliseconds(...);

end Sporadic_Interrupt_Controller;

Event: Timing_Event;

protected body Sporadic_Interrupt_Controller is
procedure Interrupt is
begin
-— turn off interrupts
Set_Handler (Event, MIT, Timer’Access);
Call_Outstanding := True;
end Interrupt;

entry Wait_For_Next_Interrupt when Call_Outstanding is
begin

Call_Outstanding := False;
end Wait_For_Next_Interrupt;

procedure Timer (Event : in out Timing_Event) is
begin
-- Turn interrupts back on
end Timer;
end Sporadic_Interrupt_Controller;

Once an interrupt from the device occurs, interrupts are disabled and a timing event
is set to expire at the required minimum inter-arrival time. Once this occur, the device’s
interrupts are enabled.

The sporadic task has a familiar structure:

task body Sporadic_T is
begin
loop
Sporadic_Interrupt_Controller.Wait_For_Next_Interrupt;
-- action
end loop;
end Sporadic_T;

Of course, it is device dependent what happens if the device wants to interrupt and
is unable to. Usually, the device overruns and any data is lost.

If the event is fired from a software task, then the above approach can be modified
so that (for example) an exception is raised.

OVERRUN OF SPORADIC EVENTS 473

protected Sporadic_Interrupt_Controller is

procedure Release; -- mapped onto Interrupt
entry Wait_For_Next_Release;
private
Call_Outstanding : Boolean := False;
MIT : Time_Span := Milliseconds(...); -- Minimum Inter-arrive time

Last_Release : Time;
end Sporadic_Interrupt_Controller;

MIT VIOLATION : exception;

protected body Sporadic_Interrupt_Controller is
procedure Release is
Now : Time := Clock;
begin
if Now - Last_Release < MIT then
raise MIT_VIOLATION;

else

Last_Release := Now;
end if;
Call_Outstanding := True;

end Interrupt;

entry Wait_For_Next_ Release when Call_Outstanding is
begin
Call_Outstanding := False;
end Wait_For_Next_Interrupt;
end Sporadic_Interrupt_Controller;

Raising an exception is only one possible approach.

The usual constraint on a sporadic task is that there is a minimum separation be-
tween any two releases. A generalization of this constraint, which allows for bursts of
release events, is to set a limit of M release in any length of time L. Although these con-
straints are a little more complicated to program, the above approaches can be extended
to this M in L case.

13.4.2 Real-Time Java and minimum inter-arrival time violations

The previous subsection illustrated how to handle various MIT violation conditions using
Ada. In keeping with Ada’s philosophy, it is up to the program to detect these conditions
and act accordingly.

The Real-Time Java philosophy is the opposite. It provides the mechanisms that
allow the real-time JVM to detect MIT violation. The SporadicParameters class
defines a subclass of release parameters that allow the programmer to specify that a
real-time thread is a sporadic thread. The class is shown in Program 13.4.

The following policies are available.

e mitViolationExcept — an exception is thrown in the releasing real-time
thread. If the violation is on an asynchronous event handler released by the firing
of an interrupt, then the policy defaults to the mitViolationIgnore policy.

474 TOLERATING TIMING FAULTS

Program 13.4 An abridged version of the SporadicParameters class.

package javax.realtime;
public class SporadicParameters
extends AperiodicParameters {

// fields
public static final String mitViolationExcept;
public static final String mitViolationIgnore;
public static final String mitViolationReplace;
public static final String mitViolationSave;

public SporadicParameters(RelativeTime minInterarrival) ;
public SporadicParameters(RelativeTime minInterarrival,
RelativeTime cost, RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler) ;

// methods
public String getMitViolationBehavior() ;
public void setMitViolationBehavior (String behavior) ;
public RelativeTime getMinimumInterarrival () ;
public void setMinimumInterarrival (
RelativeTime interarrival);

e mitViolationIgnore — the release event is ignored.

e mitViolationReplace —the last release event is overwritten with the current
one.

e mitViolationSave — the release event is delayed until the MIT has passed.

It perhaps should be noted that in Real-Time Java interrupt handers are second
level interrupt handlers. The program cannot rely on the above approach to prohibit
the interrupt from occurring. To do this, it must adopt the approach illustrated in Ada,
and turn off interrupts. It is also not possible for the programmer to specify other more
general constraints, such as M in L discussed above.

13.5 Overrun of resource usage

Problems caused by errors in accessing resources are notoriously difficult to handle.
At a functional level, they can corrupt shared state and potentially lead to deadlock.
From a timing perspective, the whole raison d’étre for priority (or more generally,
eligibility) inheritance protocols such as those discussed in Section 11.8 is to avoid timing
problems. However, even approaches involving inheritance and ceiling protocols can
cause problems if the blocking time assumed by the schedulability analysis is incorrect.
There are two main potential causes for this:

DAMAGE CONFINEMENT 475

e atask may overrun it allotted access time for the resource; or

e unanticipated resource contention that has not been taken into account in the
blocking-time analysis.

The latter is possible in large systems with the use of prewritten library code. In
Section 9.4 timeouts were introduced as a mechanisms for detecting the absence of some
expected communication or event. There are several reasons why these are inadequate
in the context of blocking time.

(1) Withinheritance protocols, blocking is cumulative. Timeout could be used on entry
to critical sections; however, the programmer would have to keep a running track
of the total blocking time in the current release.

(2) Withimmediate ceiling protocols, the blocking occurs before execution of the task.
Hence a timeout has no use, as there is no contention when accessing the critical
section.

(3) Support for critical sections does not always have a timeout mechanisms. For
example, both Java’s synchronized methods and Ada protected types have no
associated timeout mechanisms. Although C/Real-Time POSIX provides a timed
version of mutex_lock, no indication of how long the calling task was blocked
for is returned.

Hence, whilst timeouts have a role to play, their use is limited in this context.

For finer control, it is possible to use detection of WCET overruns at the block
level. Hence all resource accesses would have to be policed to ensure that the calling
task did not overrun its allotted usage. Of course, as already pointed out in Section 13.1,
an overrun in one resource may be compensated by underuse of another. Furthermore,
detecting overruns on every resource access may be prohibitively expensive.

As a last resort, overruns in blocking times will, if significant, cause tasks to
miss their deadlines, which will be detected. Good programming practice dictates that
synchronized code is short and of a simple form. Errors are therefore far less likely.

13.6 Damage confinement

The role of damage confinement of time-related faults is to prevent propagation of the
resulting errors to other components in the system. There are two aspects of this that can
be identified:

e protecting the system from the impact of sporadic task overruns and unbounded
aperiodic activities;

e supporting composability and temporal isolations.

The problem of overruns in sporadic objects has already been mentioned in Sec-
tion 13.4. Aperiodic events also present a similar problem. As they have no well-defined
release characteristics, they can impose an unbounded demand on the processor’s time. If
not handled properly, they can result in periodic or sporadic tasks missing their deadlines,

476 TOLERATING TIMING FAULTS

even though those tasks have been ‘guaranteed’. In Section 11.6.2, aperiodic servers
were introduced. Aperiodic servers protect the processing resources needed by periodic
tasks but otherwise allow aperiodic and sporadic tasks to run as soon as possible. Several
types of servers were discussed including the Sporadic Server and Deferrable Server.

When composing systems of multiple applications, whether dynamically or stat-
ically, it is often required that each application be isolated from one another. Memory
management hardware has provided that isolation in the spatial domain for many years.
However, the facility to support temporal isolation, where the applications share the same
computing resource, has only recently become available. This has been brought about by
hierarchy schedulers and reservation-based systems. Usually, two levels of schedul-
ing are used; a global (top-level) scheduler and multiple application-level (second-level)
schedulers. Typically the application-level scheduler is also called a server or execution-
time server or group server. The latter term will be used in this book.

Although the above confinement techniques are similar, they have slightly differ-
ent emphases. For temporal isolation, the key requirement is that the group server be
guaranteed its budget each period; that is, it must be possible for the tasks contained
within the group to consume all the group’s budget on each release (and not be allowed
to consume any more). To support aperiodic execution, it is sufficient that the aperiodic
server consumes no more than its budget each period. Hence schedulability analysis can
be undertaken on tasks scheduled within a group. Whereas, the analysis of the impact of
an aperiodic server can be bounded, typically no analysis of the tasks contained within
the server need be done. If a group contains only sporadic tasks, the budget must be guar-
anteed. The goal here is to ensure that the sporadic task does not violated the CPU time
that has been allocated to it, for example by being released more often than its minimum
inter-arrival time and consuming more than its maximum budget on each release.

With group servers, the schedulability analysis is simpler if the associated tasks
are ‘bound’. The term ‘bound’ in this context refers to the relationship between the tasks’
periods and the period of the group server. A bound relationship is where the periods
of the tasks are exact multiples of the period of the group and have arrival times that
coincide with its replenishment.

13.6.1 Programming servers with C/Real-Time POSIX

C/Real-Time POSIX supports the Sporadic Server approach to damage confinement
as one of the scheduling policies (see Program 12.2). The policy can be applied at
both the thread and process levels. As discussed in Section 11.6.2, a Sporadic Server
assigns a limited amount of CPU capacity to handle events, and has a replenishment
period, a budget and two priorities. The server runs at a high priority when it has some
budget left and a low one when its budget is exhausted. When a server runs at the
high priority, the amount of execution time it consumes is subtracted from its budget.
The amount of budget consumed is replenished at the time the server was activated plus
the replenishment period. When its budget reaches zero, the server’s priority is set to the
low value.

At the thread level, the Sporadic Server provides confinement for sporadic and
aperiodic activities. Each sporadic thread is assigned a Sporadic Server scheduling policy,
and is given appropriate parameters. Note that these say nothing about the minimum

DAMAGE CONFINEMENT 477

Program 13.5 A typical abridged C interface to support the POSIX sporadic server
facilities.

#define SCHED_SPORADIC ... /* sporadic server */

#fdefine PTHREAD_SCOPE_SYSTEM ... /* system-wide contention */
#define PTHREAD_SCOPE_PROCESS ... /* local contention */
typedef ... pid_t;

struct sched_param {

timespec sched_ss_repl_period
timespec sched_ss_init_budget
int sched_ss_max_repl

}

int sched_setparam(pid_t pid, const struct sched_param *param) ;
/* set the scheduling parameters of process pid */

int sched_get_priority_max(int policy) ;
/* returns the maximum priority for the policy specified */

int sched_get_priority_min(int policy) ;
/* returns the minimum priority for the policy specified */

int pthread_attr_setscope (pthread_attr_t *attr,
int contentionscope) ;
/* set the contention scope for a thread attribute object */

int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *param) ;
/* set the scheduling policy for a thread attribute object */

/* All the above integer functions return 0 if successful */
/* There are similar setter methods */

inter-arrival time; instead they bound the impact that the thread can have to be equivalent
to a periodic activity whose characteristics are that of the server’s parameters (shown in
Program 13.5). Handling aperiodic activities with this approach is more problematic as
it not possible to assign the budget to a group of threads. For them it is necessary to use
a Sporadic Server process.

A Sporadic Server process is a process that is scheduled according to the sporadic
server policy. Hence all the threads contained within it share the allocated budget. Hence,
timing errors are confined to those threads. C/Real-Time POSIX also supports shared
memory objects between processes; hence it is possible to partition a single application
between processes and still communicate via shared memory (there is an attribute to
POSIX mutexes that caters for this option). If the scheduling has system-wide contention,
then the threads will compete at their own priority. If the scheduling has local contention,
then the process’s priority will be the dominating factor.

478 TOLERATING TIMING FAULTS

13.6.2 Programming servers with Real-Time Java

Real-Time Java provides support for temporal isolation via:

e an optional cost monitoring and enforcement model — see Section 13.3.3;
e sporadic release parameters — see Section 13.4.2;

e processing group parameters — considered in this subsection.

Real-Time Java provides support for group servers via processing groups. A
processing group is implicitly created when an instance of the ProcessingGroup-
Parameter class is created. When processing group parameters are assigned to one
or more aperiodic schedulable objects, a server is effectively created. The server’s start
time, cost (capacity) and period are defined by the particular instance of the parameters.
These collectively define the points in time when the server’s capacity is replenished. Any
aperiodic schedulable object that belongs to a processing group is executed at its own
defined priority. However, it only executes if the server still has capacity. As it executes,
each unit of CPU time consumed is subtracted from the server’s capacity. When the ca-
pacity is exhausted, the aperiodic schedulable objects are not allowed to execute until the
start of the next replenishment period. If the application only assigns aperiodic schedu-
lable objects of the same priority level to a single ProcessingGroupParameters
object, then the functionality of a Deferrable Server can be obtained.

Real-Time Java is, however, a little more general. It allows schedulable objects
of different priorities to be assigned to the same group, the inclusion of sporadic and
periodic schedulable objects, the ‘servers’ to be given a deadline, and cost overrun and
deadline miss handlers to be set. This represents an extensive set of facilities.

If used within the context of an aperiodic server, a cost overrun potentially indicates
a transient overload where the aperiodic load cannot be handled effectively. Of course,
the tasks will be executed across one of more of the following aperiodic server’s periods,
but this will impact on their response times. For a Deferrable Server, the deadline would
equal the period and deadline misses are not relevant at the server level.

In the context of a group server (execution-time server), a cost overrun is potentially
more severe. It indicates that the workload assigned to the group is an underestimate,
and consequently some deadlines of the threads may be missed.! If the group itself has
missed its deadline then the guaranteed capacity given to the server has been violated.
The ProcessingGroupParameters class is given below in Program 13.6.

Although Real-Time Java does not define any feasibility analysis, the
setIfFeasible method allows the Processing Group to be guaranteed.

13.6.3 Programming servers in Ada

Although, Ada does not directly support servers, it does provide the primitives from
which servers can be programmed.

'Real-Time Java supports deadline overrun detection on an individual real-time thread/asynchronous event
handler basis.

DAMAGE CONFINEMENT 479

Program 13.6 The ProcessingGroupParameter class.

package javax.realtime;
public class ProcessingGroupParameters
implements Cloneable {

public ProcessingGroupParameters (
HighResolutionTime start, RelativeTime period,
RelativeTime cost, RelativeTime deadline,
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler) ;

// methods

public Object clone();

public RelativeTime getCost () ;

public AsyncEventHandler getCostOverrunHandler () ;
public RelativeTime getDeadline();

public AsyncEventHandler getDeadlineMissHandler () ;
public RelativeTime getPeriod();

public HighResolutionTime getStart();

public void setCost (RelativeTime cost);
public void setCostOverrunHandler (
AsyncEventHandler handler) ;

public void setDeadline (RelativeTime deadline) ;

public void setDeadlineMissHandler (
AsyncEventHandler handler) ;

public void setPeriod(RelativeTime period) ;

public void setStart (HighResolutionTime start);

public boolean setIfFeasible(RelativeTime period,
RelativeTime cost, RelativeTime deadline) ;

Group budgets allow different group servers to be implemented; consequently the
language itself does not have to provide a small number of predefined server types. Note,
servers can be used with fixed-priority or EDF scheduling.

A typical server has a budget and a replenishment period. At the start of each
period, the available budget is restored to its maximum amount. Unused budget at this
time is discarded. To program a server requires timing events to trigger replenishment
and a means of grouping tasks together and allocating them an amount of CPU resource.
A standard package (a child of Ada . Execution_Time - see Program 13.7) is defined
to accomplish this. The type Group_Budget represents a CPU budget to be used by a
group of tasks.

There are a number of routines defined in this package. Consider first those con-
cerned with the grouping of tasks. Each Group_Budget has a set of tasks associ-
ated with it. Tasks are added to the set by calls of Add_Task, and removed using
Remove_Task. Functions are defined to test if a task is a member of any group budget,

480 TOLERATING TIMING FAULTS

Program 13.7 The Ada.Execution_Time.Group-Budgets package.

package Ada.Execution_Time.Group_Budgets is
type Group_Budget is tagged limited private;

type Group_Budget_Handler is access
protected procedure(GB : in out Group_Budget) ;

type Task_Array is array(Positive range <>) of
Ada.Task_Identification.Task_ID;

Min_Handler Ceiling : constant System.Any_Priority :=
<Implementation Defined>;

procedure Add_Task(GB: in out Group_Budget;
T : Ada.Task_Identification.Task_ID);
procedure Remove_Task(GB: in out Group_Budget;
T : Ada.Task_Identification.Task_ID);
function Is_Member (GB: Group_Budget;
T : Ada.Task_Identification.Task_ID) return Boolean;
function Is_A_Group_Member (
T : Ada.Task_Identification.Task_ID) return Boolean;
function Members (GB: Group_Budget) return Task_Array;

procedure Replenish(GB: in out Group_Budget; To : Time_Span);
procedure Add(GB: in out Group_Budget; Interval : Time_Span) ;
function Budget_Has_Expired(GB: Group_Budget) return Boolean;
function Budget_Remaining (GB: Group_Budget) return Time_Span;

procedure Set_Handler (GB: in out Group_Budget;
Handler : Group_Budget_Handler) ;
function Current_Handler (GB: Group_Budget)
return Group_Budget_Handler;
procedure Cancel_Handler (GB: in out Group_Budget;
Cancelled : out Boolean) ;

Group_Budget_Error : exception;
private
-- not specified by the language
end Ada.Execution_Time.Group_Budgets;

or one specific group budget. A further function returns the collection of tasks associated
with a group budget by returning an unconstrained array type of task IDs.

An important property of these facilities is that a task can be a member of at
most one group budget. Attempting to add it to a second group will cause Group-
Budget _Error to be raised. When a task terminates, if it is still a member of a group
budget, it is automatically removed.

The budget decreases whenever a task from the associated set executes. The ac-
curacy of this accounting is again implementation defined. To increase the amount of
budget available, two routines are provided. The Replenish procedure sets the budget

DAMAGE CONFINEMENT 481

to the amount of ‘real-time’ given in the To parameter. It replaces the current value of
the budget. By comparison, the Add procedure increases the budget by the ITnterval
amount but, as this parameter can be negative it can also be used to, in effect, reduce the
budget.

To inquire about the state of the budget, two functions are provided. Note that
when Budget _Has_Expired returns True then Budget _Remaining will return
Time_Span_zZero.

A handler is associated with a group budget by use of the Set_Handler proce-
dure. There is an implicit event associated with a Group_Budget that occurs whenever
the budget goes to zero. If at that time there is a non-null handler set for the budget, the
handler will be executed.

As with timers, an implementation must define the minimum ceiling priority level
for the protected object linked to any group budget handler. Also note there are Cur-
rent _Handler and Cancel_Handler subprograms defined.

By comparison with timers and timing events, which are triggered when a certain
clock value is reached (but will then never be reached again for monotonic clocks), the
group budget event can occur many times — whenever the budget goes to zero. So
the handler is permanently associated with the group budget, and it is executed every
time the budget is exhausted (obviously following replenishment and further usage). The
handler can be changed by a further call to Set _Handler or removed by using a null
parameter to this routine (or by calling Cancel_Handler), but for normal execution
the same handler is called each time. The better analogy for a group budget event is an
interrupt; its handler is called each time the interrupt occurs.

When the budget is zero, the associated tasks continue to execute. If action should
be taken when there is no budget, this has to be programmed (it must be instigated by the
handler). So group budgets are not in themselves a server abstraction — but they allow
these abstractions to be constructed.

To give a simple example, consider four aperiodic tasks that should share a budget
of 2 ms that is replenished every 10 ms. The tasks first register with a Controllerl
protected object that will manage the budget. They then loop around waiting for the next
invocation event. In all of the examples in this section, fixed-priority scheduling on a
single processor is assumed.

task Aperiodic_Task is
pragma Priority (Some_Value) ;
end Aperiodic_Task;

task body Aperiodic_Task is

begin
Controllerl.Register;
loop
-- wait for next invocation
-- undertake the work of the task
end loop;
end Aperiodic_Task;

The Controllerl protected object will use a timer event and a group budget,
and hence defines handlers for both.

482 TOLERATING TIMING FAULTS

protected Controllerl is
pragma Interrupt_Priority (Interrupt_Priority’Last);
entry Register;
procedure Timer_Handler (E : in out Timing_Event) ;
procedure Group_Handler (G : in out Group_Budget) ;
private
T_Event : Timing_Event;
G_Budget : Group_Budget;
For_All : Boolean := False;
end Controllerl;

protected body Controllerl is
entry Register when Register’Count = 4 or For_All is
begin
if not For_All then
For_All := True;
G_Budget .Add (Milliseconds (2)) ;
G_Budget .Add_Task (Register’Caller) ;
T_Event.Set_Handler (Milliseconds (10), Timer_Handler’Access);
G_Budget .Set_Handler (Group_Handler’access) ;
else
G_Budget .Add_Task (Register’Caller) ;
end if;
end Register;

procedure Timer_Handler (E : in out Timing_Event) is
T_Array : Task_Array := G_Budget.Members;
begin
G_Budget .Replenish(Milliseconds (2)) ;
for ID in T_Array’'Range loop
Asynchronous_Task_Control.Continue(T_Array (ID));
end loop;
E.Set_Handler (Milliseconds (10),Timer_Handler’Access) ;
end Timer_Handler;

procedure Group_Handler (G : in out Group_Budget) is
T_Array : Task_Array := G.Members;

begin
for ID in T_Array’Range loop

Asynchronous_Task_Control.Hold(T_Array (ID)) ;

end loop;

end Group_Handler;

end Controllerl;

The Register entry blocks all calls until each of the four ‘clients’ has called in.
The final task to register (which becomes the first task to enter) sets up the group budget
and the timing event, adds itself to the group and alters the boolean flag so that the other
three tasks will also complete their registration. For these tasks it is straightforward to
add themselves to the group budget. Note the tasks in this example may have different
priorities.

The two handlers work together to control the tasks. Whenever the group budget
handler executes, it stops the tasks from executing by using the Ho1d routine. It always
gets a new list of members in case any have terminated. The Timer_Handler releases

DAMAGE CONFINEMENT 483

all the tasks using Cont inue, it replenishes the budget and then sets up another timing
event for the next period (10 ms).

In a less stringent application it may be sufficient to just prevent new invocations
of each task if the budget is exhausted. The current execution is allowed to complete and
hence tasks are not suspended. The following example implements this simpler scheme,
and additionally allows tasks to register dynamically (rather than all together at the
beginning). The protected object is made more general-purpose by representing it as a
type with discriminants for its main parameters (replenishment in terms of milliseconds
and budget measured in microseconds):

protected type Controller2 (Period, Bud : Positive) is
pragma Interrupt_ Priority (Interrupt_Priority’Last);
procedure Register;
entry Proceed;
procedure Timer_Handler (E : in out Timing_ Event) ;
procedure Group_Handler (G : in out Group_Budget) ;
private
T_Event : Timing_Event;
G_Budget : Group_Budget;

First : Boolean := True;

Allowed : Boolean := False;

Reqg_Budget : Time_Span := Microseconds (Bud) ;
Reqg_Period : Time_Span := Milliseconds (Period) ;

end Controller2;

Con : Controller2 (10, 2000);

The client task would now have the following structure:

task body Aperiodic_Task is

begin
Con.Register;
loop
-- wait for next invocation
-- undertake the work of the task
end loop;
end Aperiodic_Task;

The body of the controller is as follows:

protected body Controller2 is
entry Proceed when Allowed is
begin
null;
end Proceed;

procedure Register is
begin
if First then
First := False;
Add (G_Budget,Reqg_Budget) ;
T_Event.Set_Handler (Req_Period, Timer_Handler’Access) ;

484 TOLERATING TIMING FAULTS

G_Budget.Set_Handler (Group_Handler’Access) ;
Allowed := True;
end if;
G_Budget .Add_Task (Current_Task) ;
end Register;

procedure Timer_Handler (E : in out Timing_Event) is
begin

Allowed := True;

G_Budget .Replenish (Reg_Budget) ;

E.Set_Handler (Req_Period, Timer_Handler’Access) ;
end Timer_Handler;

procedure Group_Handler (G : in out Group_Budget) is
begin
Allowed := False;
end Group_Handler;
end Controller2;

The next example illustrates a Deferable Server. Here, the server has a fixed pri-
ority, and when the budget is exhausted, the tasks are moved to a background priority
Priority’First.Thisiscloser to the firstexample, but retains some of the properties
of the second approach:

protected type Controller3 (Period, Bud : Positive;
Pri : Priority) is
pragma Interrupt_Priority (Interrupt_Priority’Last);
procedure Register;

procedure Timer_Handler (E : in out Timing_Event) ;
procedure Group_Handler (G : in out Group_Budget);
private

T_Event : Timing_Event;
G_Budget : Group_Budget;

First : Boolean := True;
Req Budget : Time_Span := Microseconds (Bud) ;
Reqg Period : Time_Span := Milliseconds (Period);

end Controller3;

Con : Controller3(10, 2000, 12);
-- assume this server has priority 12

protected body Controller3 is
procedure Register is
begin
if First then
First := False;
G_Budget .Add (Req_Budget) ;
T_Event.Set_Handler (Req_Period,Timer_Handler'’Access) ;
G_Budget .Set_Handler (Group_Handler’Access) ;
end if;
Add_Task (G_Budget, Current_Task) ;
if G_Budget .Budget_Has_Expired then
Set_Priority(Priority’First);
-- sets client task to background priority

ERROR RECOVERY 485

else
Set_Priority (Pri);
-- sets client task to servers 'priority'
end if;
end Register;

procedure Timer_Handler (E : in out Timing Event) is
T_Array : Task_Array := G_Budget.Members;
begin

G_Budget .Replenish (Reqg_Budget) ;
for ID in T_Array’Range loop
Set_Priority(Pri,T_Array (ID));
end loop;
E.Set_Handler (Req_Period, Timer_Handler'’Access) ;
end Timer_Handler;

procedure Group_Handler (G : in out Group_Budget) is
T_Array : Task_Array := G_Budget.Members;
begin

for ID in T_Array’Range loop
Set_Priority(Priority’First,T_Array (ID));
end loop;
end Group_Handler;
end Controller3;

When a task registers, it is running outside the budget so it is necessary to check
if the budget is actually exhausted during registration. If it is then the priority of the task
must be set to the low value. Other properties of this algorithm should be clear to the
reader from the previous discussions.

13.7 Error recovery

Once timing errors have been detected, strategies for recovery must be developed. In-
evitably this is application-dependent; however, there are several techniques that can be
utilized. This section first considers recovery at the individual thread/task level, and then
considers more system-wide responses.

13.7.1 Task-level recovery

The goal of the damage-confinement techniques outlined in the previous section has
been to attempt to isolate timing errors to individual tasks or groups of tasks.

Strategies for handling WCET overrun

Monitoring WCET overrun has been suggested as a mechanism for detecting a common
fault before the error propagates outside the errant task. Once detected, the task response
will depend on whether it is a hard, soft or firm.

486

TOLERATING TIMING FAULTS

e WCET overrun in hard real-time tasks — although the error detection techniques

introduced in Chapter 2 have detected functional failures that might cause overruns
(such as non-terminating loops), WCET overrun can still occur due to inaccuracies
in calculating the WCET values. One possibility is that the WCET values used
in the schedulability analysis consist of the addition of two components. The first
is the time allocated for the primary algorithm and the second is the time for
recovery (assuming a fault hypothesis of a single failure per task per release). The
first time is the time that is used by the system when monitoring. When this time
passes, forward or backward error recovery occurs and the alternative algorithm
is executed. This can either be within the same task and the budget increased (for
example, changing the cost in a Real-Time Java thread’s release parameters), or
by releasing a dedicated recovery task. Typically, these alternative algorithms try
to provide a degraded service. Another possibility is simply to do nothing. This
assumes that there is enough slack in the system for the task (and other lower-
priority tasks) to still meet their deadlines.

WCET overruns in soft/firm real-time tasks — typically overruns in soft and
firm real-time tasks can be ignored if the isolation techniques guarantee the capac-
ity needed for the hard real-time tasks. Alternatively, the tasks’ priorities can be
lowered, or the current releases can be terminated and the tasks re-released when
their next release event occurs.

As an example of the latter, consider the use of Ada’s execution-time timers and

timer events to lower the priority of a task if it overruns its worst-case execution time.
In this example, the task has a worst-case execution time of 1.25 ms per invocation. If
it executes for more than this value its priority should be lowered from its correct value
of 14 to a minimum value of 2. If it is still executing after a further 0.25 ms then that
invocation of the task must be terminated; this implies the use of an ATC construct. First,
the overrun handler protected type is defined:

protected Overrun is

pragma Priority(Min_Handler_Ceiling) ;
entry Stop_Task;

procedure Handler (TM : in out Timer) ;
procedure Reset (C1l : CPU_Time) ;

private
Abandon : Boolean := False;
First_Occurrence : Boolean := True;

WCET_Overrun : CPU_Time;

end Overrun;

protected body Overrun is

entry Stop_Task when Abandon is
begin

null;
end Stop_Task;

procedure Reset (C1 : CPU_Time) is
begin
Abandon := False;
First_Occurrence := True;

ERROR RECOVERY 487

WCET_Overrun := Cl;
end Reset;
procedure Handler (TM : in out Timer) is
begin

if First_Occurrence then
Set_Handler (TM, WCET_Overrun, Handler'Access) ;
Set_Priority (2, TM.T.all);

First_Occurrence := False;
else

Abandon := True;
end if;

end Handler;
end Overrun;

It may not be immediately clear why a Reset routine is required, but without it
a race condition may lead to incorrect execution. Consider the code of the task:

task Hard_Example;
task body Hard_Example is

ID : aliased Task_ID := Current_Task;
WCET_Error : Timer (ID’'access);
WCET : CPU_Time := Ada_Execution_Time.Time_ Of (0,
Microseconds (1250)) ;
WCET_Overrun : CPU_Time := Time_Of (0,Microseconds (250));
Bool : Boolean := False;
begin
-- initialization
loop

Overrun.Reset (WCET_Overrun) ;
Set_Handler (WCET_Error,WCET, Overrun.Handler’Access) ;
select
Overrun.Stop_Task;
-- handler the error if possible at priority level 2
then abort
-- code of the application
end select;
Cancel_Handler (WCET_Error, Bool);
Set_Priority (14);
delay until
end loop;

end Hard_Example;

It is possible for the timer to trigger (or expire) after completion of the select
statement but before it can be cancelled. This would leave the state of the boolean
variable, Abandon, with the incorrect value of True. Similarly, it is necessary to
cancel the timer before changing the priority back to 14 — otherwise the event could
trigger just before executing the delay statement and the task would be stuck with the
wrong low priority for its next invocation.

488 TOLERATING TIMING FAULTS

Strategies for handling sporadic event overruns

There are several responses to the violation of minimum inter-arrival time of a sporadic
task. The mechanism provided by Real-Time Java covers most of them: the release event
can be ignored, an exception can be thrown, the last event can be overwritten (if it has
not already been acted upon) or the actual release of the thread can be delayed until
the MIT has passed. Of course, the thread could ignore the violation and be executed
anyway.

Strategies for handling deadline misses

Although the early identification of potential timing problems facilitates damage assess-
ment, many real-time systems just focus on the recovery from missed deadlines. Again,
several strategies are possible.

o Deadline miss of hard real-time tasks — it is possible to set two deadlines for each
task. An early deadline is one whose miss will cause the invocation of forward or
backward error recovery. A later deadline is the deadline used by the schedulability
test. In both cases, the recovery should again aim to produce a degraded service
for the task.

o Deadline miss of soft real-time task — typically this can be ignored and treated
as a transient overload situation. A count of missed deadlines can be maintained,
and when it passes a certain threshold a health monitoring system can be informed
(see below).

e Deadline miss of a firm real-time task — as a firm task produces no value once it
has passed its deadline, its current release can be terminated.

As an example of handling a deadline miss, consider a soft real-time Real-Time
Java system where applications will want to monitor any deadline misses, but take no
action unless a certain threshold is reached. When it is reached, the tardy thread is
de-scheduled.

Here, a health monitor object is assumed with the following interface:

import javax.realtime.*;
public class HealthMonitor {
public void persistentDeadlineMiss (Schedulable s);

}

Now consider the following event handler for catching a missed deadline of a
periodic real-time thread:

import javax.realtime.*;
class DeadlineMissHandler extends AsyncEventHandler {
public DeadlineMissHandler (HealthMonitor mon,
int threshold) {
super (new PriorityParameters(
PriorityScheduler.MAX PRIORITY),
null, null, null, null, null);
myHealthMonitor = mon;

ERROR RECOVERY 489

myThreshold = threshold;

public void setThread(RealtimeThread rt) {
myrt = rt;
}

public void handleAsyncEvent () {
if (++missDeadlineCount < myThreshold)
myrt.schedulePeriodic() ;
else
myHealthMonitor.persistentDeadlineMiss (myrt) ;
}
private RealtimeThread myrt;
private int missDeadlineCount = 0;
private HealthMonitor myHealthMonitor;
private final int myThreshold;

When the handler is executed, it increments the miss count and reschedules
the thread. When the count reaches the threshold, it informs the health monitor and
does not reschedule the thread. The following code sets up the real-time periodic
thread.

PriorityScheduler ps = (PriorityScheduler)Scheduler.
getDefaultScheduler() ;
HealthMonitor healthMonitor = new HealthMonitor();
DeadlineMissHandler missHandler = new
DeadlineMissHandler (healthMonitor, 5);

PriorityParameters ppl = new
PriorityParameters (ps.getMinPriority());
PeriodicParameters releasel = new PeriodicParameters (
new RelativeTime(0,0), // start,
new RelativeTime (1000,0), // period
new RelativeTime(100,0), // cost
new RelativeTime (500, 0), // deadline
null, // no overrun handler
missHandler) ; // miss handler

RealtimeThread rttl = new RealtimeThread (ppl,releasel) {
public void run() {
// Code for thread.
}
}

missHandler.setThread(rttl);
rttl.start();

Of course, the deadline miss detection mechanism can be combined with the Real-
Time Java ATC mechanism to stop the task if necessary.

490 TOLERATING TIMING FAULTS

13.7.2 Mode changes and event-based reconfiguration

In the above discussions, it has generally been assumed that a missed deadline and other
timing errors can be dealt with by the task that is actually responsible for the problem.
This is not always the case. Often the consequences of a timing error are as follows.

e Other tasks must alter their deadlines or even terminate what they are doing.
e New tasks may need to be started.

e Critically important computation may require more processor time than is currently
available; to obtain the extra time, other less significant tasks may need to be
‘suspended’.

e Tasks may need to be ‘interrupted’ in order to undertake one of the following
(typically):
— immediately return their best results they have obtained so far;
— change to quicker (but presumably less accurate) algorithms;
— forget what they are presently doing and become ready to take new instruc-
tions: ‘restart without reload’.

These actions are sometimes known as event-based reconfiguration.

Some systems may additionally enter anticipated situations in which deadlines
are liable to be missed. A good illustration of this is found in systems that experience
mode changes. This is where some event in the environment occurs which results in
certain computations that have already started, no longer being required. If the sys-
tem were to complete these computations then other deadlines would be missed; it is
thus necessary to terminate prematurely the tasks or temporal scopes that contain the
computations.

To perform event-based reconfiguration and mode changes requires communica-
tion between the tasks concerned. Due to the asynchronous nature of this communication,
it is necessary to use the asynchronous notification mechanisms found in languages like
Ada, Real-Time Java and C/Real-Time POSIX (see Section 7.4). These mechanisms are
low level; arguably what is really required to to be able to tell the scheduler to stop
invoking certain threads that are now not required and to begin to invoke other tasks.
Real-Time Java goes some way towards this by having methods associated with real-time
threads that inform the scheduler that the real-time thread is currently not required. The
methods are shown in Program 13.1. De-scheduling and rescheduling real-time threads
in Real-Time Java does not alter the phasing of the thread. It simply ignores any release
event for the thread. Also note, the real-time thread is allowed to complete its current
release.

The research language Real-Time Euclid adopts a slight different approach from
Real-Time Java because it ties its asynchronous event-handling mechanism to its real-
time release mechanisms. In Real-Time Euclid time constraints are associated with
processes (a task is called a process in Real-Time Euclid) and numbered exceptions
can be defined. Handlers must be provided in each process. For example, consider the
following temperature controller process which defines three exceptions.

ERROR RECOVERY 491

process TempController : periodic frame 60 first activation
atTime 600 or atEvent startMonitoring
% import list
handler (except_num)
exceptions (200,201,304) % for example

imports (var consul, ...)

var message : string(80),
case except_num of
label 200: % very low temperature
message := "reactor is shut down"
consul := message
label 201: % very high temperature
message := "meltdown has begun - evacuate"
consul := message
alarm := true % activate alarm device
label 304: % timeout on sensor

% reboot sensor device
end case
end handler

o°

oe

execution part

oo

Q

end TempController

Real-Time Euclid allows a process to raise an exception in another process. Three dif-
ferent kinds of raise statement are supported: except, deactivate and kill; as their names
imply they have increasing severity.

The except statement is essentially the same as the Ada and Java raise/throw
statements, the difference being that once the handler has been executed, control is
returned to where it left off (that is, the resumption model). By comparison, the deactivate
statement causes that iteration of the (periodic) process to be terminated. The victim
process still executes the exception handler, but will then only become reactivated when
its next period is due. Hence Real-time Euclid allows the current release to be abandoned.

To terminate a process, the kill statement is available; this explicitly removes a
process (possibly itself) from the set of active processes. It differs from an unconditional
abort in that the exception handler is executed before termination. This has the advantage
that a process may perform some important ‘last rites’. It has the disadvantage that an
error in the handler could still cause the process to malfunction.

To illustrate the use of these exceptions, the temperature control process given
in Section 10.6.1 will have some detail added to its execution part. Note that, in this
example, exceptions are raised and handled synchronously within the same process,
and asynchronously in another process. First, the process waits on a condition variable;
a timeout is specified and an exception number is given. (If this timeout occurs, the
numbered exception is raised using except.) A temperature is then read and logged.
Tests on the temperature value could lead to other exceptions being raised. A low value
will result in an appropriate message and deactivation until the next period; a high value
will result in an even more appropriate, if somewhat futile, message, an exception being
raised in an alarm process, and the temperature controller terminating. All available
processor time can now be dedicated to the alarm process.

492 TOLERATING TIMING FAULTS

process TempController : periodic frame 60 first activation
atTime 600 or atEvent startMonitoring
% import list
handler (except_num)
exceptions (200,201,304) % for example
imports (var consul, ...)
var message : string(80),
case except_num of
% as before
end case

end handler

wait (temperature_available) noLongerThan 10 : 304
currentTemperature := ... $% low-level i/o
log := currentTemperature

if currentTemperature < 100 then
deactivate TempController : 200

elseif currentTemperature > 10000 then
kill TempController : 201

end if

)

% other computations
end TempController

To perform this form of reconfiguration in Ada, two mechanisms are available:

e abort — similar to kill

o ATC — similar to deactivate.

Ada allows ‘last rites’ to be programmed using a controlled variable. As indicated in
Section 7.6.1, the ATC feature is a general one, and hence it can deal with deactivate
and most other forms of event-based reconfiguration.

Summary

This chapter has discussed the toleration of timing faults from with the framework
of dynamic software fault tolerance. Timing faults manifest themselves in the
following conditions:

overrun of deadline;

overrun of worst-case execution time;

sporadic events occurring more often than predicted;
e timeouts on communications.

Ada and Real-Time POSIX provide low-level mechanisms that the programmer
can use to detect these conditions, whereas Real-Time Java provides support
in the context of real-time threads and release parameters.

Execution time and aperiodic servers provide the main mechanisms in
support of damage confinement. Ada and Real-Time Java provide this via the

EXERCISES 493

notion of group budgets. Ada, in particular, has a flexible set of mechanisms that
allow various server approaches to be implemented. Real-Time POSIX opts for
the support of a single policy, that of a sporadic server.

Error recovery strategies depend on an application’s context. Many timing
errors can be considered transient and can be ignored. Others require a task to
stop what it is doing and undertake an alternative action. On occasions, ataskin
isolation can not deal with the problem, and reconfiguration and mode changes
may need to be performed.

In some high-integrity applications, there is little scope for error handling
within the program itself. A deadline miss will lead to an attempt to recover at
the system level. This could involve a switch to another version of the software
running on another processor, or the cold restarting of the current program.

Further reading

Burns, A. and Wellings, A. J. (2007) Concurrent and Real-Time Programming in Ada.
Cambridge: Cambridge University Press.

Koptez, H. (1997) Real-time Systems. New York: Kluwer Academic.

Wellings, A. J. (2004) Concurrent and Real-Time Programming in Java. Chichester:
Wiley.

Exercises
13.1 Show how Ada can implement block-level deadline violations. How can the
equivalent be done in Real-Time Java or Real-Time POSIX?
13.2 Can the deadline overrun of a periodic thread in Real-Time Java be detected?

13.3 What is the role of deadline in the specification of a Real-Time Java event
handler?

13.4 To what extent can the violation of maximum arrival frequency of sporadic
events be detected in Ada, Real-Time POSIX and Real-Time Java?

13.5 To what extent can event-based reconfiguration be performed in Real-Time
Java?

13.6 Outline (with code) how Ada supports sporadic tasks. How can the task protect
itself from executing more often than its minimum inter-arrival time?

137 To what extent can sporadic servers be implemented in Ada?

13.8 To what extent can ProcessingGroupParameters be used by a Real-
Time Java scheduler to support sporadic servers?

¥ rerinidy

{0 rumra S S el CANN b Sk covecliety o 2N, Sl aom i mrsif
el Ao X80 wrm’ A redraaiie s Ghaareiohe R dvohu. aells
iyt Dibanone B F1 et fnde] alpnia i ko ity a0

#'ﬂ'ﬂ“ dutirmss FonlE i e MMWm1
o] g o i 2l BEAE) 00 G D06 Bretieey Bt B IC, e 11 PG
rEAesle 5 -nam il reWirT paliemabis we s dwsnn., D prkd g e, pds
ESHITANID: LA W re s 1 a8 AT @] 1P g e ome Ladatoar
O s I I

REAEA Wms w0 s g B g o MEOOE TR et e o

oo gl il ECE IR L b W, 2) e s T SR L=k
e L T L N A L O B | mopt 2ot
TEE N . Gl e L e el - e R AT T A7 L) T

grabadr yan U=

ERCEC = et ey ' v e L PoJagal gdlg
i o 1) s
e | - r o i el 1. n
C el i - = alimabe. e e e fa Cs B
o
- E
== .. W kP ' L T T o wl po o BAE
- o B . &4 - TN
«l o MO, D A, . moet tig
i . ' N . I | ! !
B e e T - = . T T S
fe otz ol Al] g BT e, e "
- ' = =n . clana g - o o = ER T T R B
N . 1 i = BT E
m =4 ERL B L | .
: et [1= 1. 1
B s =

