Problems and Solutions for the Examination of EDA284 (2018-10-29)

Problem 1 (12p)

The goal of this exercise is to reason about three locking schemes designed to protect a shared data
structures in three different scenarios. The underlying parallel computer is a sequentially consistent
shared memory bus-based multiprocessor that uses the MSI-invalidate protocol to manage
coherence across private caches.

The three scenarios under consideration are:
* Scenario #1: the shared data structure is accessed by a single thread.
* Scenario #2: the lock is accessed by multiple threads but lock contention is very low.
* Scenario #3: the lock is accessed by many threads, and lock contention is high.

The following codes show the implementation of the three locking schemes. In the following

assume that R0=0, and that the lock is taken when its value is 1. The variable holding the lock is
lock.

Action/Label Lock #1 Lock #2 Lock #3
Lock: T&S R1, lock LW R1, lock ADDI R1,RO0O,1
BNEZ R1, Lock BNEZ R1, Lock LL R2, lock
T&S R1, lock SC R1, lock
BNEZ R1, Lock BEQZ R1, Lock
BNEZ R2, Lock
Unlock: SWw RO, lock SWw RO, lock SW RO, lock

That task is to describe, for each of the three locking schemes:

(a) How well do the locking schemes apply to the three scenarios shown above?

(b) What synchronization hardware needs to be added to the basic bus-based multiprocessor (as
described in Lecture 4) to support the locking schemes?

(c) Assume now that the memory consistency model is a synchronization-based memory
consistency model such as weak ordering. Will the locking schemes still work correctly?

Solution to Problem 1:

The three locks correspond to a test-and-set based spinlock, a test-and-test-and-set spinlock, and a
LL-SC spinlock that implements the same functionality as the test-and-set spinlock (the first four
lines emulate a T&S and the fifth line checks if the lock was successfully taken).

(a) Performance and Efficiency

Scenario 1:

Since the data is only accessed by a single thread it is not necessary to actually implement mutual
exclusion in the access. No lock should be used for this case. However, even if a lock is used, the
overhead will be low, since the lock will always reside in the local cache and it will always be taken
in the first try.

Scenario 2:

In scenario 2 multiple threads access the data structure. As long as contention is low Locks 1 and 3
are a slightly better solution as it takes only one atomic read-write to take the lock, while Lock 2
requires at least 1 load and 1 atomic read-write operation.

Scenario 3:

Given that the lock is highly contented, we assume that most threads do not immediately get access
to the lock. Given that the coherence protocol is MSI, using Lock 1 will result in the lock migrating
across all spinning threads. Each T&S generates an invalidation and a migration. Lock 2 is a better
solution in this case as it exploits the 'S’ state that allows multiple threads to share the value. All
threads keep the lock locally in the 'S’ state, and only when the lock is released by the holding
thread is a invalidation generated. Hence there is only one invalidation each time a lock is release,
instead of continuously by all the spinning threads (Lock 1). Since Lock #3 is an emulation of Lock
#1, the behavior is similar to Lock #1.

(b) Hardware support

Locks 1 and 2 require HW necessary to implement atomic read-modify-write instructions:
* invalidation-based coherence protocol
* cache controller acquires cache line in ‘M’ state and performs T&S atomically

Lock 3 uses LL-SC which is typically found in load/store architectures (e.g. RISC pipelines). LL-
SC support requires:

e LL-bit, set when LL is executed

* method to detect writes to cache line with lock (resets LL-bit)

* SC fails if LL-bit has been reset

(c) Memory Consistency

In weak ordering, accesses to synchronization data are treated differently by the hardware

from accesses to other shared and private data. Such operations act as memory barriers on all
accesses, hence the behavior for programs using locks is equivalent to sequential consistency.
Hence all three lock implementations are still correct under weak ordering.

Problem 2 (6p)

Amdahl’s law and Gustafson’s law are two speed-up models used to assess the expected impact of
an architectural improvement, and to guide the efforts to improve the performance of parallel
computer system.

(a) Describe Amdahl’s law and provide the mathematical formulation to determine the speed-up as a
function of the parallelizable program fraction and the number of processors used to run the

program.

(b) Describe Gustafson’s law conceptually and discuss what motivated its development

Solution to Problem 2

(a) Amdahl’s law considers a problem of fixed size (or work) and states that the upper bound to
performance is determined by the fraction of the problem (F) that can be parallelized. The formula
for the speed-up for P processors is:

S_Tl_ 1 _ P < 1
» T, 1-F+F/P F+P(1-F) 1-F

p

(b) Gustafson’s law provides a speed-up formula considering a problem if fixed time (as opposed to
Amdahl’s law which considers a problem of fixed size). Amdahl’s law suggests that adding
resources to solve a fixed problem in less time quickly leads to diminishing returns. Gustafson’s law
takes the opposing view that, as faster and larger computers are developed, scientists/engineers use
them to solve larger and more complex problems. Hence Gustafson’s law fixes the time it takes to
obtain a result, instead of the problem size.

Problem 3 (6p)

In this problem you are asked to describe basic metrics of interconnection networks and to analyze
the performance of some basic network topologies.

(a) Describe in a few sentences the following latency and bandwidth measures used for
interconnection networks: (a) routing distance, (b) network diameter, (c) bandwidth per node and
(d) bisection bandwidth.

(b) Consider the following network topologies: a bus, a NxN crossbar switch, a bidirectional ring
with N nodes, and a n-by-n 2D mesh such that N=n*n. The task is to determine the network

diameter and bisection width of these four network topologies, as a function of N (or n).

Solutions to Problem 3

8.(a)

Routing distance: Nb of links traversed by a packet

Network diameter: Longest routing distance over all pairs of nodes

Bandwidth per node: Aggregate bandwidth across all links divided by the number of nodes
Bisection bandwidth: Bandwidth when all nodes in one network bisection communicate with nodes
in the other bisection

8.(b)

Bus:
Network Diameter = 1
Bisection Width = 1 (or less, due to contention and arbitration)

Crossbar:
Network Diameter = 1
Bisection width = N

Bidirectional Ring:
Network diameter = N/ 2
Bisection width = 2

n-by-n Mesh:
Network diameter = 2 * (n-1)
Bisection width = n

Problem 4 (6p)

To effectively use multicores, simplifying the development of parallel software while providing
high performance is an important goal. A recent proposal to achieve these goals is Hardware-based
Transactional Memory (TM). Your task is to compare HW Transactional Memory with traditional
single-global locks and fine-grained lock-based programming in terms of:

(a) Programming complexity
(b) Performance
(c) Hardware support

Write no more than 1-3 sentences for each item

Solution to problem 4

Answers are directly in the slides:

(a) Transactional memory (TM) simplifies shared memory programming by allowing to execute sets
of writes (ST) and reads (LD) in an atomic way. Just annotate with Transactin_begin and
Transaction_end. Complexity Similar to coarse-grained

(b) Performance is similar to fine-grained locking when conflict probability is low. When conflicts
are high, performance decreases and can be even worse than a single global lock if most
transactions need to restart.

(c) HW-based TM requires special hardware to keep speculative values in the L.1 caches and release
the values atomically when a transaction commits. Support for locks is much simpler as it focuses
on providing atomic read-modify-write for single cache lines, instead of read/write sets.

Problem 5 (10p)

A design team needs to choose an appropriate cache coherence protocol to be used for a bus-based
shared memory multiprocessor with a number of processor/private cache units connected by a
shared single-transaction bus. The team has narrowed down the design to two protocol choices:
MSI-invalidate and MESI-invalidate. Given the higher complexity of MESI, the designers consider
that at least 5% better performance and 5% lower traffic need to be achieved to justify the
implementation of the MESI protocol. In order to select the protocol the team needs to analyze the
following representative sequence of accesses happening on the bus in the following order:

R1/X, R3/Z, R2/Y, W1/X, W2/Y, W3/Z, R1/Z, R4/Z, W2/Z, R3/Z

where the notation Ri/X, Wi/X means a read and write from processor i to cache block X. The
latency and traffic costs of different operations considering a block size B bytes are:

Operation Latency Bus Traffic
Read hit 1 N/A
Write hit 1 N/A
Request serviced by next level (BusRd,Flush) 50 6+B
Bus upgrade (BusUpgr) 10 10
Snoop action 5 N/A
Assumptions:

1. A bus upgrade consists of transferring the request on the bus and making a snoop action in each
cache (the latency of the latter is shown in the table)

2. There is no contention on the tag directory (duplicated tag directory)

3. X, Y and Z are not the same cache block

4. The block size B is 32 bytes

5. Read-exclusive requests (BusRdX) have the same latency and traffic as Read requests

The MSI state-transition diagram is shown below

Prifr’

BusRd¥/Flush BusRdX

BusUpgn/-
BusRd¥/--

BusRd'-
BusUpgri-
BusRd¥/-

To assess the performance of both protocols the team must construct a table with the latency
(cycles) and bus traffic (bytes) needed to complete the aforementioned access sequence (shown
below). Based on the aforementioned complexity-performance trade-off, which protocol will the

design team ultimately choose?

Protocol Latency

Traffic

MSI

MESI

Improvement

Solution to Problem 5

MSI Protocol:

R1/X (miss/mem) — 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
R3/Z (miss/mem) — 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
R2/Y (miss/mem) — 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
W1/X (hit/upgrade) — 5 cycles (snoop) + 10 cycles (BusUpgr) = 15 cycles / 10
W2/Y (hit/upgrade) — 5 cycles (snoop) + 10 cycles (BusUpgr) = 15 cycles / 10
W3/Z (hit/upgrade) — 5 cycles (snoop) + 10 cycles (BusUpgr) = 15 cycles / 10
R1/Z (miss/cache) — 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B

R4/Z (miss/mem) — 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
W2/Z (miss/upgrade) — 5 cycles (snoop) + 50 cycles (BusRdX) = 55 cycles / 6+B
R3/Z (miss/cache) — 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B

Latency =55 * 7 + 15*%3 = 385 + 45 = 430 cycles
Traffic = (6+B)*7 + 10*3 =72 + 7B
Given that B=32, the total traffic will be 296 bytes

MESI Protocol:

R1/X (I-E) — 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
R3/Z (I1-E) - 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
R2/Y (I-E) - 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
W1/X (E-M) - 1cycle/ 0 bytes

W2/Y (E-M) - 1cycle/ 0 bytes

W3/Z (E-M) — 1cycle/ 0 bytes

R1/Z (I-S) — 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B
R4/Z (1-S) — 5 cycles (snoop) + 50 cycles (BusRd) = 55 cycles / 6+B
W2/Z (1-M) - 5 cycles (snoop) + 50 cycles (BusRdX) = 55 cycles / 6+B
R3/Z (I1-S) — 5 cycles (snoop) + 50 cycles (Flush) = 55 cycles / 6+B

Latency = 55 * 7 + 3 = 388 cycles
Traffic = (6+B)*7 =42+ 7B
Given the B=32, the total traffic will be 266 bytes.

Protocol Latency Traffic
MSI 430 cycles 296 bytes
MESI 388 cycles 266 bytes
Improvement ~10% ~10%

Given the complexity-performance criteria, the designers will ultimately choose the MESI protcol.

Problem 6

The MOESI protocol adds a new state called Owner (O). A designer has been given the task to
implement the MOESI protocol by adding the necessary transitions on top of MESI. The designer
has so far enumerated all the transitions and added them to the MESI diagram (as shown below),
but not all coherence protocol actions have yet been determined.

PrRd/-
Prtri—
M Prtr/--
Prnvr
BusUpg
PrRdi-
PrRd/-
0 S Pr E
~ BusRdX R/
BusRAX/ BusUpagrt
Flush BusRaXi-1 ErRA(S) BusRdX/
Flush
PrRA(S)
Buslpgri— BusRd
BusRdf--
BusUpgr/--
BusRdx/-

Your task is to:

(a) Describe the meaning of the state (O)wner, and show one example in which it improves
performance compared to MSI or MESI.
(b) Add the missing protocol actions to the five transitions shown below

© ~0 o -\

Solution to Problem 6

(O) adds the notion of ownership of a cache block. The states E and M are also (implicitly) owner.
This state is used for ownership of blocks in the S (shared) state. Blocks in state O will supply a
copy of the block when another cache requests it. Compared to MSI/MESI it:
1. enables sharing of dirty data and removes unnecessary writebacks
2. reduces memory bandwidth in CMPs by allowing on-chip caches to reply to BusRd
requests.

The missing transitions are indicated in the following diagram for MOESI.

PrRd/-
Prvri—

Privd
BusRdX

erf——

PrRA(S)
BusRd

PrRd(S)
BusRd

BusRdX/
Flush

BusUpgri—
BusRdX/Flush

BusRd/--
BusUpgri--

BusRdX/—

Problem 7 (8p)

Consider a future 8-way CMP on which you can power off some cores to allow the rest to operate at
a higher frequency. You can use either 1, 2, 4, or 8 cores at the respective frequencies:

* when only one core is running it operates at 0.3ns clock cycle
* when two cores are running they operate at 0.4ns clock cycle
* when 4 cores are running they operate at 0.6ns clock cycle,

* when all 8 cores are running they operate at 1ns clock cycle,

Consider a partially parallel application consisting of a serial part of 100 Instructions and a parallel
part that can be parallelized at will which is 200 Instructions. Parallelizing however requires you to
create threads in the serial part of the application and 10 Instructions are added for every thread you
create. The serial and parallel part of the application all run one instruction per cycle regardless of
the frequency.

(a) Calculate the runtime of the application for the above processor when using 1, 2, 4 or 8 cores at
their respective frequency without reconfiguring the processor while the application is running.
Which configuration is better?

(b) What if you could reconfigure the processor to run the serial part with one core at 0.3 ns clock
cycle and then configure it to 2 or 4 or 8 cores for the parallel part? What is the runtime for each
case? Consider for all cases that creating each thread takes 10 Instructions that are added to the
serial part (and run on the single core at 0.3ns clock cycle).

Solution to problem 7

(a)

1-Core: 100 Instr serial + 200 Instr parallel = 300 Instr at 0.3 ns = 90ns

2-Core: 100 Instr serial + (100 Instr parallel) + 20 Instr to create 2 threads = 220 Instr at 0.4 ns =
88ns

4-Core: 100 Instr serial + (50 Instr parallel) + 40 Instr to create 4 threads = 190 Instr at 0.6ns = 114
ns

8-Core: 100 Instr serial + (25 Instr parallel) + 80 Instr to create 8 threads = 205 Instr at 1ns = 205ns
— 2 Core is the best configuration

(b)

Serial part is always 100 Instr at 0.3ns = 30ns

The parallel part :

2-Core: 20 Instr to create the threads at 03.ns + (100 Instr parallel at 0.4) = 6ns + 40ns = 46ns
4-Core: 40 Instr to create the threads at 03.ns + (50 Instr parallel at 0.6) = 12ns + 30ns = 42ns
8-Core: 80 Instr to create the threads at 03.ns + (25 Instr parallel at 1) = 24ns + 25ns = 49ns

So the total runtime for the reconfigurable processor is
2-Core: 30ns + 46ns = 71ns

4-Core: 30ns + 42ns = 67ns

8-Core: 30ns + 49ns = 79ns

— 4-Core is the best

Problem 8 (6p)

We consider a scalable implementation of a shared memory multiprocessor using a set of nodes
such that each contains a processor, a private cache, and a portion of the memory. Cache coherence
is maintained using a directory cache protocol. The following costs apply:

* The block size is 64 bytes.

* The time it takes to process a directory request is 20 cycles.

* The time it takes to install a new entry in a directory is also 20 cycles.

* Aremote read request takes 10 Cycles and induces 8 bytes of traffic

* A flush of a cache line from one node to another costs 40 Cycles and 8 + 64 Bytes

» Ignore the time it takes to read/write to a cache.

* The home node is the one that holds the directory entry for a cache line.

* The requesting node is the node that produces a cache miss for a cache line.

* The remote node is the one that holds the dirty copy of a cache line when the cache line is
dirty.

Your task is to describe the sequence of steps, as well as the number of cycles and traffic, needed to
handle a cache miss for the following scenarios:

(a) The home node is the same as the requesting node and the memory copy is clean.

Home/requesting
Node

(b) The home node is the same as the requesting node and the memory copy is dirty

Home/requesting Remote
Node Node

(c) The home node is different from the requesting node and the memory copy is clean

Requesting Home
Node Node

(d) The home node is different from the requesting node, the memory copy is dirty and the remote
node is is the same as the home node

Requesting Home/remote
Node Node

(e) The home node is different from the requesting node, the memory copy is dirty and the remote
node is different from the home node

Requesting Home Remote
Node Node Node

Solutions to Problem 8

(@
1. Lookup home node dir (20 Cycles)

(b)

1. Lookup local dir (20 Cycles)

2. Remote read from home/requesting node to remote node (10 Cycles, 8 Bytes)

3. Directory lookup in remote node (20 Cycles)

4. Flush cacheline from remote node to home/requesting node (40 Cycles, 8 + 64 Bytes)
5. Install on home/requesting node directory (20 Cycles)

(0)

1. Remote read from requesting to home (10 Cycles, 8 Bytes)

2. Lookup home node directory (20 Cycles)

3. Flush cacheline from home node to requesting node (40 Cycles, 8 + 64 Bytes)
4. Install on requesting node directory (20 Cycles)

(d)

1. Remote read from requesting node to home/remote (10 Cycles, 8 Bytes)

2. Lookup home/remote node directory (20 Cycles)

3. Flush cacheline from home/remote node to requesting node (40 Cycles, 8 + 64 Bytes)
4. Install on requesting node directory (20 Cycles)

(e)

1. Remote read from requesting node to home node (10 Cycles, 8 Bytes)

2. Directory lookup in home node (20 Cycles)

3. Remote read from home node to remote node (10 Cycles, 8 Bytes)

4. Directory lookup in remote node (20 Cycles)

5. Flush cacheline from remote to home node (40 Cycles, 8 + 64 Bytes)

6. Install on home node directory (20 Cycles)

7. Flush cacheline from home to requesting node (40 Cycles, 8 + 64 Bytes)
8. Install on requesting node directory (20 Cycles)

