
LECTURE 8

Chip Multiprocessors

Miquel Pericàs
EDA284/DIT361 - 2019/2020 

1 11



What's cooking

1. Lectures 
○ Today: Chip Multiprocessing (8h-10)
○ Tuesday (Feb 18): Guest Lecture by Ioannis Sourdis on On-chip 

Networks (10h-12h)

2. Lab session 
○ Friday (8h - 12h @ ED3507), Intro to GEM5

3. Practice Session 
○ Tuesday (Feb 18) on ccNUMA + Multithreading
○ Exercises will be published in the coming days 

2

2



LECTURE 7
Core Multithreading

LECTURE 8
Chip Multiprocessing

LECTURE 9
On-chip Networks

LECTURE 10
GPGPU architecture

Lectures 7 - 11 Overview

LECTURE 11
Message Passing Hardware

C
hi

p 
M

ul
tip

ro
ce

ss
or

s
C

lu
st

er
s

3

3



OUTLINE (Lecture 7)

● Heterogeneous CMPs

● CMP Memory Architectures

● CMP Interconnection networks

4

4



Chip Multiprocessors (CMPs)

• CMPs have several desirable properties 
• Design simplicity: build one core, test it and replicate it
• Improved power scalability: increases linearly with #cores
• Low-latency inter-core communication

● enables fine-grained thread parallelism
● sharing of data via cache

• Modularity and customization: different number of cores for different markets
 
• CMPs can be homogeneous or heterogeneous

• Depends on whether the cores are identical or not
• Heterogeneity enables further customization and improved energy efficiency

CACHE CACHE

MEMORYMEMORY

core
multithreading chip multiprocessor

ccNUMACACHE

MEMORY

5



CMPs with heterogeneous cores

• Workloads have different characteristics
• “manycores”: large number of small cores (applications with high thread count)
• “multicores”: small number of large cores (applications composed of single 

thread or limited thread count)
• In practice: mix of workloads
• Furthermore, most parallel applications have parallel and serial sections 

(remember: Amdahl's law)

• Hence, heterogeneity required
• temporal: for example, by throttling energy per instruction (EPI)
• spatial: different types of cores with variation in functionality

 

config 
#1

conf #2
#3

EPI

t

core 
#1 core #2

#3

TEMPORAL SPATIAL

6



CMPs with heterogeneous cores

• Performance asymmetry (temporal)
• using homogeneous cores and DVFS, or processor with mixed cores but same 

ISA (e.g., in-order + out-of-order cores)
• variable resources: e.g., adapt size of cache by gating off power to cache banks 
• speculation control (low branch prediction code): throttle the number of in-flight 

instructions (will reduce activity factor)

 

Method EPI Range Time to vary EPI
DVFS 1:2 to 1:4 100 us, ramp Vcc

Variable Resources, eg. 
turn off cache ways

1:1 to 1:2 1 us, Fill L1

Speculation Control 1:1 to 1:1.4 10 ns, Pipeline flush
Mixed Cores 1:6 to 1:11 10 us, Migrate L2

7



Amdahl’s law in the multicore era

SYMMETRIC (multicore, manycore)
E.g.: (a) 16 small, (b) 4 large

ASYMMETRIC (mixed)
E.g.: (c) 1 large + 12 small

M. D. Hill and M. R. Marty, "Amdahl's Law in the Multicore Era," in Computer, vol. 41, no. 7, pp. 33-38, July 2008.

parallel
fraction

total chip
resources

resources  
per core (r<n)

parallel
serial

(n-r) x small
cores (1)

1 big core (r)

“ManyCore” “MultiCore” “Mixed Cores”

8



Amdahl’s law in the multicore era

assumption:   perf(r) = sqrt(r) ; known as Pollack’s rule 9

1

1

1

1



Dynamic multicore

n x small
cores (1)

1 big core (r)

ASYMMETRIC (temporal)
E.g.: 1 big (r) <-> 16 small

10



Mixed Cores example: 
ARM's big.LITTLE Architecture (2011+)

“Big” cores “Small” cores

● Same ISA, different performance/power characteristics
● LITTLE cores are less powerful, but much more efficient

11



Dynamic multicore example: 
Intel Turbo Boost (2008+)

Dynamically scales performance depending on number of running cores and 
TDP (thermal design power)

12



CMPs with heterogeneous cores

● Functional asymmetry (spatial)
○ Use heterogeneous cores

■ e.g., GP cores, graphics processors, cryptography, vector cores, 
floating-point co-processors

■ heterogeneous cores may be programmed differently (both high level 
and ISA)

■ mechanisms must exist to transfer activity for one core to another
■ fine-grain: in the case of floating point co-processor, use ISA 

extension (e.g, floating point instruction, vector extensions..)
■ coarse grain: transfer the computation from one core to another 

using APIs (e.g. CUDA, OpenACC..)
○ Goals:

■ save power by using cores with different power/performance 
characteristics for different phases of execution

■ higher performance
■ better usage of increased chip area at limited power 

13



Functional Asymmetry Example:
IBM Cell Processor (2006)

• One PowerPC processing element (PPE)
• 2-way SMT PowerPC core

• Plus 8 synergistic processing elements (SPEs)
• SPE is 2-issue in-order processor
• two SIMD instructions can be issued in each cycle (vectors)
• no coherence support between SPE and PPE (data transfers are explicitly programmed)
• PPE and SPE execute different ISAs

14



15

Functional Asymmetry Example:
Apple A12 Bionic (2018)

2x Vortex (High Performance) + 
4x Tempest (Energy Efficient)



Design options for Last Level Caches

• Private Cache
• Preferable when shared cache latency is too large
• Provides stronger isolation between cores

• No destructive interference possible (per-core capacity is statically 
partitioned)

• But also no constructive sharing
• Good for multi-user workloads (provides fairness)

CACHE

DRAM

shared cache private cache

C C C

DRAM

16



Shared vs Private cache

• In general shared cache preferable
• No coherence problem
• Dynamic re-allocation of capacity among cores (LRU)
• In the presence of sharing, effective capacity is larger than private
• Two scenarios: constructive (aka “cooperative”) sharing or destructive 

interference
• Constructive sharing (code and data shared among cores): GOOD

• effective size is greater because of sharing
• prefetching effects: one core loads data used by a different core

• Destructive interference (no sharing): BAD
• threads do not help each others
• threads sharing the cache compete with other threads for capacity
• as the thread count increases, the amount of cache per thread decreases!
• both misses and contention increase

17



Constructive vs Destructive sharing

Shared Cache

Working Set
:= amount of memory that a 
process accesses

Thread

Dual-core Processor 
with Shared Cache

Application

Architecture
Destructive
Sharing / 
Interference

miss misshit hit

Constructive 
Sharing hit hit

prefetching effect

threads competing for shared cache space

18



Shared Cache architecture 

L1 $

Core0

L1 $

Core1 Core3 Core4 Core5Core2 Core6 Core7

L2 $ 
Bank0

L2 $ 
Bank1

L2 $ 
Bank2

L2 $ 
Bank3

L2 $ 
Bank4

L2 $ 
Bank5

L2 $ 
Bank6

L2 $ 
Bank7

Interconnect

Memory 
Controller

Memory 
Controller

Memory 
Controller

Memory 
Controller

I/O

L1 $ L1 $ L1 $ L1 $ L1 $ L1 $

● S-NUCA (static non-uniform cache architecture): latency depends on core<->bank
● Due to dynamic packet routing in CMP NoCs, coherence usually enforced by 

point-to-point directory protocols
● Directory can use a full presence bit vector per L2 line

○ N+1 bits for each L2 line (sharers + dirty bit)
○ EXAMPLE: 64B cache line, 16 cores → overhead = 17 / (64x8) = ~3%

19



CMP cache and BW considerations

• Off-chip bandwidth is a critical resource in CMP
• limited by pin count, frequency
• BW requirements grow with number of cores
• if number of off-chip memory accesses per cycle > memory channels, 

then queuing delays lead to superlinear memory access latency.
● Leads to “work-time inflation” → each individual thread needs more 

cycles while waiting for memory
● Adding more cores to an already “memory-bound” problem just 

increases average memory latency. The total throughput remains 
constant or even decreases.

• Memory wall problem replaced by bandwidth problem. Potential 
solutions:

• Reduce BW requirement of threads (HW: larger caches, SW: 
locality-aware programming)

• Augment available off-chip bandwidth

20



Use larger caches to reduce off-chip BW 
(eg eDRAM L3 cache in IBM POWER 8, 2014)

21



..And high BW off-chip memory
(e.g., HBM2 in SX-Aurora TSUBASA, 2018)

22



..And high BW off-chip memory caches
(e.g., HBM2 in SX-Aurora TSUBASA, 2018)

23



Bus-based CMPs 

• cores share L2 cache banks through a shared bus
• coherence is maintained between L1s by bus snooping

• similar to SMP except that memory is replaced by L2
• inclusion is enforced between L2 and L1s
• main difference is that a miss can happen in L2
• in this case the on-chip protocol must be able to deal with variable latencies

• Example: early generation CMPs such as Pentium IV dual core processor

L1 $

Core0

L1 $

Core1

L1 $

Core2

L1 $

Core3

L2 $ 
Bank0

L2 $ 
Bank1

L2 $ 
Bank2

L2 $ 
Bank3

Router
Snoop Coherence 

on BusMemory Controller

BUS INTERCONNECT

24



Intel Pentium D Dual Core (2005)

25



Ring-based CMPs 

● Nodes (core + L2 bank) are 
connected through a ring
○ Multiple requests in progress on different links

■ Better bandwidth and scalability
○ Packets are routed by additional logic in each 

node (routers)
■ Increases complexity and introduces 

area overhead
○ Inter-core latency depends on number of hops

● Rings can be clocked much faster 
than buses
○ point-to-point links instead of global 

interconnect (e.g. bus)

L1 $

Core0

L1 $

Core1

L1 $

Core2

L1 $

Core3
L2 $ 
Bank0

L2 $ 
Bank1

L2 $ 
Bank2

L2 $ 
Bank3

Router
Directory 

Coherence

QPI/HT 
Interconnect

Memory 
Controller

26



Cache coherence in Ring-based CMPs
● Snooping protocols

○ coherence requests visit (snoop) every node, including cores and L2 banks
○ requests “hop” around the ring, from link to link to broadcast to all nodes
○ responses (e.g., missing blocks, acks) are inserted in the ring
○ owner (L2 or dirty node) replies with the block on a miss
○ a coherence transaction takes one trip around the ring (constant time)

● Directory-based protocols 
○ Each node (core plus L2 cache bank) is responsible for a range of addresses 

where the global state of the block is stored (presence bits, dirty bit)
○ Requests go first to home node
○ If home node is not the owner, then the request is forwarded to dirty node
○ If dirty node is between requester and home then one more round trip is 

needed (unless the ring network is bidirectional)

27



Example of Ring-based CMP: 
Intel Sandy Bridge (2011)

28



Scalability of rings
● Rings have two problems: 1) Latency grows linearly with number of cores, (2) Rings 

do not match common chip layouts
● One option: connect multiple rings via routers (like Xeon E5 v4)

○ Complex. Improves layout, but does not solve scalability issue (latency, BW)

29



Mesh Interconnects

Interconnection 
network

Switch 
degree

Network 
diameter

Bisection 
width

Network 
size

Ring 2 N/2 2 N

n-by-n mesh 4 2(n-1) n N=n2

Intel Skylake-SP (2017)Intel Knights Landing (2016)

● Mesh networks have higher bisection bandwidth
● Also a better match with chip-level layout

Learn more about on-chip networks in the guest lecture next Tuesday! :) 30



Cache coherence with Mesh Interconnects
● Snooping: requires reaching farthest node. Variable latency, must assume worst case
● Directory: Similar solution to ring-based protocol, but packets proceed directly through 

network to destination node and back. 
○ Example: Intel Knights Landing 

31



SUMMARY (Lecture 8)

● Heterogeneous CMPs

● CMP Memory Architectures

● CMP Interconnection networks

32

32


