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1 Introduction
Fixed-priority preemptive scheduling of independent peri-

odic tasks on a homogeneous multiprocessor is solved using
one of two different methods based on how tasks are assigned
to the processors at run-time. In the partitioned method,
all instances of a task are executed on the same processor,
where the processor used for each task is determined before
run-time by a partitioning algorithm. In the non-partitioned
method, a task is allowed to execute on any processor, even
when resuming after having been preempted. Two funda-
mental properties have been shown for the addressed prob-
lem [1]. First, the problem of deciding whether a task set is
schedulable is NP-hard for both methods. Second, there are
task sets which are schedulable with an optimal priority as-
signment with the non-partitioned method, but are unschedu-
lable with an optimal partitioning algorithm and conversely.

Among the two methods, the non-partitioned method has
received considerably less attention, mainly because it is be-
lieved to suffer from several scheduling-related shortcom-
ings. The most well-known of these is Dhall’s effect, a
scheduling dilemma wherein some task sets may be un-
schedulable on multiple processors even though they have
a low utilization [2]. Another shortcoming is that exist-
ing necessary and sufficient schedulability tests all have ex-
ponential time complexity [3], and existing sufficient tests
have polynomial complexity but are pessimistic. It has
also been shown that the RM (rate-monotonic) priority-
assignment scheme is not optimal [1, 2], and no optimal
priority-assignment schemes with polynomial time complex-
ity have been found.

In this paper, we present an in-depth analysis of the non-
partitioned method in terms of its scheduling-related prop-
erties. We (i) identify a set of anomalies for preemptive
scheduling with migration, which are the first ever reported
in the open research literature, (ii) identify several difficul-
ties in conveying techniques from uniprocessor scheduling
to the multiprocessor case, and (iii) conjecture that there may
exist priority-assignment schemes that can contribute to cir-
cumventing Dhall’s effect, something that has believed to be
inherently impossible with the non-partitioned method.

2 Concepts and System model
We consider the problem of scheduling a task set τ =

{τ1, τ2, . . . , τn} of n independent, periodically-arriving real-
time tasks on m identical processors. Each task τi ∈ τ is
described by the pair (Ti, Ci). A task arrives periodically

with a period of Ti. Each time a task arrives, a new instance
of the task is created. Each instance has a constant execution
time of Ci. A critical instant for a task τi is an arrival time of
an instance such that the response time is maximized. Each
task has a deadline, which is the time of the next arrival of
the task. Each task has a global, unique and fixed priority.
The tasks in τ are numbered in the order of decreasing prior-
ity, that is, τ1 has the highest priority. Of all tasks that have
arrived, but not completed, the m highest-priority tasks are
executed1 in parallel on the m processors.

The utilization of a task is the ratio of the task’s execu-
tion time to its period. The utilization U of a task set is then
U =

∑
i Ci/Ti. To express the average utilization per pro-

cessor for a task set executing on m processors, we use the
system utilization Us = U/m. A task is schedulable if all
its instances complete no later than their deadlines. A task
set is schedulable if all its tasks are schedulable. A task τi is
saturated if it is schedulable, but any increase in Ci makes
τi unschedulable. A task set is fully utilized if the task set is
schedulable, but there is at least one task such that if it in-
creases its execution time, then the task set is unschedulable.

We consider a system where tasks are independent, arrive
periodically, require no other resources than the processors,
and can always be preempted. The cost of preemption is as-
sumed to be zero, even if a task is resumed on another pro-
cessor than the task was preempted on (that is, the cost of
migration is also assumed to be zero).

3 Task Interference and its Implications
For both uniprocessor and non-partitioned multiprocessor

fixed-priority scheduling, the execution of a task is only de-
layed by its higher-priority tasks. The amount of this de-
lay is denoted interference. The interference on a task τi

is the intersection of execution of its higher-priority tasks
τ1, τ2, . . . , τi−1. For uniprocessor scheduling this interfer-
ence can be computed by knowing how many instances of
higher-priority tasks execute during a time interval. For non-
partitioned multiprocessor scheduling this interference only
occurs for τm+1, τm+2, . . . and can be computed as the sum
of all intervals when m higher-priority tasks execute in par-
allel on the m processors, thus delaying the execution of the
remaining tasks.

1At each instant of time, the processor chosen for each of the m tasks
is arbitrary. If less than m tasks should be executed simultaneously, some
processors will be idle.
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Figure 1: When τ1 increases its period to 4, τ3 becomes un-
schedulable. This is because τ3 is saturated and its interfer-
ence increases from 4 to 6.

For uniprocessor scheduling, every increase in processor
demand2 (for example increasing Cj or decreasing Tj) of a
higher-priority task τj causes the same interference or less
interference on a lower-priority task. However, for multipro-
cessor scheduling, the interference is not only dependent on
the processor demand of higher-priority tasks, but also on the
time when they execute. This latter phenomenon gives rise
to a series of counter-intuitive observations.
3.1 Scheduling anomalies

In real-time scheduling, it is often the case that the dead-
line miss ratio highly depends on the system load, that is,
the requested processor utilization of tasks in the system. A
commonly-used conclusion from this is that increasing the
period will decrease the utilization, which in turn decreases
the deadline miss ratio. Below, we present the first schedul-
ing anomaly for preemptive real-time scheduling with migra-
tion (anomalies have previously only been shown for non-
preemptive scheduling [4] and preemptive non-migrating
scheduling [5]), that may invalidate such intuition.

Our first anomaly concerns a situation where a decrease in
processor demand from higher-priority tasks can, because of
the change in the time when the tasks execute, increase the
interference on a lower-priority task.

Observation 1 (Preemptive anomaly, directed) For fixed-
priority preemptive non-partitioned multiprocessor schedul-
ing, there exist schedulable task sets such that if the period
of a task τj increases, a task τi with a lower priority will be
unschedulable.

Example 1 (See Figure 1) Task τ3 misses its deadline when
task τ1 increases its period. This can happen for the fol-
lowing schedulable task set (with priorities assigned accord-
ing to RM): (T1 = 3, C1 = 2), (T2 = 4, C2 = 2), (T3 =
12, C3 = 8).

The second anomaly concerns a situation where a de-
crease in processor demand of a task negatively affects the

2We define processor demand of a task in a time interval as the maximum
amount of processing time required by the task’s instances in the interval.
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Figure 2: When τ3 increases its period to 11, the second in-
stance of τ3 misses its deadline. This is because the interfer-
ence increases from 3 to 5 and τ3 is already saturated.

task itself. When the period of the task changes, the arrival
times of the task also change. As a consequence, the time
interval within which we need to accumulate interference by
higher-priority tasks may change. In some cases, the new
interference may be larger than before.

Observation 2 (Preemptive anomaly, reflexive) For fixed-
priority preemptive non-partitioned multiprocessor schedul-
ing, there exist schedulable task sets such that if the period of
a task τi increases, the same task τi will be unschedulable.

Example 2 (See Figure 2) Consider the following schedu-
lable task set (with priorities assigned according to RM):
(T1 = 4, C1 = 2), (T2 = 5, C2 = 3), (T3 = 10, C3 = 7). If
we increase T3, the resulting task set becomes unschedulable.

Note that, in the examples above, the relative priorities
of tasks do not change as a result of the increased periods.
Therefore, the presented anomalies are true anomalies in the
sense that they are directly triggered by changes in period.

One way of circumventing the anomalies is to use a
schedulability test that only accepts task sets that cannot suf-
fer from the anomalies. Theorem 1 provides such a schedu-
lability test (proof in [6]).

Theorem 1 (Circumventing anomalies) If for each task τi

in a task set there exists a Ri
UB ≤ Ti such that:

Ci +
1
m

∑
j∈hp(i)

(
�Ri

UB

Tj
�Cj

+ min(Ri
UB − �Ri

UB

Tj
�Tj , Cj)

)
≤ Ri

UB

then the task will still be schedulable regardless of whether
the task’s own period Ti, or a higher-priority task’s period
Tj , increases.

An Ri
UB can be obtained by inserting Ri

UB = 0 in the
left-hand side of Equation 1, and use fix-point iteration, until
Equation 1 is satisfied or Ri

UB > Ti.



These two anomalies have two major implications. First,
if a task arrives sporadically, less frequently than a certain
bound, the task set may be unschedulable even if the task set
would be schedulable if the task arrived periodically. Second,
higher-level adaption techniques, such as feedback control
scheduling, can no longer assume that a task set will continue
to be schedulable when a period of a task increases. A pos-
sible remedy is to adjust the execution times of tasks rather
than their periods, or use the schedulability test in Theorem 1.
3.2 Absence of transitivity

Another difficulty with the non-partitioned method is that
some basic assumptions in uniprocessor scheduling no longer
hold for the multiprocessor case. Below, we present two ob-
servations associated with such non-transitivity.

The first observation concerns when a critical instant of
a task will occur. For the uniprocessor case, a critical in-
stant occurs when a task arrives at the same time as its
higher-priority tasks, which means that both the processor
demand and the interference from higher-priority tasks are
maximized. For the multiprocessor case, the fact that the pro-
cessor demand from higher-priority tasks is maximized in an
interval does not imply that the corresponding interference is
maximized.

Observation 3 (Critical instant [7, 8]) For fixed-priority
preemptive non-partitioned multiprocessor scheduling, there
exist task sets where a critical instant of one of the tasks
does not occur when it arrives at the same time as its
higher-priority tasks.

The second observation concerns the complexity of find-
ing an optimal priority assignment for the non-partitioned
method. Deriving priorities optimally for the uniprocessor
case can be made according to the “test for lowest prior-
ity viability” algorithm [9]. A fundamental assumption in
that algorithm is that, although different priority orderings
of higher-priority tasks give different schedules, the interfer-
ence on a lower-priority task is not affected. For the multi-
processor case, different priority orderings of higher-priority
tasks also give different schedules. However, the interference
on a lower-priority task may also change and thereby affect
schedulability. Consequently, even if we could use schedu-
lability tests that are necessary and sufficient, it is no longer
possible to find an optimal priority assignment by using the
“test for lowest priority viability” approach.

Observation 4 (Dependence on order of higher priority)
For fixed-priority preemptive non-partitioned multiprocessor
scheduling, there exist task sets (see Example 3) for which
the response time of a task depends not only on Ti and Ci

of its higher-priority tasks, but also on the relative priority
ordering of the those tasks.

Example 3 Consider the following schedulable task set:
(T1 = 3, C1 = 1), (T2 = 3, C2 = 1), (T3 = 3, C3 =
2), (T4 = 4, C4 = 2). If we assign priorities to these tasks
according to RM (and give τ3 lower priority than both τ1

and τ2), the task set is schedulable. However, τ4 will be un-
schedulable if we swap the priority ordering of τ2 and τ3.

4 Circumventing Dhall’s effect
While the partitioned method relies on well-known opti-

mal uniprocessor priority-assignment schemes, it is not clear
as to what priority-assignment scheme should be used for the
non-partitioned method. It is known that RM does not work
well for the non-partitioned method [2]. Assume that the task
set (T1 = 1, C1 = 2ε), (T2 = 1, C2 = 2ε), . . . , (Tm =
1, Cm = 2ε), (Tm+1 = 1 + ε, Cm+1 = 1) should be sched-
uled using RM on m processors. In this case, τm+1 will have
the lowest priority and will only be scheduled after all other
tasks have executed in parallel. The task set is unschedula-
ble and as ε → 0, the utilization becomes U = 1 no matter
how many processors are used, that is, the system utilization
Us = U/m decreases towards zero as m increases.

We observe that if τm+1 could somehow be assigned a
higher priority, the given task set would be schedulable. To
obtain such a priority assignment, assign task priorities ac-
cording to the difference between period and execution time
of each task. Then, τm+1 would be assigned the highest pri-
ority, and the task set would still be schedulable even if the
execution time of any single task would increase slightly.

Based on this observation, we propose a new priority as-
signment scheme, called TkC, where the priority of a task τi

is assigned according to the weighted difference between its
period and its execution time, that is, Ti −k ·Ci (ties are bro-
ken arbitrarily), where k is a global slack factor. Note that
TkC (when k = 0) can also represent RM.

4.1 The basic problem
For k ≤ 0, we recognize Dhall’s effect. Even for all

0 < k ≤ 1, something similar to Dhall’s effect can occur.
Assume that the task set, (T1 = 1, C1 = ε), (T2 = 1, C2 =
ε), . . . , (Tm = 1, Cm = ε), (Tm+1 = 1

ε2 + ε, Cm+1 =
1
ε2 (1− ε

2 )), where 1
ε is a positive integer, should be scheduled

using TkC with 0 < k ≤ 1 on m processors. As ε → 0, the
task set is unschedulable with a utilization U = 1.

Selecting a value of k which is slightly larger than 1, we
still experience something similar to Dhall’s effect. Assume
that the task set, (T1 = 1, C1 = k−1

k + ε), (T2 = 1, C2 =
k−1

k + ε), . . . , (Tm = 1, Cm = k−1
k + ε), (Tm+1 = 1

ε2 +
k−1

k + ε, Cm+1 = 1
ε2 (1 − k−1

k − ε
2 )), where 1

ε is a positive
integer, should be scheduled using TkC with 1 ≤ k on m
processors. As ε → 0, the task set is unschedulable with a
utilization U = 1.

On the other hand, selecting a too large k is a bad idea
since task priorities will then be selected such that the tasks
with the longest execution time obtains the highest priority.
Assume that the task set (T1 = 1, C1 = 1

1+k + ε), (T2 =
1, C2 = 1

1+k + ε), . . . , (Tm = 1, Cm = 1
1+k + ε), (Tm+1 =

1
1+k + ε, Cm+1 = ε2) should be scheduled using TkC with
k → ∞ on m processors. As ε → 0, this task set is un-
schedulable with a utilization U = 1 no matter how many
processors are used.

4.2 A simple solution
For TkC to be useful we need to select a good value of k.

We observe that the task sets presented that were unschedula-
ble with a low system utilization all have in common that: (i)
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Figure 3: Theoretical and experimental results indicate that
adaptiveTkC can circumvent Dhall’s effect, while RM de-
grades towards zero as m increases.

the number of tasks is one greater than the number of proces-
sors, and (ii) all highest-priority tasks have the same period
and execution time. Then, it is natural to try to optimize the
value of k for these task sets (we call them constrained task
sets). We conjecture that the constrained task sets represent
a worst-case scenario, in the sense that they are the fully uti-
lized task sets with the least system utilization.

To counter Dhall’s effect and their similar effects (0 ≤
k ≤ 1 and small k > 1), we should select a large value of k.
To counter the effect of the task set with a low utilization for
large k, we should select a low value of k.

We select a value of k such that the conflicting task sets
(small k versus large k) obtain the same system utilization,
that is k−1

k + 1
mk = 1

1+k . Theorem 2 proposes such a scheme
called adaptiveTkC (proof in [6]):

Theorem 2 (Selecting the best k) Consider m ≥ 2 proces-
sors and n = m + 1 tasks. The m highest priority tasks have
the same period and execution time. The tasks are sorted with
respect to Ti − k · Ci and the task with the least Ti − k · Ci

obtains the highest priority. The following k maximizes the
least system utilization of fully utilized task sets:

k =
1
2
· m − 1 +

√
5m2 − 6m + 1
m

and the corresponding least system utilization of fully utilized
task sets is:

Us = 2
m

3m − 1 +
√

5m2 − 6m + 1

We see that the theoretically-derived lower bound of the
system utilization is never lower than limm→∞ Us > 0.38,
which shows that we have managed to circumvent Dhall’s
effect for the constrained task set.

In order to further strengthen our hypothesis that Dhall’s
effect can also be avoided for general task sets, we have
performed an extensive experimental study [6] using adap-
tiveTkC. We simulated millions of randomly-generated task
sets (not only constrained) with varying levels of system uti-
lization (even ones below 0.38), and assumed system sizes up

to 6 processors. The experimental results, and their theoret-
ical counterparts, are shown in Figure 3. The plot “adap-
tiveTkC (theoretic)” shows the least system utilization of
fully utilized constrained task sets, while the plot “RM (the-
oretic)” shows the system utilization of the task set: n =
m + 1, T1 = T2 = . . . = Tm = 1, C1 = C2 = . . . =
Cm = 2ε, Tm+1 = 1 + ε, Cm+1 = 1, when ε → 0. The
plots “adaptiveTkC (experimental)” and “RM (experimen-
tal)” show the least system utilization of the unschedulable
experimental (not only constrained) task sets. We draw the
following conclusions. First, both the theoretical and exper-
imental results corroborate the anticipated behavior of RM,
namely that the system utilization should degrade towards
zero as m increases. More importantly, though, the theoreti-
cal and experimental results indicate that adaptiveTkC seems
to circumvent Dhall’s effect (since the system utilization is
never lower than 0.38).

One may question if it is worth to consider the non-
partitioned method when the bound of system utilization pro-
vided by the adaptiveTkC can be as low as 38%. However,
we should have in mind that the best bound of system uti-
lization for the partitioned method is only 41% [10]. Re-
cently, we have also shown [11] that adaptiveTkC offers bet-
ter average-case performance than the best heuristics for par-
titioning with similar complexity. This fact gives an incentive
to derive a bound of system utilization for general task sets.
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