
Lab 2 Report
EDA284 | Parallel Computer Architecture VT22

John Croft & Anna-Maria Unterberger
February 3, 2024

Introduction

Part 1 - Architecture-Aware Programming
Four specially compiled binaries for matrix multiplication were provided. These all provided the same function
but with various optimisations that leverage the specific architecture of the system, i.e. architecture-aware
programming.

Four arguments can be provided to the program to optimise performance: square dimensions, if the second
operand should be transposed or not, tile size and number of threads.

Transposing the second operand makes a difference since matrix multiplication computes the products of
rows and columns. When reading an element, the system will presumably cache contiguous row data, but
not column data. Transposing means that in both cases row data will be read, leading to fewer cache misses.

The dimension of the matrix will determine the row length, and the optimal size will most likely correspond
to the various cache sizes. Due to the time needed for simulations, a dimension in excess of 256 bytes is
impractical to model, however.

a)
Running version 1 with and without transposition yielded a significant speedup in the former case. Examining
the stats files shows that the version without transposition has an order of magnitude more D-cache misses,
just as expected. gemm version 2 has tiling capabilities and, assuming the tiles are sized so that they correspond
to the cache line size in the L1 D-cache, we expect to see some performance gains. Running the experiments
and looking at the CPI proves this assumption correct.

b)
The L1 and L2 caches were changed to 64kB and 256kB, respectively. Five cases for the tile size were
observed, with CPI as the main metric.

As we can see, the CPI increases marginally as the tile size increases.

Table 1: The tile size for the gemm was varied in 5 different cases and the CPI observed. The L1 and L2
caches were changed to 64kB and 256kB, respectively.

Case CPI

tile size<L1 cache 2,756

tile size=L1 cache 2,831

L1<tile size<L2 2,870

tile size=L2 2,897

tile size>L2 2,929

Page 1



Lab 2 Report
EDA284 | Parallel Computer Architecture VT22

John Croft & Anna-Maria Unterberger
February 3, 2024

Part 2 - ARMv8 big.LITTLE Architecture

a) Roofline Model
First, we try and plot the bound given by the DRAM. According to the output config.ini file, the memory
controller used in the ARMv8 experiment is of an an abstract type called SimpleMemory. As we did not
parameterise this is in any script, examination of the source code1 reveals that the default memory bandwidth
is 12.8 GB/s, representative of a x64 DDR3-1600 channel.

Next, we give an estimated theoretical upper bound for the Flop/s of the system using a generic equation for
multicore processors. That is, we ignore all latencies incurred by the memory subsystem.

Peak GFlop/s = CPU Frequency (GHz) x Core Count x Threads Per Core x 2 (for FMA2 unit)

=⇒ 2 · 4 · 1 · 2 = 16 GFlop/s

The values of the two memory-bound points were found in the next task and are presented in table 2.

10-1 100 101

Flop/byte

1010

1011

F
lo

p/
s

Roofline Model

DRAM GB/s
Peak Flop/s
gemm threaded
gemm threaded tiled

X 0.306
Y 3.917e+09

X 0.368
Y 4.71e+09

X 1.2
Y 1.6e+10

Figure 1: Roofline model for the gemm (general Matrix Multiplication) test on a full-system ARMv8
big.LITTLE gem5 simulation.

1http://grok.gem5.org/source/xref/gem5/src/mem/SimpleMemory.py
2Fused Multiply-Add

Page 2

http://grok.gem5.org/source/xref/gem5/src/mem/SimpleMemory.py


Lab 2 Report
EDA284 | Parallel Computer Architecture VT22

John Croft & Anna-Maria Unterberger
February 3, 2024

b) + c) Plot and Observations
In this experiment, versions 3 (threaded) and 4 (threaded and tiled) of the matrix multiplication (gemm)
binaries from Part 1 were run in a full-system ARMv8 simulation.

Arithmetic Intensity (AI) is a measure of Flops per byte of DRAM traffic (reads and writes). To estimate
the AI of the programs in question, the stats files were examined. The number of bytes read and written
by the memory controller were found directly. The number of floating point operations was estimated using
the FloatMultAcc parameter in the stats file. This was chosen as it is consistent across all four cores in the
system, whereas various other floating point operation were only performed on a single core. The values can
be seen in table. 2. The AI for the programs is plotted relative to the roofline model in fig. 1.

Not all DRAM traffic will be relevant to the floating point operations that we consider and so the AI
estimate will be pessimistic. Additionally, according to the ARMv8 ISA, the FloatMultAcc instruction is
fused, meaning that each such instruction performs (up to) two floating point operations. This is reflected
in the AI result.

Table 2: Arithmetic Intensity for two versions of the gemm program.
Experiment DRAM Traffic FMA Instructions AI

gemm_threaded 3213248 589824 0.368

gemm_threaded_tiled 3851008 589824 0,306

Page 3


