
7.5 credit points

Professor Jan Jonsson

Department of Computer Science and Engineering
Chalmers University of Technology

Dependable
Real-Time Systems

Lectures (12 of them)

Lectures are offered during study weeks 1–6.
Assuming the background knowledge from the preparatory
course EDA223/DIT162 the lectures will introduce new and
deeper aspects of scheduling theory (with an increased focus
on dependability and multiprocessors).

Consultation sessions (15 of them)

Consultation sessions are offered during study weeks 3–8.
The sessions are used for guidance regarding the homework
assignment problems, and also getting your software solutions
in the first homework assignment demonstrated and approved.

Course organization

Course aim

After the course, the student should be able to:
•  Formulate requirements for computer systems used in

time- and safety critical applications.
•  Demonstrate knowledge about the terminology of scheduling,

dependability and complexity theory.
•  Describe the principles and mechanisms used for scheduling

of task execution and data communication in real-time systems.
•  Design real-time systems and apply techniques to verify

whether the real-time requirements are met or not.

Course aim

After the course, the student should be able to: (cont’d)

•  Derive the theoretical performance limitations of a given
real-time system.

•  Reason about advantages and disadvantages regarding
the choice of the optimal design for a real-time systems
given certain conditions.

Homework assignments
The course contents are examined by means of two homework
assignments. The first assignment is handed out in study week 3
and should be done in study week 5. The second assignment is
handed out in study week 6 and should be done in study week 8.

Final grade
Each homework assignment is given a score with grade (U, 3, 4, 5).
To pass the course the score of each assignment must have a
grade of 3 or higher. The final grade (3, 4, 5) is then based on a
weighted average of the scores of the two homework assignments.

Course examination

Note: GU students use Chalmers grading scale within Canvas,
but will get corresponding GU grades in Ladok.

Since 2018:
–  No final written exam (only homework assignments)
–  The student must declare percentage of contribution in deriving

the solution to each problem in the homework assignments

Since 2019:
–  Course web pages are hosted by the Canvas system
–  The first homework assignment only has programming problems
–  A pass grade in the preparatory course EDA223/DIT162 is required

Online Edition™ 2020:
–  New name and course code

(née Parallel & Distributed Real-Time Systems, EDA422)
–  Due to corona virus all teaching should be carried out remotely

Changes in the course

To download: (via Canvas system)
 •  Lecture notes [Powerpoint hand-outs, guiding material]
•  Research articles and book excerpts [very important reading]

•  Homework assignment 1 (HWA #1) [available in study week 3]
•  Homework assignment 2 (HWA #2) [available in study week 6]

•  Template code [for target computer software in HWA #1]
•  Handbooks and data sheets [for target computer hardware in HWA #1]
•  Development tools [for target computer software in HWA #1]

Course material

Teachers and assistants:
–  General questions related to the course are primarily answered

in conjunction with the lectures.
–  Questions related to the homework assignment problems are

primarily answered in conjunction with consultation sessions.

Canvas system:
–  Get complete information about the course
–  Download course material
–  Form project groups and submit solutions
–  View examination progress and awarded grades

https://chalmers.instructure.com/courses/9356

Course information and support

Homework assignments

Homework assignment 1 (HWA #1):
•  HWA #1 is handed out in study week 3, and should be solved

individually by each student.

•  The objective is to (1) implement a dependable CAN message
handler, and (2) add some new functionality to the stand-alone
melody player from the preparatory course EDA223/DIT162.

•  Before the deadline in study week 5 the student should
demonstrate the solutions to each of the assignment problems,
and also submit the software code to the examiner for review.

•  After the demonstration of a solution the student will be
awarded points, based on the correctness of the solution
and the quality of the software code.

Homework assignments

Homework assignment 1 (HWA #1): (cont’d)

•  For HWA #1 each student will be offered loan equipment
(MD407 processor card + USB/CAN cables), and work on
the assignment at home on their own computer.

•  The loan equipment is intended to be used with custom versions
of the MD407 monitor and the TinyTimber kernel
−  it is therefore necessary to transfer the old melody player

code to the new software environment
−  to that end, it will be possible to pick up the loan equipment

already in study week 2 (i.e., in due time before HWA #1 is
handed out)

Homework assignments

Homework assignment 2 (HWA #2):
•  HWA #2 is handed out in study week 6, and should be solved

individually by each student or, if desired, by pairs of students.
•  The objective of the assignment is to solve a collection of

problems related to real-time scheduling. The problems will
encompass a mix of theoretical analysis and paper reading.

•  Before the deadline in study week 8 each student should
submit a document containing their solutions, and then book
a time with the course examiner for an oral examination of
the solutions.

•  The oral examination of a student’s solutions takes place on
a day in the two week period following study week 8.

Homework assignments

Homework assignment 2 (HWA #2): (cont’d)

•  After the oral examination of a solution to an assignment
problem the student will be awarded points for the solution,
based on:
−  the correctness of the solution
−  the ability of the student to defend and explain the solution

and, in case two students work together,
−  the amount of contribution made by that student in deriving

the solution (self declared; see Rules of Conduct for details)

Real-Time Systems

REVISITED

Why real-time systems?

Computer systems with special properties:
•  Strict timing constraints

–  Responsiveness (= deadlines) and periodicity
–  Failure to meet timing constraints will cause system failure or

will negatively affect quality of the user-perceived utility

•  Application-specific design
–  Embedded systems (e.g., computer is part of a larger

mechanical system)
–  Strict safety requirements (e.g., ISO 26262, IEC 62304,

and DO-178C standards)
–  High reliability (e.g., fault tolerance)

Why real-time systems?

Computer systems with special properties:
•  Control systems

–  Industrial robots, cars
–  Aircraft, satellites, medical equipment
–  Failure to meet timing constraints may cause major

physical/economical damage or even loss of life

•  Multimedia systems
–  Portable music players, streaming music
–  Computer games; video-on-demand, virtual reality
–  Failure to meet timing constraints will degrade

user-perceived quality

Now, add ‘parallel and distributed’

Enables distributed data processing:

•  Locality constraints
–  Data processing must take place close to a resource

(e.g., sensor or actuator)

•  Replication constraints
–  Resources must be replicated to provide reliability

(e.g., processors or data buses)

Enables higher performance:
•  Improved instruction and data throughput

–  Truly parallel execution of tasks (e.g. multicore processor) and
instructions (e.g. superscalar processor w/ multiple pipelines)

Designing a real-time system

Verification

Implementation

Specification

 How should it be done?

 What should be done &
 When should it be done?

 Can it be done with the
given implementation?

New design!

Specification

Sampling rate

Response time

Reliability

Resources

Requirements: Constraints:

Periodicity

Deadline

Replication

Locality

Specification Implementation

Specification

Examples of application constraints:

•  Timing constraints
–  A task must complete its execution within given time frames

(e.g., task periodicity or deadline)

•  Exclusion constraints
–  A task must execute a code region without being interrupted

(e.g., a task needs exclusive access to a shared resource)

•  Precedence constraints
–  A task must complete its execution before another task can start

(e.g., a data exchange must take place between the tasks)

Specification

Examples of application constraints:

•  Locality constraints
–  A task must execute on a specific processor because of the

vicinity to some resource (e.g., DSP chip, sensor, actuator)

•  Anti-clustering constraints
–  Identical copies of a task must execute on different processors for

reliability reasons (“spatial replication constraint”)
(e.g., to implement fault tolerance)

–  A group of tasks must execute on different processors for
performance reasons
(e.g., to exploit task parallelism)

Specification

Examples of application constraints:

•  Clustering constraints
–  A group of tasks must execute on the same processor for

functional reasons
(e.g., only one processor is used in low-power mode)

–  A group of tasks must execute on the same processor for
performance reasons
(e.g., intensive communication within the group)

–  A group of tasks must execute on the same processor for
security reasons
(e.g., risk for eavesdropping of network bus)

Specification

How critical are timing constraints?
 Hard constraints:

 If the system fails to fulfill a timing constraint,
the computational results is useless.

 Correctness must be verified before system is put in mission!

 Soft constraints:

 Single failures to fulfill a timing constraint are
acceptable, but the usefulness of the result
decreases the more failures there are.

 Statistical guarantees often suffice for these systems!

Verification

Since timeliness is such an important characteristic of a
real-time system: how do we verify that the timing
constraints are met for a given system implementation?

… so we don’t miss that
hard deadline … … so we don’t miss too

many soft deadlines … … while we at the same time
avoid analyzing all possible
software execution scenarios

Verification

Approaches for checking correctness:

•  Verification
Capability: prove the absence of faults!
Requires formal methods based on mathematical models and
theories (e.g., schedulability analysis)

•  Testing and validation
Capability: detect the presence of faults!
Testing: checking whether the system works correctly in a
simplified environment (e.g. in a laboratory room)
Validation: checking whether the system works in its real target
environment (e.g., in a vehicle or a satellite)

Verification

What is needed for formal verification?

•  A solid timing model
Enables expressing the timing properties of the application in a
syntactically unambiguous way
Enables timing constraints to be reflected at all design levels: from
specification level (end-to-end constraints) to implementation level

•  A solid schedulability analysis
Enables prediction of required processing capacity, e.g. # and
speed of processors, of the hardware (when software is known)
Enables prediction of required resource usage from the software
(when hardware implementation is known)

Verification

How do we simplify schedulability analysis?

•  Concurrent, reactive, timing-aware programming paradigm
–  Suitable schedulable unit of concurrency (e.g., task, thread, …)
–  Language constructs for expressing application constraints

for schedulable unit (e.g., priorities, delays, …)
–  WCET must be derivable for schedulable unit

•  Deterministic task execution
–  Time tables (cyclic executive)
–  Static or dynamic task priorities (+ time quanta for fairness)
–  Run-time protocols for access to shared resources

(e.g., priority adjustments and non-preemptable code sections)

Verification

How do we perform schedulability analysis?

•  Introduce abstract models of system components:
–  Task model (computation requirements, timing constraints)
–  Processor model (resource capacities)
–  Run-time model (task states, dispatcher)

•  Predict whether task executions will meet constraints
–  Use abstract system models
–  Make sure that computation requirements never exceed

resource capacities
–  Generate a (partial or complete) run-time schedule resulting

from task executions, and detect worst-case scenarios

 Worst-case execution time (WCET)
 Longest undisturbed execution time for one arrival of the task

 Deadline (relative time)
 Maximum allowed time for a task to complete after arrival

Task model

Task parameters (static):

iC

iD

 Periodicity
 Guaranteed time between each subsequent task arrival

iT

 Offset (absolute time)
 The time of the first arrival of the task

iO

Task model

Classification of task sets:
•  Periodic tasks

–  Subsequent task arrivals are separated by a time interval Ti

•  Sporadic tasks
–  Subsequent task arrivals are separated by a time interval ≥ Ti

•  Aperiodic tasks
–  Subsequent task arrivals have no guaranteed time separation

What we know:
–  For preemptive uniprocessor scheduling the periodic and

sporadic cases have the same worst-case schedulability
properties

Task model

Classification of task sets:
•  Implicit-deadline tasks

–  For each task it applies that Di = Ti

•  Constrained-deadline tasks
–  For each task it applies that Di ≤ Ti

•  Arbitrary-deadline tasks
–  No restrictions placed on the relation between Di and Ti

What we know:
–  For preemptive uniprocessor scheduling the implicit-deadline

and constrained-deadline cases have schedulability analysis
methods with polynomial or pseudo-polynomial time complexity

Task model

Classification of task sets:
•  Synchronous tasks

–  There exists a point in time where all tasks arrive simultaneously

•  Asynchronous tasks
–  There does not exist a point in time where all tasks arrive

simultaneously

What we know:
–  For preemptive uniprocessor scheduling the synchronous case

constitutes the worst-case scenario (the critical instant) from a
schedulability point-of-view

Processor model

Homogeneous processors:
•  Identical processors

–  WCET is a constant (the same for all processors)

Heterogeneous processors:
•  Uniform processors

–  WCET is the product of a basic execution time (same for all
processors) and a scaling factor (may differ for each processor)

•  Unrelated processors
–  WCET is not necessarily related for different processors

Run-time model

Task states:
•  Waiting

–  Task has not yet arrived for the first time, or has finished
executing but not re-arrived

•  Ready
–  Task has arrived and can potentially execute on the processor

(kept waiting in a ready queue)

•  Running
–  Task is currently executing on the processor

Dispatcher:
•  A run-time mechanism that takes the first element (task) in the

ready queue and executes it on the processor.

