
EDA284 Lab 3: Simulating Coherence Protocols

with gem5

Contacts: Miquel Pericàs, Sonia Rani Gupta, Madhvan and Mustafa
Emails: miquelp, soniar@chalmers.se

March 4, 2022

The goal of this lab is to enhance your understanding of cache coherence. In the lectures,
you learned the fundamental concepts of coherence protocols. However, even simple three-state
protocols, such as MSI (Modified-Shared-Invalid), are more complex in real life implementations.
With the help of gem5, this lab will give a quick overview of these more complex aspects of coherence
protocols such as transient states.

By the end of this lab:

• You will have an overview of how coherence protocols are implemented and why we need
transient states.

• You will learn how to debug coherence protocols using the Protocol Tracer.

• You will analyze multithreaded codes that exhibit certain cache usage and compare across
protocols (MI vs MSI).

Useful and Optional References:

(a) Learning gem5 part 3 (recommended read) http://learning.gem5.org/book/part3/index.html

(b) The Primer on Memory Coherence and Consistency book is a great resource on coherence. The
book is available online through http://pages.cs.wisc.edu/ markhill/papers/primer2020 2nd edition.pdf

(c) The ASPLOS 2018 gem5 tutorial (part 3). http://learning.gem5.org/tutorial/

Prerequisites:

(a) Download the pre-built gem5 package available on
https://chalmersuniversity.box.com/s/4x6twjnaqhh1vvp3w1xkv2djh3luwluo. It is highly
recommended to delete or archive older versions of gem5 to save space.

(b) The gem5 build system uses the tcmalloc library that is part of gperftools. So, download
the pre-built gperftools library from here.
https://chalmersuniversity.box.com/s/tq01d3iaossa3jxfd6b3xrtkqsjwkwym. After you extract
the folder, update LD LIBRARY PATH to point to the lib (including also the libpng lib) folder
as follows:

1

http://learning.gem5.org/book/part3/index.html
http://pages.cs.wisc.edu/~markhill/papers/primer2020_2nd_edition.pdf
http://learning.gem5.org/tutorial/
https://chalmersuniversity.box.com/s/4x6twjnaqhh1vvp3w1xkv2djh3luwluo
https://chalmersuniversity.box.com/s/tq01d3iaossa3jxfd6b3xrtkqsjwkwym


(a) Ruby interaction with gem5 (b) Ruby components

Figure 1: An overview of the Ruby cache system

1 export LD_LIBRARY_PATH=PATH_TO_GPERFTOOLS/lib /:/ chalmers/sw/sup64/ansys -2020r1/

libpng/lib/

1 Introduction to Ruby

Ruby1 comes from the multifacet gem5 project. Ruby provides a detailed cache memory and cache
coherence models as well as a detailed network model (Garnet). It is flexible. It can model many
different kinds of coherence implementations, including broadcast, directory, token, region-based
coherence, and is simple to extend to new coherence models. Also, it is a mostly drop-in replacement
for the classic memory system. There are interfaces between the classic gem5 MemObjects and Ruby,
but for the most part, the classic caches and Ruby are not compatible. Figure 1 is an overview
of how Ruby is interfaced to gem5 and the different components that constitute the Ruby cache
system. The most important structure in Ruby is the controller, or state machine. Controllers are
implemented by writing a SLICC state machine file.

SLICC is a domain-specific language (Specification Language including Cache Coherence) for
specifying coherence protocols. SLICC files end in ”.sm” because they are state machine files. Each
file describes states, transitions from a begin to an end state on some event, and actions to take
during the transition.

Each coherence protocol is made up of multiple SLICC state machine files. These files are
compiled with the SLICC compiler which is written in Python and part of the gem5 source. The
slicc compiler takes the state machine files and output a set of C++ files that are compiled with all
of gem5’s other files. These files include the SimObject declaration file as well as implementation
files for SimObjects and other C++ objects.

Currently, gem5 supports compiling only a single coherence protocol at a time. For instance,
you can compile MI example (the default, poor performance, protocol) or the MSI into gem5, or

1http://learning.gem5.org/book/part3/intro.html

2

http://learning.gem5.org/book/part3/intro.html


you can use MESI Two Level. To get a list of available protocols to build a Ruby system with, check
src/mem/ruby/protocol/SConsopts. Example code snippet is as follows:

1 all_protocols.extend ([

2 'GPU_VIPER ', 'GPU_VIPER_Baseline ',
3 'GPU_VIPER_Region ', 'GPU_RfO ',
4 'MOESI_AMD_Base ', 'MESI_Two_Level ',
5 'MESI_Three_Level ', 'MESI_Three_Level_HTM ',
6 'MI_example ', 'MSI ', 'MOESI_CMP_directory ',
7 'MOESI_CMP_token ', 'MOESI_hammer ',
8 'Garnet_standalone ', 'None '
9 ])

Notes:

We have built two systems one with an MI simple and inefficient protocol, and another with MSI as
a more realistic protocol. If you would like to build the systems on your own, you can optionally
use the sample build commands below:

• MI example:
scons build/ARM_MI/gem5.opt --default=ARM PROTOCOL=MI_example SLICC_HTML=True

• MSI:
scons build/ARM_MSI/gem5.opt --default=ARM PROTOCOL=MSI SLICC_HTML=True

Note that in both cases, we have enabled a user-friendly HTML table view of the protocol tran-
sitions (more details later). The builds utilizing MI and MSI protocols are already available on
build/ARM MI/ and build/ARM MSI/, respectively.

2 The cache state machine in SLICC

The most important part of developing a coherence protocol using SLICC is producing the following
two files:

• src/mem/ruby/protocol/MSI-cache.sm

• src/mem/ruby/protocol/MSI-dir.sm

gem5 uses SLICC, a domain specific language, to define the coherence protocol. Remember
that a coherence protocol implementation consists of (a) a set of coherence controllers (i.e., Fi-
nite State Machines - FSMs) and (b) a set of interactions between these controllers [1]. The file
src/mem/ruby/protocol/MSI.slicc contains a list of all the files used by the MSI protocol; the pro-
tocol’s name is specified in the first line.

1 protocol "MSI";

2 include "RubySlicc_interfaces.slicc ";

3 include "MSI -msg.sm";

4 include "MSI -cache.sm";

5 include "MSI -dir.sm";

3



The RubySlicc interfaces.slicc file contains all the files relevant to Ruby memory system. You
will not need to modify this file, so treat it as an included header file. The MSI-cache.sm file holds
the definition of the L1 Cache coherence controller, whereas the MSI-dir.sm file defines the FSM
associated with the directory controller. In addition to core-initiated memory requests, I/O devices
can also access memory via DMA requests. You can safely ignore these for your implementation.

The different constructs specified as part of the MSI-cache.sm file:

(1) Cache memory: Where the data is stored.

(2) Message buffers: Sending/receiving messages from network

(3) State declarations: The stable and transient states

(4) Event declarations: State machine events that will be “triggered”

(5) Other structures and functions: Entries, TBEs, get/setState, etc.

(6) In ports: Trigger events based on incoming messages

(7) Actions: Execute single operations on cache structures

(8) Transitions: Move from state to state and execute actions

Tasks:

(a) In the process of producing the two ARM systems that use the MI and MSI protocols for cache
coherence, we have enabled a user-friendly HTML output granted by the SLICC compiler (e.g.
the MSI version is located at ./build/ARM MSI/mem/ruby/protocol/html/index.html). Look
at the HTML produced for the MSI protocol by the SLICC compiler. List 2 transient states
and the events the trigger them.

(b) Review “Learning gem5 part 3 - Section: Transition code blocks” (reference (a)), and interpret
(at a high level) the state transition SLICC code below.

1 transition ({SM_AD , SM_A}, {Store , Replacement , FwdGetS , FwdGetM }) {

2 stall;

3 }

(c) Why are transient states necessary? and why does a coherence protocol use stalls?

(d) What is the meaning of a deadlock in a directory coherence protocol and how can we avoid
it?

3 Validating the protocols via the Ruby Random Tester

In order to validate the correctness of your protocol, you can run the following from your gem5
directory (e.g. the MSI protocol):

1 ./build/ARM_MSI/gem5.opt ./ configs/example/ruby_random_test.py

The ruby random test.py python script receives a set of configuration parameters. You can see
all of them via -help. The most important ones are:

4



1 -n, --num -cpus Number of cpus injecting load/store requests to the memory system.

2 --num -dirs Number of directory controllers in the system.

3 -m, --maxtick Number of cycles to simulate.

4 -l, --checks Number of loads to be performed.

The random tester injects random requests to the L1 caches. If a bug in your code exists the
test will not complete, but will instead exit with an assertion or an error message.

Task:

Test the MI and MSI protocols with 2 cpus. State the final outcome of the test. Document the
error(s) if you find any.

4 Analyzing coherence using multithreaded codes

The dual-core CPU system configuration scripts, that leverage MI and MSI (each core has a private
L1 cache only) are available at the following locations:

• MI: configs/simple ruby/simple ruby MI.py

• MSI: configs/simple ruby/simple ruby MSI.py

To better facilitate debugging, you can use the ProtocolTrace debug flag, which generates a complete
dump of all the protocol transitions and actions of the coherence controllers in your system. Figure 2
shows such sample output. The highlighted line starts with the tick number (2883000), the machine
version (CPU core number in this case), the Ruby component (L1Cache), the event (Load), the
state transition (S > S), the physical word address (0x27dc0) and the line address (0x27dc0). For
more information, check http://learning.gem5.org/book/part3/MSI/debugging.html

Notes:

To run your code (e.g. with MSI protocol and tracing enabled), use the following command

1 ./build/ARM_MSI/gem5.opt --debug -flags=ProtocolTrace ./ configs/simple_ruby/

simple_ruby_MSI.py path_to_binary

As you know, the MSI protocol introduces the “Shared” state on top of the MI example protocol,
that is, it is possible to read a value that is in shared/modified state in the corresponding cache.
To read more about the MI example, check this link
https://www.gem5.org/documentation/general docs/ruby/MI example/.

Tasks:

You are given a multi-threaded code (./configs/simple ruby/bins/threads.c). The code uses 2
threads to parallelize an element-wise addition of the arrays a and b (i.e. c = a + b). To build
the code, type make while in the folder.

(a) The code “threads.c” has a problematic usage of the cache. Identify it. Use the protocol
tracer with the MSI protocol to provide an evidence of the problem. (Hint: redirect the
debug output to a file to search easily. Google “redirect output to file”).

5

http://learning.gem5.org/book/part3/MSI/debugging.html
https://www.gem5.org/documentation/general_docs/ruby/MI_example/


Figure 2: Sample protocol trace output produced with –debug-flags=ProtocolTrace

(b) Fix the problem in the code “threads.c”, and compare the performance of the MSI-enabled
system before and after the fix in terms of the number of ticks.

(c) Suggest a code (possibly replacing the code in function array add in “threads.c”) where the
simple MI protocol outperforms the MSI protocol. State a reason for your observation.

Report Submission

• You should submit the lab as a group of two. Write down CIDs of each partner.

• You will get a PASS only if all the tasks are properly addressed in the report.

• The reports should be submitted on Canvas, no later than Friday, March 18th, 2022 23:59

6


	Introduction to Ruby 
	The cache state machine in SLICC
	Validating the protocols via the Ruby Random Tester
	Analyzing coherence using multithreaded codes

