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Origins of on-line changes: 
•  Changing task characteristics: 

–  Tasks execute shorter/longer than their assumed WCET. 
–  Tasks increase/decrease the values of their static parameters 

as a result of, for example, a mode change. 

•  Dynamically arriving tasks: 
–  Aperiodic tasks (with characteristics known a priori ) arrive 
–  New tasks (with characteristics not known a priori ) enter  

the system at run-time. 

•  Changing hardware configuration: 
–  Transient/intermittent/permanent hardware faults 
–  Controlled hardware re-configuration (mode change) 

Handling on-line changes 



Consequences of on-line changes: 
•  Overload situations: 

–  Changes in workload/architecture characteristics causes the 
accumulated processing demands from all tasks to exceed  
the capacities of the available processors. 

–  Question: How do we reject certain tasks in a way such that  
the inflicted damage is minimized? 

•  Scheduling anomalies: 
–  Changes in workload/architecture causes non-intuitive negative 

effects on system performance. 
–  Question: Can we design sustainable feasibility tests that can 

guarantee that such a change does not result in a task set, that 
was previously deemed schedulable, becoming unschedulable? 

Handling on-line changes 



How do we handle a situation where the system 
becomes temporarily overloaded? 

•  Best-effort schemes: 
–  No prediction for overload conditions. 

•  Guarantee schemes: 
–  Processor load is controlled by continuous acceptance tests. 

•  Robust schemes: 
–  Different policies for task acceptance and task rejection. 

•  Negotiation schemes: 
–   Modifies workload characteristics within agreed-upon bounds. 

Handling overload conditions 



Best-effort schemes: 
Includes those algorithms with no predictions for overload 

conditions. A new task is always accepted into the 
ready queue so the system performance can only be 
controlled through a proper priority assignment. 

Handling overload conditions 
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Example: 
In case of overload, the tasks with the least value 
(importance, criticality) are removed. 



Guarantee schemes: 
Includes those algorithms in which the load on the 

processor is controlled by an acceptance test executed 
at each task arrival. If the task set is found schedulable, 
the new task is accepted; otherwise, it is rejected. 
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Example: 
If a new task arrival cannot be guaranteed it is rejected 
(and distributed scheduling may be attempted). 



Robust schemes: 
Includes those algorithms that separate timing constraints 

and importance by considering two different policies: 
one for task acceptance and one for task rejection. 
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Example: 
Consider deadline tolerance for acceptance of a task,  
but consider value (importance, criticality) for rejection. 



Negotiation schemes: 
Includes those algorithms that attempt to modify timing 

constraints and/or importance within certain specified 
limits in an attempt to provide requested functionality. 

Handling overload conditions 

Example: 
Provide primary and alternate quality-of-service levels 
(constraint configurations) for each task, and in case  
of overload change to an alternate service level. 
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Cumulative value: 
The cumulative value of a scheduling algorithm A is a 

performance measure with the following quality: 

Handling overload conditions 
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Competitive factor: 
A scheduling algorithm A has a competitive factor      

if and only if it can guarantee a cumulative value 
Aϕ

where      is the cumulative value achieved by an optimal 
clairvoyant scheduler. 
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Handling overload conditions 

Limitations of on-line schedulers: (Baruah et al., 1992) 

In systems where the loading factor is greater than 2 and tasks’ 
values are proportional to their computation times, no on-line 
algorithm can guarantee a competitive factor greater than 0.25.   

Observations: 
–  If the overload is of infinite duration, no on-line algorithm can guarantee 

a competitive factor greater than zero. 
–  Even for intermittent overloads, plain EDF has a zero competitive factor. 
–  The Dover algorithm has optimal competitive factor (Koren & Shasha, 1992) 
–  Having the best competitive factor among all on-line algorithms does not 

mean having the best performance in any load condition. 
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 Aperiodic task model: 
•  Spatial: 

–  The aperiodic task arrival is handled centralized; this is the case 
for multiprocessor servers with a common run-time system. 

–  The aperiodic task arrival is handled distributed; this is the case 
for distributed systems with separate run-time systems. 

•  Temporal: 
–  The aperiodic task is assumed to only arrive once; thus, it has 

no period. 
–  The actual arrival time of an aperiodic task is not known in 

advance (unless the system is clairvoyant). 
–  The actual parameters (e.g., WCET, relative deadline) of an 

aperiodic task may not be known in advance. 

Handling aperiodic tasks 



Approaches for handling aperiodic tasks: 
•  Server-based approach: 

–  Reserve capacity to a "server task" that is dedicated to handling 
aperiodic tasks. 

–  All aperiodic tasks are accepted, but can only be handled in a 
best-effort fashion ⇒ no guarantee on schedulability 

•  Server-less approach: 
–  A schedulability test is made on-line for each arriving aperiodic 

task ⇒ guaranteed schedulability for accepted task. 
–  Rejected aperiodic tasks could either be dropped or forwarded 

to another processor (in case of multiprocessor systems) 

Handling aperiodic tasks 



Challenges in handling aperiodic tasks: 
•  Server-based approach: 

–  How do we reserve enough capacity to the server task without 
compromising schedulability of hard real-time tasks, while yet 
offering good service for future aperiodic task arrivals? 

•  Server-less approach: 
–  How do we design a schedulability test that accounts for arrived 

aperiodic tasks (remember: they do not have periods)? 
–  To what other processor do we off-load a rejected aperiodic task 

(in case of multiprocessor systems)? 

Handling aperiodic tasks 



Handling (soft) aperiodic tasks on uniprocessors: 
•  Static-priority servers: 

–  Handles aperiodic/sporadic tasks in a system where periodic 
tasks are scheduled based on a static-priority scheme (RM). 

•  Dynamic-priority servers: 
–  Handles aperiodic/sporadic tasks in a system where periodic 

tasks are scheduled based on a dynamic-priority scheme (EDF). 
•  Slot-shifting server: 

–  Handles aperiodic/sporadic tasks in a system where periodic 
tasks are scheduled based on a time-driven scheme. 

Primary goal: to minimize the response times of aperiodic tasks 
in order to increase the likelihood of meeting their deadlines. 

Aperiodic servers 



Background scheduling: 
 Schedule aperiodic activities in the background; that is, 
when there are no periodic task instances to execute. 

 

 Advantage: 
–  Very simple implementation 

 Disadvantage: 
–  Response time can be too long 

Static-priority servers 



Background scheduling: 
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Polling Server (PS): (Lehoczky, Sha & Strosnider, 1987) 
 Service aperiodic tasks using a dedicated task with a 
period Ts and a capacity Cs. 
 If no aperiodic tasks need service in the beginning of the 
PS period, PS suspends itself until beginning of next 
period. Unused server capacity is used by periodic tasks.  

 Advantage: 
–  Much better average response time 

 Disadvantage: 
–  If no aperiodic request occurs at beginning of server period, the 

entire server capacity for that period is lost. 

Static-priority servers 



Polling Server: 
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Deferrable Server (DS): (Lehoczky, Sha & Strosnider, 1987) 
 Service aperiodic tasks using a dedicated task with a 
period Ts and a capacity Cs. 
 Server maintains its capacity until end of period so that 
requests can be serviced as capacity is not exhausted.  

 Advantage: 
–  Even better average response time because capacity is not lost 

Static-priority servers 



Deferrable Server: 
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Feasibility test for RM + DS: 
 A set of n periodic tasks and one aperiodic server are 
schedulable using RM if the processor utilization does  
not exceed: 

Static-priority servers 
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Feasibility test for RM + DS: 
 Rules-of-thumb: 

Static-priority servers 

  n→∞ ⇒ U RM+DS ≈ 0.652     for US = 0.186( )

  U RM+DS >U RM    for US > 0.4( )
  U RM+DS ≤U RM    for US ≤ 0.4( )



Priority Exchange Server: (Lehoczky, Sha & Strosnider, 1987) 
 Preserves its capacity by temporarily exchanging it for the 
execution time of a lower-priority periodic task. 

Sporadic Server: (Sprunt, Sha & Lehoczky, 1989) 
 Replenishes its capacity only after it has been consumed 
by aperiodic task execution. 

Slack Stealing: (Lehoczky & Ramos-Thuel, 1992) 
 Does not use a periodic server task. Instead, it employs  
a run-time mechanism that can delay the execution of 
periodic tasks to make room for a aperiodic task, without 
violating the priority ordering of those tasks. 

(Other) Static-priority servers 



Non-existence of optimal servers: (Tia, Liu & Shankar, 1995) 

Static-priority servers 

For any set of periodic tasks ordered on a given static-priority scheme 
and aperiodic requests ordered according to a given aperiodic 

queuing discipline, there does not exist any on-line algorithm that 
minimizes the response time of every soft aperiodic request.   

For any set of periodic tasks ordered on a given static-priority scheme 
and aperiodic requests ordered according to a given aperiodic 

queuing discipline, there does not exist any on-line algorithm that 
minimizes the average response time of the soft aperiodic requests.   



Dynamic Priority Exchange Server: (Spuri & Buttazzo, 1994) 
 Preserves its capacity by temporarily exchanging it for the 
execution time of a lower-priority (longer deadline) task. 

Dynamic Sporadic Server: (Spuri & Buttazzo, 1994) 
 Replenishes its capacity only after it has been consumed by 
aperiodic task execution. 

Total Bandwidth Server: (Spuri & Buttazzo, 1994) 
 Assign a (possibly earlier) deadline to each aperiodic task 
and schedule it as a normal task. Deadlines are assigned 
such that the overall processor utilization of the aperiodic 
load never exceeds a specified maximum value Us. 

Dynamic-priority servers 



Slot-Shifting Server: (Fohler, 1995) 
 Schedules aperiodic tasks in the unused time slots in a 
schedule generated for time-driven dispatching.  
 Associated with each point in time is a spare capacity that 
indicates by how much the execution of the next periodic 
task can be shifted in time without missing any deadline.  
 Whenever an aperiodic task arrives, task instances in the 
static workload may be shifted in time – by as much as the 
spare capacity indicates – in order to accommodate the 
new task. 

Slot-shifting server 



State-of-the-art : 
•  Uniprocessor systems: 

–  Anomalies only found for non-preemptive scheduling 

•  Multiprocessor systems: 
–  Richard’s anomalies for non-preemptive scheduling 
–  Execution-time-based anomalies for preemptive scheduling 
–  Period-based anomalies for preemptive scheduling 

Scheduling anomalies 

Scheduling anomaly: A seemingly positive change in 
the system (reducing load or adding resources) causes 

a non-intuitive decrease in performance. 



Richard’s anomalies: (Graham, 1969) 
   Assumptions: 

–  Non-preemptive scheduling 
–  Precedence constraints 
–  Restricted migration (individual task instances cannot migrate) 
–  Fixed execution times 

   Task completion times may increase as a result of: 
–  Changing the task priorities 
–  Increasing the number of processors 
–  Reducing task execution times 
–  Weakening the precedence constraints  

Scheduling anomalies 



Execution-time-based anomalies: (Ha & Liu, 1994) 
   Assumptions: 

–  Preemptive scheduling 
–  Independent tasks 
–  Restricted migration (individual task instances cannot migrate)  
–  Fixed execution times 

   Task completion times may increase as a result of: 
–  Reducing task execution times 

Scheduling anomalies 



Period-based anomalies: (Andersson & Jonsson, 2000) 
   Assumptions: 

–  Preemptive scheduling 
–  Independent tasks 
–  Full migration  
–  Fixed execution times 

   A task’s completion time may increase as a result of: 
–  Increasing the period of a higher-priority task 
–  Increasing the period of the task itself 

Consequently, sporadic tasks may not have the same  
worst-case schedulability behavior as periodic tasks! 
(this is in contrast to the uniprocessor case) 

Scheduling anomalies 


