Lab 1 Report John Croft & Anna-Maria Unterberger
EDA284 | Parallel Computer Architecture VT22 February 3, 2024

Introduction
In this lab we explore some of the modelling options in gemb and take a look at the design space

concerning the vector extensions NEON and SVE. We then make a quantitative comparison of
the two vector extensions.

Part 1 - Hello World with gemb

a) According to the homepage, GEM5 supports the following ISAs: Alpha, ARM, SPARC, MIPS,
POWER, RISC-V and x86 ISA.

b) Standard output:

gemb Simulator System. http://gemb.org
gemb is copyrighted software; use the --copyright option for details.

gemb compiled Feb 7 2020 10:35:14

gemb started Feb 25 2020 17:20:48

gemb executing on remotell.chalmers.se, pid 24445

command line: ../../..//build/ARM/gem5.opt -d ./mbout/delet ./main.py

Global frequency set at 1000000000000 ticks per second

warn: DRAM device capacity (8192 Mbytes) does not match the address range assigned (512 Mbytes)
0: system.remote_gdb: listening for remote gdb on port 7000

Beginning simulation!

info: Entering event queue @ 0. Starting simulation...

warn: CP14 unimplemented crn[14], opc1[7], crm[15], opc2[7]

Hello world!

Exiting @ tick 17348000 because exiting with last active thread context

¢) CPU models are found here:
https://www.gemb.org/documentation/general_docs/cpu_models/SimpleCPU

The CPU model in the tutorial was the TimingSimpleCPU, the most simple timing-based model.
It executes each instruction in a single clock cycle, except memory requests which flow through the
memory system. It is derived from the Simple CPU model, which also includes AtomicSimple CPU.

e AtomicSimpleCPU: uses atomic memory accesses. It uses the latency estimates from the
atomic accesses to estimate overall cache access time.

TimingSimpleCPU: uses timing memory accesses. It stalls on cache accesses and waits for
the memory system to respond prior to proceeding.

03CPU: 000 model

TraceCPU: attached to O3CPU (00o)
MinorCPU: in-order CPU.

e DerivO3CPU: out-of-order CPU.

d) In GEM5, 1 tick corresponds to 1ps. The usual standard metric of clocks-per-cycle (CPI)
therefore needs some adjustment, as a cycle is measured in a variable number of ticks depending
on the frequency of the (simulated) processor. Once this has been accounted for, however, it
becomes a useful point of comparison.

The atomicSimpleCPU treats all memory systems as ideal and thus, besides having the lowest
CPI of all the models, its CPI is unchanging when the frequency is varied.

Page 1

https://www.gem5.org/documentation/general_docs/cpu_models/SimpleCPU

Lab 1 Report John Croft & Anna-Maria Unterberger
EDA284 | Parallel Computer Architecture VT22 February 3, 2024

The O3CPU has almost half the CPI of the timingSimpleCPU, and for both the CPI is somewhat
higher when doubling the frequency (presumably due to a higher number of cache misses on the
L1 D-cache).

e) There are several different memory controllers available in the simulator representing DRAM
technologies. The standard type used thus far has been the DDR3_1600_8x8() memory controller.

For this experiment we replace it with the DDR4_2400_16x4 () memory controller.

We would generally expect the memory bandwidth to be significantly improved, though the ob-
served differences in the output were marginal. Reasons for this could be the relatively low
number of total memory accesses (experimentation using the O3 CPU gave 396 read requests),
relatively low CPU clock speed not able to provide instructions with a high enough frequency to
take advantage of the added bandwidth.

If a longer test program were used, it is likely that a larger difference would have been observed.

Part 2 - ARM SVE Simulation with gemb

a) Auto-vectorisation of Data Parallel Codes

The source code was compiled with and without SVE. Comparing them side-by-side, the vectorised
version is apparent due to the presence of Scalable Vector Length (z) registers and Per-lane
Predication (p) registers, as per [ﬂ

b) Which code has better performance?

Version 1 will perform better than version 0 since the computation for the quasi-constant _a is
performed outside the last for-loop, and therefore executed less often. V1 also skips the addition
(accumulation) for the C matrix in the last line.

After examining the assembly output, we noticed that V1 only uses one floating point operation
(mul) whereas VO uses two (mul, add).

c) Differences

Both versions of the matmul program were simulated with a vector width of 2048 and compared.
The output statistics reveal an order of magnitude difference in execution time, with version 1
being significantly faster: a speedup of ~ 13.

Furthermore we could observe that the proportion of various types of instructions varies greatly
between version 1 and version 0. Integer-ALU instructions make up 9% of all instructions in
version 0 and 40% in version 1, SIMD floating point multiplications constitute 1.23% in version
0 and =~ 10% in version 1, memory reads account for 82% of the instructions in version 0 and
~ 15% in version 1 and memory writes make up 10% in version 1 and less than 1% in version 0.

d) Advantage of VLA registers

VLA registers do not have a fixed length, only a predefined maximum length to make vectors
scalable, which leads to increased flexibility. Furthermore, the empty vector positions do not need
to be filled, which usually saves one for-loop (loop tail).

In terms of our test code, namely matrix multiplication, the vector register length can be tailored
to the row length of a matrix, thus potentially achieving significant throughput.

Thttps://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide/
introduction-to-sve/single-page

Page 2

https://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide/introduction-to-sve/single-page
https://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide/introduction-to-sve/single-page

Lab 1 Report John Croft & Anna-Maria Unterberger
EDA284 | Parallel Computer Architecture VT22 February 3, 2024

e) Per-lane Predicate Register

Predicate registers contain boolean conditions for instruction execution. Parallelism can be ex-
ploited by allowing both sides of a branch to execute, keeping one result and discarding the other
based on the condition in the predicate register. This condition is in a sense precomputed as any
arbitrary boolean expression can be used as a condition and the result stored in the p register.

Predicate lanes contain one predicate bit for each byte in a corresponding z register (e.g. 8 bits
for a z-reg of 64 bits). Such lanes are either ’active’ or ’inactive’ depending on the value of the
LSB.

Both versions of the program make use of per-lane predication registers (predicate registers). This
is clear due to the usage of p<X> registers. In these two cases, the p-registers are being used in
conjunction with operations that use the z (vector) registers as well as in conditional statements
(such as whilelo) that determine branching.

For version 0:

.L5:
ldiw z3.s, p0/z, [x4, x1, 1sl 2]
ldiw z2.s, p0/z, [x2, z4.s, sxtw 2]
incw x1
movprfx z0.s, p0/z, z2.s
fmul z0.s, pO/m, z0.s, z3.s
add x2, x2, x5
fadda s1, pl, s1, z0.s
whilelo pO.s, x1, x3
bne .L5

For version 1:

.L4:

ldiw z0.s, p0/z, [x4, x1, 1sl 2]
fmul z0.s, zl.s, z0.s

stilw z0.s, pO0, [x2, x1, 1sl 2]
incw x1

whilelo pO.s, x1, x3

bne .L4

Part 3 - Vectorisation with Dependencies

In this section we refer to the two versions of the stencil program as V0O and V1.

a) ARMvS8 output

In the assembly output for the two versions, only V1 produces code with SVE features. That is,
no p or z registers are used in V0.

b) SVE Instructions

In VO, no vector instructions were generated. The reason for this is that VO introduces data
dependencies between subsequent iterations.

VO implements A[i] = (Ai - 1] + A[i] + A[i + 1]). In a subsequent iteration, Ali-1] will depend
on Alfi] from the previous iteration.

Page 3

Lab 1 Report John Croft & Anna-Maria Unterberger
EDA284 | Parallel Computer Architecture VT22 February 3, 2024

V1 has no such dependency as it does not access "previous" values, only subsequent ones. Once
a result is written back to memory it is not accessed again. Due to this, the entire vector can be
parallelised.

Page 4

Lab 1 Report
EDA284 | Parallel Computer Architecture V22

John Croft & Anna-Maria Unterberger
February 3, 2024

c) Performance + Differences V0, V1
The two versions of stencil differ significantly in performance and how they are processed.

The ultimate measure of performance is, of course, execution time Toye = IC - CPI - T.. In all
experiments comparing the different stencil modes T\ is kept constant, and can thus be omitted
from the equation. We will not have the real execution time but all comparisons will be equally
valid.

This difference in execution time is enormous: stencil_1 performs over two orders of magnitude
faster, or 49x faster. This can be seen in table

Table 1: Differences in execution time between the difference versions of the stencil program.

sim_insts | cpi Texe
stencil 0 721443 | 3.44 | 2481271
stencil 1 22045 | 2.63 97925

Other significant differences include the mix and proportions of instructions in the programs. VO
almost exclusively uses scalar instructions (IntAlu, FAdd, FDiv etc), the number of which is two
orders of magnitude higher than the corresponding vector instructions for V1. Predictably, the
number of memory reads/writes is also proportionately higher.

V1 replaces all floating-point instructions with corresponding vector instructions, as can be seen in
table[2] Predicate register instructions are also only present in V1. One last significant difference
is the large number of memory accesses in VO compared to V1. This is due to VO reading and
writing from/to individual memory addresses, whereas V1 reads and write vectors in contiguous
memory addresses as a single instruction.

Table 2: Proportions of instructions in the two versions of the stencil program.

Inst type
IntAlu FAdd FDiv | SimdAlu | SimdCmp | SimdFAdd | SimdFDiv | MemRd | MemWr
stencil 0 | 311785 | 204400 | 102200 8 8 0 0 | 103115 | 103292
stencil 1 6685 0 0 1608 1609 3200 1600 5615 2692

It is fairly easy to see how the instructions correspond to the actual source code.

arr_t A = (arr_t) malloc(1024 * sizeof(real_t));
stencil_1d(A, sz);

void stencil_ild(arr_t A, const int nx) {
for(int timestep = 0; timestep < 100; ++timestep)
for(int i = 1; i < nx - 1; ++i)
A[i] = (A[i - 1] + A[4] + A[i + 1]) / 3.0; // VO

for(int 1 = 0; i < nx - 2; ++i)
A[i] = (A[il + A[i + 11 + A[i + 21) / 3.0; // V1
}

The kernel of the program uses 100¥1024=102400 iterations and contains one floating-point di-
vision and two floating-point multiplications. This matches almost exactly with the number of
floating-point and memory instructions in V0.

In V1, a vector width of 2048 bits is used. This is set at design-time (i.e. when configuring the
CPU in the simulator). This corresponds to a width of 64 32-bit single-precision floating-point
variables (arr_t uses floats). With this considered, it becomes obvious that 102400/64=1600,
which accounts for all the floating-point instructions in all iterations.

Page 5

Lab 1 Report John Croft & Anna-Maria Unterberger
EDA284 | Parallel Computer Architecture VT22 February 3, 2024

d) Vector Efficiency

V1 of the stencil program was further examined due to its superior performance and heavy use
of vector instructions.

All possible vector widths were explored, as well as the effect of changing the data type from
single-precision to double-precision (i.e. 32-bit to 64-bit). The results are shown in fig.

Since a given vector width can only fit half as many double-precision operands as single-precision
ones, and the number of operands to be processed is fixed, we expect to get approximately half
the performance (lower is better), and indeed this is the case.

As for the shapes of the curves, it is clear that it is asymptotic with diminishing returns for the
width. The greatest gains in performance are made between 1-8, with performance starting to
level off at this point.

5X105 T T T T T T T

Single Precision
45 Double Precision |

exe

Relative T

0.5

Vector Width

Figure 1: Relative performance of the stencil program for different data types and CPU vector
widths. Widths are in terms of 128z-bit.

Page 6

Lab 1 Report John Croft & Anna-Maria Unterberger
EDA284 | Parallel Computer Architecture VT22 February 3, 2024

e) NEON vs SVE

In this experiment we switch back to single-precision operands. Additionally, gem5 is run using
the maximum vector width for SVE, namely 2048 bits. NEON registers have fixed width of 128
bits.

V1 of the stencil program was compiled using NEON and SVE ISAs, for different problem sizes
(i.e. different matrix dimensions).

In the resulting assembly output, after having disabled SVE, we can see that the three main
computations in the kernel of the program (two fadds and an fdiv) are using the NEON ISA
syntax, as the operand vectors are prefixed with a 'v’.

fadd v0.4s, v0.4s, v2.4s
fadd v0.4s, v0.4s, vl1.4s
fdiv v0.4s, v0.4s, v3.4s

In these commands, the ’f’ prefix of the instruction indicates a float data type, 'vx’ is a spe-
cific 128-bit NEON register and ’4s’ indicates that it contains four 32-bit words (i.e. floats).
This is clear from https://community.arm.com/developer/tools-software/oss-platforms/
b/android-blog/posts/arm-neon-programming-quick-reference.

On the other hand, there are now many instances of fadds and fdivs using scalar registers,
though these may simply be for loop control.

If we plot the number of clock cycles taken to complete each problem size, we observe that SVE
gives a relatively linear trend whereas NEON gives a quadratically increasing execution time.
This is seen in fig.

B NEON [SVE
2000000

1500000

1000000

Clock Cycles

500000

G4 128 256 512 1024 2048 4096 8192

Problem Size

Figure 2: Clock cycles for each problem size and ISA.

The statistics generated after each run indicate that the NEON implementation typically results
in the number of SIMD instructions, as well as memory accesses, differing by a constant factor
from the SVE implementation depending on how much more data the SVE vector can hold. This
is logical, since NEON uses vector registers that are fixed at a smaller width than SVE. Thus
we see an approximate doubling in instruction count for every doubling of problem size. The
execution time for SVE appears to be relatively constant until the problem size reaches the size
of the vector register (2048 bits), at which point it also seems to grow quadratically.

In summary, SVE provides significant performance benefits over NEON when the problem size
exceeds that of the NEON vector registers, even if the SVE vector registers are larger than what
is required for a full stride.

Page 7

https://community.arm.com/developer/tools-software/oss-platforms/b/android-blog/posts/arm-neon-programming-quick-reference
https://community.arm.com/developer/tools-software/oss-platforms/b/android-blog/posts/arm-neon-programming-quick-reference

