LECTURE 8

Chip Multiprocessors

Miquel Pericas
EDA284/DIT361 - 2019/2020

What's cooking

1. Lectures
o Today: Chip Multiprocessing (8h-10)
o Tuesday (Feb 18): Guest Lecture by loannis Sourdis on On-chip
Networks (10h-12h)

2. Lab session
o Friday (8h - 12h @ ED3507), Intro to GEM5

3. Practice Session
o Tuesday (Feb 18) on ccNUMA + Multithreading
o Exercises will be published in the coming days

Chip Multiprocessors

Clusters

Lectures 7 - 11 Overview

LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

LECTURE 11
Message Passing Hardware

OUTLINE (Lecture 7)

e Heterogeneous CMPs
e CMP Memory Architectures

e CMP Interconnection networks

Chip Multiprocessors (CMPs)

MEMORY

MEMORY

core

multithreading chip multiprocessor

CACHE

OO0 O

e CMPs have several desirable properties
« Design simplicity: build one core, test it and replicate it

* Improved power scalability: increases linearly with #cores

* Low-latency inter-core communication
enables fine-grained thread parallelism

sharing of data via cache

ccNUMA

* Modularity and customization: different number of cores for different markets

e CMPs can be homogeneous or heterogeneous
* Depends on whether the cores are identical or not
» Heterogeneity enables further customization and improved energy efficiency

CMPs with heterogeneous cores

e Workloads have different characteristics

* “manycores”: large number of small cores (applications with high thread count)

* “multicores”: small number of large cores (applications composed of single
thread or limited thread count)

* |n practice: mix of workloads

» Furthermore, most parallel applications have parallel and serial sections
(remember: Amdahl's law)

 Hence, heterogeneity required

« temporal: for example, by throttling energy per instruction (EPI)
« spatial: different types of cores with variation in functionality

TEMPORAL SPATIAL

EPI

CMPs with heterogeneous cores

e Performance asymmetry (temporal)

» using homogeneous cores and DVFS, or processor with mixed cores but same
ISA (e.g., in-order + out-of-order cores)

 variable resources: e.g., adapt size of cache by gating off power to cache banks

 speculation control (low branch prediction code): throttle the number of in-flight
instructions (will reduce activity factor)

DVFS 1:2to1:4 100 us, ramp VCC

Variable Resources, eg. 1:1to 1:2 1 us, Fill L1
turn off cache ways

Speculation Control 1:1t01:1.4 10 ns, Pipeline flush
Mixed Cores 1:6 to 1:11 10 us, Migrate L2

Amdahl’s law in the multicore era

“MultiCore” “Mixed Cores”

“ManyCore”

o | o o
L Il 1 Il | L Il Il Il |
Cebe et (Gt

(b)

Figure 1. Varieties of multicore chips. (a) Symmetric multicore with 16 one-base core equivalent cores, (b) symmetric multicore
with four four-BCE cores, and (c) asymmetric multicore with one four-BCE core and 12 one-BCE cores. These figures omitimportant

structures such as memory interfaces, shared caches, and interconnects, and assume that area, not power, is a chip’s limiting
resource. parallel total chip resources
fraction_ resources per core (r<n)

1

Speedupwmmﬂric f, n,r)= 1 L 7 Speedupasymmetric (f) 71,7’) = f f
/ perf(r) 3 perf(r)n - perf(r) perf(r)+n—r
serial \parallel 1 big core (r)
SYMMETRIC (multicore, manycore) ASYMMETRIC (mixed) g; Z) s (31')"""”
E.g.: (a) 16 small, (b) 4 large E.g.: (c) 1 large + 12 small
8

M. D. Hill and M. R. Marty, "Amdahl's Law in the Multicore Era," in Computer, vol. 41, no. 7, pp. 33-38, July 2008.

Speedupsymmetric

—

o0

~—
— e,
E= N =)

—h
N

Speedup symmetric

—
o
S—

assumption: perf (r)

—t
o
T

N A OO O

—t
o

N 5 OO O

Amdahl’s law in the multicore era

Symmetric, n=16

|
~

r BCEs

Asymmetric, n = 16

4
r BCEs

8 16

250 Fsymmetric, n = 256

200

—

(S

o
T

m— f=0.999
vien £=10.99
owm 1 f=0.975
= = =09
e = (0.5

61 2 4 8

SIS

16 32 64 128 256
r BCEs

" Asymmetric, n = 256

Speedup symmetric

(S
(am)

(d)

sqgrt (r) ; known as Pollack’s rule

128 256

64

Dynamic multicore 0o o]] [
Sequential i ﬂBﬂ 1l Ll 1 :
mode | D B (DL [P :
; | o0 o0 o o
Speedupdynamic (f’ 7’1,7’) = 1-f f
perf7) T 0] (550 [050) [50
1 big core (r)/(T B4 [0 b L P;’:(',':'
n x small B0 IDH B D —— f=0.999
ASYMMETRIC (temporal) cores (1) i eons £=0.99
E.g.: 1 big (r) <-> 16 small i ,{f 8-375
S - _— — =05
16 .
14
012] o
2 8 2
S 6f &
4
g B . e —————————— :
(e) 0 2 fBéES 8 16 (f) 0 2 4 8 rB1CGES 32 64 128 256

10

Mixed Cores example:

ARM's big.LITTLE Architecture (2011+)

Interrupt Control

“Demanding tasks” ’ “Always on, always
connected tasks”

C &

J

i LITTLE

“Big” cores “Small” cores

Same ISA, different performance/power characteristics
LITTLE cores are less powerful, but much more efficient

11

Dynamic multicore example:
Intel Turbo Boost (2008+)

Dynamically scales performance depending on number of running cores and
TDP (thermal design power)

Intel® Turbo Boost Technology1 2.0

"Dynamic” Range @ Turbo
Frequency limits?

Turbo bins

Base Frequencies

Idie mode

Four-Core Turbo Dual-Core Turbo Single-Core Turbo

Efficient. | Dynamic. Intelligent.

+ Adapts by varying turbo frequency to + Boosts power level to achieve + Power averaging algorithm
conserve energy depending upon the

performance gains for high intensity manages power and thermal
type of instructions ‘dynamic” workloads headroom to optimize performance

Intel® Turbo Boost Technology 2.0 delivers intelligent and
energy efficient performance on demand

12

CMPs with heterogeneous cores

e Functional asymmetry (spatial)

o Use heterogeneous cores

m e.g., GP cores, graphics processors, cryptography, vector cores,
floating-point co-processors

m heterogeneous cores may be programmed differently (both high level
and ISA)

m mechanisms must exist to transfer activity for one core to another

m fine-grain: in the case of floating point co-processor, use ISA
extension (e.g, floating point instruction, vector extensions..)

m coarse grain: transfer the computation from one core to another
using APls (e.g. CUDA, OpenACC..)
o Goals:

m save power by using cores with different power/performance
characteristics for different phases of execution

m higher performance
m better usage of increased chip area at limited power

13

Functional Asymmetry Example:
IBM Cell Processor (2006)

SXU SXu
v v - 3

EalE =
)

168icycle (2x)

 One PowerPC processing element (PPE)
« 2-way SMT PowerPC core

* Plus 8 synergistic processing elements (SPEs)

SPE is 2-issue in-order processor
two SIMD instructions can be issued in each cycle (vectors)

no coherence support between SPE and PPE (data transfers are explicitly programmed)
PPE and SPE execute different ISAs

14

Functional Asymmetry Example:
Apple A12 Bionic (2018)

Image signal processor
Depth engine

HEVC encoder

HEVC decoder

Video processor

64-bit control CPUs

Apple performance controller
Secure Enclave

Display engine

Mermory controller Neural
System cache 2
Engine

High-performance fabric
Always-on processor
Audio subsystem

Fast storage controller

2x Vortex (High Performance) +
4x Tempest (Energy Efficient)

Design options for Last Level Caches

‘ DRAM ‘ ‘ DRAM ‘

e | |EE E
00 6| |00 O

shared cache private cache

 Private Cache
* Preferable when shared cache latency is too large
* Provides stronger isolation between cores

* No destructive interference possible (per-core capacity is statically
partitioned)

« But also no constructive sharing

» Good for multi-user workloads (provides fairness)

Shared vs Private cache

* In general shared cache preferable
* No coherence problem
« Dynamic re-allocation of capacity among cores (LRU)
 In the presence of sharing, effective capacity is larger than private

« Two scenarios: constructive (aka “cooperative”) sharing or destructive
interference

e Constructive sharing (code and data shared among cores): GOOD
« effective size is greater because of sharing
 prefetching effects: one core loads data used by a different core
e Destructive interference (no sharing): BAD
» threads do not help each others
 threads sharing the cache compete with other threads for capacity
 as the thread count increases, the amount of cache per thread decreases!
* both misses and contention increase

17

Constructive vs Destructive sharing

Application
Working Set Constructive L
:= amount of memory that a Sharing hit hit
process accesses N\

@ Thread @ @

Architecture

Destructive
Shared Cache Sharing /
Interference
Dual-core Processor threads competing for shared cache space

with Shared Cache

18

Shared Cache architecture

L2s
Bank7

L2s L2s L2s L2s L2s L2s L2s
Bank0 Bankl Bank2 Bank3 Bank4 Bank5 Bank6

Physical Address

Memory block address I Block offset
L1 TAG | L1 cache inde Block offss
LJ | V
L2 TAG | L2 cactie bank index(|52,220 |) Biock offset
. ~——

S-NUCA (static non-uniform cache architecture): latency depends on core<->bank
Due to dynamic packet routing in CMP NoCs, coherence usually enforced by
point-to-point directory protocols

Directory can use a full presence bit vector per L2 line

o N+1 bits for each L2 line (sharers + dirty bit)

o EXAMPLE: 64B cache line, 16 cores — overhead = 17 / (64x8) = ~3%

19

CMP cache and BW considerations

o Off-chip bandwidth is a critical resource in CMP
* limited by pin count, frequency
« BW requirements grow with number of cores

« if number of off-chip memory accesses per cycle > memory channels,
then queuing delays lead to superlinear memory access latency.
Leads to “work-time inflation” — each individual thread needs more
cycles while waiting for memory

Adding more cores to an already “memory-bound” problem just
increases average memory latency. The total throughput remains
constant or even decreases.

e Memory wall problem replaced by bandwidth problem. Potential
solutions:

« Reduce BW requirement of threads (HW: larger caches, SW:
locality-aware programming)

« Augment available off-chip bandwidth

20

Use larger caches to reduce off-chip BW
(eg eDRAM L3 cache in IBM POWER 8, 2014)

POWERS on Chip Caches

- L2: 512 KB 8 way per core
« L3:96 MB (12 x 8 MB 8 way Bank)

« “NUCA” Cache policy (Non-Uniform Cache Architecture)
— Scalable bandwidth and latency
— Migrate “Hot” lines to local L2, then local L3 (replicate L2 contained footprint)

+ Chip Interconnect: 150 GB/sec x 12 segments per direction = 3.6 TB/sec

Core Core Core Core Core Core

B3 1333 . 3Ty | FRITILE "R S joacnd] O b ey T
Pt L PHELRSSS avpmal W “w ey e D g teatad pa s . ol [IERER sEF ottt o
s b = {441 P A L 3 » < -
ot Ae s 1]

R I T T i PIETITTTTY

3&34’.’!"",’.".'.;;"'.:4-. -.u_"-'l'.a-’ "ﬁé. ""-»”'..'.

Core Core Core Core Core Core

12 ©2013 1BM Corporation

21

..And high BW off-chip memory
(e.g., HBM2 in SX-Aurora TSUBASA, 2018)

Vector Engine Processor Module SX-Aurora TSUBASA

| 2.5D implementation

® A VE processor and six 8Hi or 4Hi HBM2
modules on a silicon interposer

® Lidless package to minimize thermal
resistance

® Package size: 60mm x 60mm
® Interposer size: 32.5mm x 38mm
® \VE processor size: 15mm x 33mm

HBM2 VE processo

, Silicon interposer
‘\, V //
L — «— Stiffener
substrate

World’s first implementation

VE processor
HBM2\ \

, Silicon interposer

Stiffener Organic
substrate

of a processor with 6 HBM2s

\Orchestrating a brighter world NE

© NEC Corporation 2018

22

..And high BW off-chip memory caches
(e.g., HBM2 in SX-Aurora TSUBASA, 2018)

Vector Engine Processor Overview SX-Aurora TSUBASA

| Components OOODOUIODES
® 8 vector cores %
® 16MB LLC

® 2D mesh network on chip

® DMA engine

® 6 HBM2 controllers and interfaces
® PCI Express Gen3 x16 interface

| Specs

Core frequency 1.6GHz
307GF(DP)

Core performance 614GF(SP)
2.45TF(DP)

CPU performance 4.91TF(SP)

Memory bandwidth 1.2TB/s

Memory capacity 24/48GB

| Technology

® 16nm FinFET process

A I 0 e

© NEC Corporation 2018 \Orchestrating a brighter world [NJIEQC

23

Bus-based CMPs

L2S L2sS L2S L2S
BankO Bank1 Bank2 Bank3

BUS INTERCONNECT

cores share L2 cache banks through a shared bus

» coherence is maintained between L1s by bus snooping
similar to SMP except that memory is replaced by L2

* inclusion is enforced between L2 and L1s

« main difference is that a miss can happen in L2

 in this case the on-chip protocol must be able to deal with variable latencies
Example: early generation CMPs such as Pentium IV dual core processor

24

Intel Pentium D Dual Core (2005)

Intel® Pentium® D Processor Overview

Intel Pentium D Feature Summary

Bus Speed 800MHz
Execution Execution L2 Cache 2x1MB

IMBL2 1MB L2 IRISEREMS es
Cache Cache Execute Disable Bit —

Availability Target .

MCH FSB

25

Ring-based CMPs

e Nodes (core + L2 bank) are

connected through a ring
o Multiple requests in progress on different links
m Better bandwidth and scalability

o Packets are routed by additional logic in each
node (routers)

m Increases complexity and introduces
area overhead

o Inter-core latency depends on number of hops
e Rings can be clocked much faster

than buses

o point-to-point links instead of global
interconnect (e.g. bus)

26

Cache coherence in Ring-based CMPs

e Snooping protocols

©)

O O O O

coherence requests visit (snoop) every node, including cores and L2 banks
requests “hop” around the ring, from link to link to broadcast to all nodes
responses (e.g., missing blocks, acks) are inserted in the ring

owner (L2 or dirty node) replies with the block on a miss

a coherence transaction takes one trip around the ring (constant time)

e Directory-based protocols

O

@)

Each node (core plus L2 cache bank) is responsible for a range of addresses
where the global state of the block is stored (presence bits, dirty bit)

Requests go first to home node
If home node is not the owner, then the request is forwarded to dirty node

If dirty node is between requester and home then one more round trip is
needed (unless the ring network is bidirectional)

27

Example of Ring-based CMP:
Intel Sandy Bridge (2011)

Scalable Ring On-die Interconnect

Ring-based interconnect between Cores, Graphics, Last
Level Cache (LLC) and System Agent domain
Composed of 4 rings
- 32 Byte Data ring, Request ring, Acknowledge
ring and Snoop ring
- Fully pipelined at core frequency/voltage:
bandwidth, latency and power scale with cores
Massive ring wire routing runs over the LLC
with no area impact

Access on ring always picks the shortest
path - minimize latency

Distributed arbitration, sophisticated ring
protocol to handle coherency, ordering, and
core interface

Scalable to servers with large number of
processors

High Bandwidth, Low Latency, Modular

IDF2010

28

Scalability of rings

e Rings have two problems: 1) Latency grows linearly with number of cores, (2) Rings
do not match common chip layouts

e One option: connect multiple rings via routers (like Xeon ES v4)
o Complex. Improves layout, but does not solve scalability issue (latency, BW)

Intel® Xeon® Processor E5 v4 Product Family HCC

Link Link
o sevs
= FOAPIC
T =
e —— —
|~ —{ | - ——————
S—-— |
Core = LLC LLC jo Core Care LLC LLC Jo ok ore
Core| s S 2.5mB EXVE Y e Bo |Core Core| "o 2 2.5Mm0 2.8MmD = L
corel sl Sl & Jeore] [core[a fug| (sl & |core
Core Cacne| LLC LLC |o Core Caore Cache]l LLC LLC | Cacn. o ore
Corel s “zsmo| |zome - Bo |Core| |Corel "y, d Py il Pl - : s |©
Cere Cacne| LLC LLC Jomne = Cere Canel LLC LLC Joane Core
Core| "5 zemn| |2 sms) oo |COre] |Corel ey . 2eme] |zsme o |Core
Core Caene| LLC LLC Con Core cgene] LLC LLC <
Corel oo 2.smp 2 =m0 no |Core Corel "ao 2 smo 2 oMo v |Core
Core LLC LLC o Con Core < LLC LLC o ok
Core| s 3 2 sm0 2600 °°. <ore Core| “a e .80 285m0 . B0 |Core

Home Agent

Mem Ctir

DDR

Home Agent

Mem Clr

29

Mesh Interconnects

e Mesh networks have higher bisection bandwidth
e Also a better match with chip-level layout

MCDRAM MCDRAM e MCDRAM MCDRAM

H H H

EDC EDC

Tile

- pal I
Memory [m.m.
Control ler hwa mmy L1

DDR4

EDC EDC Misc EDC EDC

f
[

|
[
|

Intel Knights Landing (2016) Intel Skylake-SP (2017)
Ring 2 N/2 2 N
n-by-n mesh 4 2(n-1) n N=n2

Learn more about on-chip networks in the guest lecture next Tuesday! :)

DDR4

Cache coherence with Mesh Interconnects

network to destination node and back.

©)

Example: Intel Knights Landing

Cluster Mode: All-to-All

'MCDRAM MCDRAM

H

MCDRAM MCDRAM

' H

EDC EDC

3

Tile Tile

Tile Tile

Tile Tile

iMc

:

MCDRAM

MCDRAM MCDRAM MCDRAM

Snooping: requires reaching farthest node. Variable latency, must assume worst case
Directory: Similar solution to ring-based protocol, but packets proceed directly through

Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Most general mode. Lower
performance than other modes.

Typical Read L2 miss

1. L2 miss encountered
2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

SUMMARY (Lecture 8)

e Heterogeneous CMPs
e CMP Memory Architectures

e CMP Interconnection networks

32

