
Lecture #10

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

Handling on-line changes

Architecture

Target
environment

Static (periodic) tasks

1τ
2τ

3τ 4τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1µ

2µ 3µ

TA TAc

Aperiodic tasks

Aτ

transient faults

dynamic arrivals

mode changes
1τ ′

2τ ′
3τ ′ 4τ ′

Origins of on-line changes:
•  Changing task characteristics:

–  Tasks execute shorter/longer than their assumed WCET.
–  Tasks increase/decrease the values of their static parameters

as a result of, for example, a mode change.

•  Dynamically arriving tasks:
–  Aperiodic tasks (with characteristics known a priori) arrive
–  New tasks (with characteristics not known a priori) enter

the system at run-time.

•  Changing hardware configuration:
–  Transient/intermittent/permanent hardware faults
–  Controlled hardware re-configuration (mode change)

Handling on-line changes

Consequences of on-line changes:
•  Overload situations:

–  Changes in workload/architecture characteristics causes the
accumulated processing demands from all tasks to exceed
the capacities of the available processors.

–  Question: How do we reject certain tasks in a way such that
the inflicted damage is minimized?

•  Scheduling anomalies:
–  Changes in workload/architecture causes non-intuitive negative

effects on system performance.
–  Question: Can we design sustainable feasibility tests that can

guarantee that such a change does not result in a task set, that
was previously deemed schedulable, becoming unschedulable?

Handling on-line changes

How do we handle a situation where the system
becomes temporarily overloaded?

•  Best-effort schemes:
–  No prediction for overload conditions.

•  Guarantee schemes:
–  Processor load is controlled by continuous acceptance tests.

•  Robust schemes:
–  Different policies for task acceptance and task rejection.

•  Negotiation schemes:
–  Modifies workload characteristics within agreed-upon bounds.

Handling overload conditions

Best-effort schemes:
Includes those algorithms with no predictions for overload

conditions. A new task is always accepted into the
ready queue so the system performance can only be
controlled through a proper priority assignment.

Handling overload conditions

ready queue

task execution
always accepted

Example:
In case of overload, the tasks with the least value
(importance, criticality) are removed.

Guarantee schemes:
Includes those algorithms in which the load on the

processor is controlled by an acceptance test executed
at each task arrival. If the task set is found schedulable,
the new task is accepted; otherwise, it is rejected.

Handling overload conditions

ready queue

 task execution
accepted

guarantee
routine

rejected

Example:
If a new task arrival cannot be guaranteed it is rejected
(and distributed scheduling may be attempted).

Robust schemes:
Includes those algorithms that separate timing constraints

and importance by considering two different policies:
one for task acceptance and one for task rejection.

Handling overload conditions

ready queue
 task execution

scheduling
policy

planning

reject queue rejection
policy

reclaiming
policy

Example:
Consider deadline tolerance for acceptance of a task,
but consider value (importance, criticality) for rejection.

Negotiation schemes:
Includes those algorithms that attempt to modify timing

constraints and/or importance within certain specified
limits in an attempt to provide requested functionality.

Handling overload conditions

Example:
Provide primary and alternate quality-of-service levels
(constraint configurations) for each task, and in case
of overload change to an alternate service level.

ready queue
 task execution

service
contract

negotiation

constraint
configurations

Cumulative value:
The cumulative value of a scheduling algorithm A is a

performance measure with the following quality:

Handling overload conditions

()1

n
A ii

v f
=

Γ =∑

*
A AϕΓ ≥ Γ

Competitive factor:
A scheduling algorithm A has a competitive factor

if and only if it can guarantee a cumulative value
Aϕ

where is the cumulative value achieved by an optimal
clairvoyant scheduler.

*Γ

Handling overload conditions

Limitations of on-line schedulers: (Baruah et al., 1992)

In systems where the loading factor is greater than 2 and tasks’
values are proportional to their computation times, no on-line
algorithm can guarantee a competitive factor greater than 0.25.

Observations:
–  If the overload is of infinite duration, no on-line algorithm can guarantee

a competitive factor greater than zero.
–  Even for intermittent overloads, plain EDF has a zero competitive factor.
–  The Dover algorithm has optimal competitive factor (Koren & Shasha, 1992)
–  Having the best competitive factor among all on-line algorithms does not

mean having the best performance in any load condition.

Handling aperiodic tasks

Architecture

Target
environment

Static (periodic) tasks

1τ
2τ

3τ 4τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1µ

2µ 3µ

Aperiodic task

Aτ

centralized arrival

distributed arrival

 Aperiodic task model:
•  Spatial:

–  The aperiodic task arrival is handled centralized; this is the case
for multiprocessor servers with a common run-time system.

–  The aperiodic task arrival is handled distributed; this is the case
for distributed systems with separate run-time systems.

•  Temporal:
–  The aperiodic task is assumed to only arrive once; thus, it has

no period.
–  The actual arrival time of an aperiodic task is not known in

advance (unless the system is clairvoyant).
–  The actual parameters (e.g., WCET, relative deadline) of an

aperiodic task may not be known in advance.

Handling aperiodic tasks

Approaches for handling aperiodic tasks:
•  Server-based approach:

–  Reserve capacity to a "server task" that is dedicated to handling
aperiodic tasks.

–  All aperiodic tasks are accepted, but can only be handled in a
best-effort fashion ⇒ no guarantee on schedulability

•  Server-less approach:
–  A schedulability test is made on-line for each arriving aperiodic

task ⇒ guaranteed schedulability for accepted task.
–  Rejected aperiodic tasks could either be dropped or forwarded

to another processor (in case of multiprocessor systems)

Handling aperiodic tasks

Challenges in handling aperiodic tasks:
•  Server-based approach:

–  How do we reserve enough capacity to the server task without
compromising schedulability of hard real-time tasks, while yet
offering good service for future aperiodic task arrivals?

•  Server-less approach:
–  How do we design a schedulability test that accounts for arrived

aperiodic tasks (remember: they do not have periods)?
–  To what other processor do we off-load a rejected aperiodic task

(in case of multiprocessor systems)?

Handling aperiodic tasks

Handling (soft) aperiodic tasks on uniprocessors:
•  Static-priority servers:

–  Handles aperiodic/sporadic tasks in a system where periodic
tasks are scheduled based on a static-priority scheme (RM).

•  Dynamic-priority servers:
–  Handles aperiodic/sporadic tasks in a system where periodic

tasks are scheduled based on a dynamic-priority scheme (EDF).
•  Slot-shifting server:

–  Handles aperiodic/sporadic tasks in a system where periodic
tasks are scheduled based on a time-driven scheme.

Primary goal: to minimize the response times of aperiodic tasks
in order to increase the likelihood of meeting their deadlines.

Aperiodic servers

Background scheduling:
 Schedule aperiodic activities in the background; that is,
when there are no periodic task instances to execute.

 Advantage:
–  Very simple implementation

 Disadvantage:
–  Response time can be too long

Static-priority servers

Background scheduling:

Static-priority servers

8 12 t 0

aperiodic
requests

t 0 6 12 18 24

t 0 10 20

16 2

R1 = 7 R2 = 6

 τ1 = C1 = 2,T1 = 6{ }
 τ 2 = C2 = 4,T2 = 10{ }

2 / 6 4 /10 0.73U = + ≈

1τ

2τ

Polling Server (PS): (Lehoczky, Sha & Strosnider, 1987)
 Service aperiodic tasks using a dedicated task with a
period Ts and a capacity Cs.
 If no aperiodic tasks need service in the beginning of the
PS period, PS suspends itself until beginning of next
period. Unused server capacity is used by periodic tasks.

 Advantage:
–  Much better average response time

 Disadvantage:
–  If no aperiodic request occurs at beginning of server period, the

entire server capacity for that period is lost.

Static-priority servers

Polling Server:

Static-priority servers

8 2

R1 = 5 R2 = 3

12 19

R3 = 6 R4 = 3

0 t

aperiodic
event

t 0 4 8 16 12 20 24

10 t 0

Cs

5 15 20 25

t 0 6 12 18 24

1τ

2τ

 τ1 = 1,4{ }
 τ 2 = 2,6{ } U ≈ 0.98

 τ S = 2,5{ }

Deferrable Server (DS): (Lehoczky, Sha & Strosnider, 1987)
 Service aperiodic tasks using a dedicated task with a
period Ts and a capacity Cs.
 Server maintains its capacity until end of period so that
requests can be serviced as capacity is not exhausted.

 Advantage:
–  Even better average response time because capacity is not lost

Static-priority servers

Deferrable Server:

Static-priority servers

1τ

2τ

8 2

R1 = 2 R2 = 2

12 19

R3 = 3 R4 = 1

0 t

aperiodic
requests

t 0 4 8 16 12 20 24

10 t 0

Cs

5 15 20 25

t 0 6 12 18 24

 τ1 = 1,4{ }
 τ 2 = 2,6{ } U ≈ 0.98

 τ S = 2,5{ }

Feasibility test for RM + DS:
 A set of n periodic tasks and one aperiodic server are
schedulable using RM if the processor utilization does
not exceed:

Static-priority servers

U RM+DS = US + n US + 2

2US +1
⎛
⎝⎜

⎞
⎠⎟

1/n

−1
⎛

⎝
⎜

⎞

⎠
⎟

Feasibility test for RM + DS:
 Rules-of-thumb:

Static-priority servers

 n→∞ ⇒ U RM+DS ≈ 0.652 for US = 0.186()

 U RM+DS >U RM for US > 0.4()
 U RM+DS ≤U RM for US ≤ 0.4()

Priority Exchange Server: (Lehoczky, Sha & Strosnider, 1987)
 Preserves its capacity by temporarily exchanging it for the
execution time of a lower-priority periodic task.

Sporadic Server: (Sprunt, Sha & Lehoczky, 1989)
 Replenishes its capacity only after it has been consumed
by aperiodic task execution.

Slack Stealing: (Lehoczky & Ramos-Thuel, 1992)
 Does not use a periodic server task. Instead, it employs
a run-time mechanism that can delay the execution of
periodic tasks to make room for a aperiodic task, without
violating the priority ordering of those tasks.

(Other) Static-priority servers

Non-existence of optimal servers: (Tia, Liu & Shankar, 1995)

Static-priority servers

For any set of periodic tasks ordered on a given static-priority scheme
and aperiodic requests ordered according to a given aperiodic

queuing discipline, there does not exist any on-line algorithm that
minimizes the response time of every soft aperiodic request.

For any set of periodic tasks ordered on a given static-priority scheme
and aperiodic requests ordered according to a given aperiodic

queuing discipline, there does not exist any on-line algorithm that
minimizes the average response time of the soft aperiodic requests.

Dynamic Priority Exchange Server: (Spuri & Buttazzo, 1994)
 Preserves its capacity by temporarily exchanging it for the
execution time of a lower-priority (longer deadline) task.

Dynamic Sporadic Server: (Spuri & Buttazzo, 1994)
 Replenishes its capacity only after it has been consumed by
aperiodic task execution.

Total Bandwidth Server: (Spuri & Buttazzo, 1994)
 Assign a (possibly earlier) deadline to each aperiodic task
and schedule it as a normal task. Deadlines are assigned
such that the overall processor utilization of the aperiodic
load never exceeds a specified maximum value Us.

Dynamic-priority servers

Slot-Shifting Server: (Fohler, 1995)
 Schedules aperiodic tasks in the unused time slots in a
schedule generated for time-driven dispatching.
 Associated with each point in time is a spare capacity that
indicates by how much the execution of the next periodic
task can be shifted in time without missing any deadline.
 Whenever an aperiodic task arrives, task instances in the
static workload may be shifted in time – by as much as the
spare capacity indicates – in order to accommodate the
new task.

Slot-shifting server

State-of-the-art :
•  Uniprocessor systems:

–  Anomalies only found for non-preemptive scheduling

•  Multiprocessor systems:
–  Richard’s anomalies for non-preemptive scheduling
–  Execution-time-based anomalies for preemptive scheduling
–  Period-based anomalies for preemptive scheduling

Scheduling anomalies

Scheduling anomaly: A seemingly positive change in
the system (reducing load or adding resources) causes

a non-intuitive decrease in performance.

Richard’s anomalies: (Graham, 1969)
 Assumptions:

–  Non-preemptive scheduling
–  Precedence constraints
–  Restricted migration (individual task instances cannot migrate)
–  Fixed execution times

 Task completion times may increase as a result of:
–  Changing the task priorities
–  Increasing the number of processors
–  Reducing task execution times
–  Weakening the precedence constraints

Scheduling anomalies

Execution-time-based anomalies: (Ha & Liu, 1994)
 Assumptions:

–  Preemptive scheduling
–  Independent tasks
–  Restricted migration (individual task instances cannot migrate)
–  Fixed execution times

 Task completion times may increase as a result of:
–  Reducing task execution times

Scheduling anomalies

Period-based anomalies: (Andersson & Jonsson, 2000)
 Assumptions:

–  Preemptive scheduling
–  Independent tasks
–  Full migration
–  Fixed execution times

 A task’s completion time may increase as a result of:
–  Increasing the period of a higher-priority task
–  Increasing the period of the task itself

Consequently, sporadic tasks may not have the same
worst-case schedulability behavior as periodic tasks!
(this is in contrast to the uniprocessor case)

Scheduling anomalies

