Problem 1/ 2018 exam

The two main programming paradigms for parallel computers are shared memory and message passing.
In the course, the parallelization of a matrix multiplication (A - B = C) was used to exemplify both
paradigms. In this problem we want to analyze the performance of both approaches.

Assume that the matrices are square and each consists of N rows and columns. A typical way to
decompose (parallelize) the problem over four cores is shown in the following figure:

core4

A B C
\ | core2 |
X = | core3

This strategy can be used to parallelize the algorithm for both (a) shared memory and (b) message
passing systems. The figure below shows two such systems.

DRAM DRAM

| Bus | Caches

Caches [§] Cores (1) (3)
cores (1)(2) (3)(4) ! -

(a) shared memory (b) message passing

'@H—

The task is to discuss whether the five following statements are correct in the context of the two
paradigms and the two shown systems. You should write 1-2 sentences for each statement and
paradigm (i.e., total 10 answers). Just stating true or false will not be considered sufficient.

Unless otherwise specified, the following assumptions are to be considered:

¢ In both systems the DRAM, Bus and LAN support up to 32 GB/s of bandwidth.

¢ Initially the matrices A and B are stored in the DRAM memory connected to core 1. The
algorithm finalizes when matrix C is stored back in the memory of core 1.

¢ The matrix multiplication is parallelized into multiple threads, each consuming a constant 4 GB/
s of DRAM bandwidth on each core.

¢ The DRAM capacity is not a limiting factor

® The cache coherence protocol used in the shared memory system (a) is MSI-invalidate

Statement A “In order to function correctly, it is necessary to explicitly copy both matrices A and B into
the DRAM memory connected to each core.”

St. B “As long as the (Bus / LAN) interconnect bandwidth is larger than 16 GB/s, the execution time is
independent of the speed of the interconnect (Bus / LAN)”

St. C “The execution time does not depend on the DRAM bandwidth, as long as the bandwidth exceeds
8 GB/s”

St. D “As the matrix size N increases, the speed-up compared to a single core approaches 4x”

L.
t. E “Neither of the two parallelization paradigms requires Operating System support.”

Please justify your answers. Simply answering Correct or False will not be considered not enough.

Problem 1/ 2018 re-exam

The goal of this exercise is to reason about three locking schemes designed to protect a shared data
structures in three different scenarios. The underlying parallel computer is a sequentially consistent
shared memory bus-based multiprocessor that uses the MSI-invalidate protocol to manage coherence
across private caches.

The three scenarios under consideration are:
® Scenario #1: the shared data structure is accessed by a single thread.
e Scenario #2: the lock is accessed by multiple threads but lock contention is very low.
* Scenario #3: the lock is accessed by many threads, and lock contention is high.

The following codes show the implementation of the three locking schemes. In the following assume
that RO=0, and that the lock is taken when its value is 1. The variable holding the lock is lock.

Action/Label Lock #1 Lock #2 Lock #3
Lock: T&S R1, lock LW R1, lock ADDI R1,RO,1
BNEZ R1, Lock BNEZ R1, Lock LL R2, lock
T&S R1, lock SC R1, lock
BNEZ R1, Lock BEQZ R1, Lock
BNEZ R2, Lock
Unlock: SW RO, lock SW RO, lock SW RO, lock

That task is to describe, for each of the three locking schemes:

(a) How well do the locking schemes apply to the three scenarios shown above?

(b) What synchronization hardware needs to be added to the basic bus-based multiprocessor (as
described in Lecture 4) to support the locking schemes?

(c) Assume now that the memory consistency model is a synchronization-based memory consistency
model such as weak ordering. Will the locking schemes still work correctly?

Problem 3 /2017 exam

A traditional mutual exclusion algorithm that does not require explicit synchronization is Dekker's
algorithm. Dekker's algorithm for two threads (T1 and T2) can be described as follows:

INIT A=B=0

T1 T2

A=1 B=1

while (B==1) ; while (A==1);
<critical section> <critical section>
A=0 B=0

We describe loads and stores using the notations:
L*(A) Y : Load by thread x to address A returning value Y
S*(A) Y : Store by thread x to address A writing value Y

Considering only the first two lines of the algorithm, there are four possible outcomes as follows

Outcome 1 Outcome 2

T1 T2 T1 T2
sta)l S?(B) 1 st(a)l S?(B) 1
L' (B)O L7 (A)0 L (B)O L2 (Aa) 1l
Qutcome 3 Outcome 4

T1 T2 T1 T2
st(a)l S?(B) 1 st(a)l S?(B) 1
L' (B)1 L2 (A)0 L' (B)1 L2 (A1

Which of these outcomes are possible under Sequential consistency?

Which of these outcomes are possible under Total Store Order (ie, a relaxed memory model with Store-
Load relaxation and Forwarding Store Buffers)?

Which of these outcomes are possible under Relaxed Memory Ordering?

Problem Message passing:
Consider the following code

Synchronous version:

CODE FOR THREAD TO:
SEND(&BJ[1],sizeof(int),T1,SEND_B1);
RECV(&BJ0],sizeof(int),T1,SEND_A1);
<Unrelated computation;>

Asynchronous version:

CODE FOR THREAD TO:
ASEND(&B[1],sizeof(int),T1,SEND_B1);
<Unrelated computation;>
ARECV(&B[0],sizeof(int),T1,SEND_A1);

SEND
User Area

1. Mem Copy: 200 cycles

2. With DMA: 100 cycles
DMA Programming

OverheaLI: 25 cycles
System Area

CODE FOR THREAD T1:
RECV(&A[0], sizeof(int),TO,SEND_B1);
SEND(&A[1],sizeof(int),TO,SEND_A1);
<Unrelated computation;>

CODE FOR THREAD T1:

ASEND(&A[1],sizeof(int), TO,SEND_A1);

<Unrelated computation;>

ARECV/(&A[0],sizeof(int), TO,SEND_B1);

RECV

User“Area <—|

1. Mem Copy: 200 cycles

2. With DMA: 100 cycles
DMA Programming
Overhead: 25 cycles

1

System Area
1. Mem Copy: 200 cycles 1. Mem Copy: 200 cycles
2. With DMA: 100 cycles 2. With DMA: 100 c.ycles
DMA Programming DMA Programming
Overhead: 25 cycles ! Overhead: 25 cycles
Network Network |
—200-eyeles—
Interface Interface

Assume that the unrelated computation takes 500 cycles. The context switches between user-
level and operating system level costs 100 cycles. Consider the following four scenarios:

(a). No special hardware support. How long does it take to execute the program with synchronous
and asynchronous primitives, respectively?

(b). DMA programmed by O/S without support for user messages. What will be the new execution
time of synchronous and asynchronous version respectively? Give the percentage of performance
improvement with respect to problem(a).

(c). User level messages with O/S support and DMA. In this scenario, the message could be
delivered directly to the user area from the network interface. However, incoming messages are
taken care of by users instead of OS level, which costs context switches. What will be the new

execution time of synchronous and asynchronous version respectively? Give the percentage of
performance improvement with respect to problem(a).

(d). User level messages with a dedicated message processor. This dedicated message
processor is in the NIC hardware. Hence, it comes for free and takes care of the message
delivery. What will be the new execution time of synchronous and asynchronous version
respectively? Give the percentage of performance improvement with respect to problem(a).

