302

Multiprocessor systems

5.7

5.8

5.9

(a) How many cycles does it take to execute the access sequence under MSI vs. MOESI,
assuming the access costs for the protocol transactions to be as in Table 5.6?

(b) Compare the traffic generated by the MSI and MOESI protocols counted in bytes
transferred using the data in Table 5.6, and assuming that B is 32 bytes.

(c) Compare the access cost and traffic of MESI in Problem 5.5 with your findings for
MOEST in this exercise. What makes the MOESI protocol beneficial and what would
remove the performance advantage of MOESI over MESI?

Assume a shared-memory multiprocessor with a number of processor/private cache units
connected by a shared single-transaction bus. Our baseline cache coherence protocol is
an MESI protocol, but we want to investigate what performance gain can be achieved
with adding read snarfing to it according to Section 5.4.4. We want to determine the time
and traffic under the execution of a sequence of accesses with a MESI w/o read snarfing
with a MESI protocol plus read snarfing by using the parameters in Table 5.6. Consider
the following sequence of accesses by the processors: ‘

R1/X, R2/X, R3/X, R4/X, W2/X, R1/X, R3/X, W3/X, R1/1X, R2/X.

(a) How many cycles does it take to execute the access sequence under MESI with and
without read snarfing, assuming the access costs for the protocol transactions to be as

in Table 5.6?

(b) Compare the traffic generated by the MESI protocol with and without read snarfing
using the data in Table 5.6, and assuming that B is 32 bytes.

Assume a shared-memory multiprocessor with a number of processor/private cache units
connected by a shared single-transaction bus. Our baseline cache coherence protocol
is a MESI protocol, but we want to investigate what performance gain can be achieved
by using an update-based coherence protocol according to Section 5.4.4. We want to
determine the time and traffic under the execution of a sequence of accesses with a MESI
and with an update-based protocol by using the parameters in Table 5.6. Consider the
following sequence of accesses by the processors:

R1/X, R2/X, R3/X, R4/X, W1/X, R2/X, R3/X, W2/X, R1/X, R3/X.

(a) How many cycles does it take to execute the access sequence under the invalidation-
based MESI protocol and under the update-based protocol, assuming the access costs
for the protocol transactions to be as in Table 5.6?

(b) Compare the traffic generated by the invalidation-based MESI protocol and the
update-based protocol using the data in Table 5.6, and assuming that B is 32 bytes.

Assume a shared-memory multiprocessor with a number of processor/private cache units
connected by a shared single-transaction bus. Our baseline cache coherence protocol is
a MESI protocol, but we want to investigate what performance gain can be achieved by

5.10

511

Exercises 303

adding migratory sharing detection/optimization to it according to Section 5.4.4. We want
to determine the time and traffic under the execution of a sequence of accesses with a
MESI with and without migratory sharing detection/optimization by using the parameters
in Table 5.6. Consider the following sequence of accesses by the processors, and assume
that the migratory optimization is disabled from the beginning:

RI/X, W1/X, R2/X, W2/X, R3/X, W3/X, R4/X, W4/X.

(a) How many cycles does it take to execute the access sequence under the MEST protocol
with and without migratory detection/optimization, assuming the access costs for the
protocol transactions to be as in Table 5.67

(b) Compare the traffic generated by the MESI protocol with and without migratory
detection/optimization using the data in Table 5.6, and assuming that B is 32 bytes.

As we have seen in Section 5.4.5, the stable states (for example, states M, S, and I in
an MSI protocol) are not enough to resolve data races. The transient states added to the
MSI protocol in Figure 5.15 deal with state transitions from state S to state M. There are;
however, other data races that can occur. Add the transient states and the accompanying
state transitions to deal correctly with transitions from state I to state M.

Consider a shared-memory multiprocessor that consists of three processor/cache units
and where cache coherence is maintained by an MSI protocol. Table 5.7 shows the access
sequence taken by three processors to the same block but to different variables (A, B, O)
in that block.

Table 5.7

Processor 1 Processor 2 Processor 3

R

3 Rc
4 Wy

5 Rc
6 Ra

7L Wg




304 Multiprocessor systems

5.12

5.13

(a) Classify the misses with respect to cold, true sharing, and false sharing misses.
(b) Which of the misses could be ignored and still guarantee that the execution is correct?

(c) Determine the fraction of essential traffic resulting from the access sequence using
the parameters in Table 5.6, and assuming that the block size is 32 bytes.

Consider a shared-memory multiprocessor that consists of three processor/cache units
and where cache coherence is maintained by an MSI protocol. The private caches are
direct-mapped. Table 5.8 shows the access sequence taken by three processors to four
variables (A, B, C, and D), where A, B, and C belong to the same block and D belongs to
a different block. The two blocks map to the same entry in the caches, and the cache is full

initially.

Table 5.8

Processor 1 Processor 2 Processor 3

1. Ry

3 Rc
4 Wy

S Rp
6 Rp

7 Ws

9 Rp

(a) Classify the misses with respect to cold, replacement, true sharing, and false sharing

misses.

(b) Which of the misses could be ignored and still guarantee that the execution is correct?

Section 5.4.7 discusses the important notion of translation lookaside buffer (TLB)
consistency. We want to determine the time it takes to make all TLBs in a shared-memory
multiprocessor system consistent when the virtual-to-physical page mapping has changed.
Assume that there are four TLBs that have a mapping to the page. Further, assume that
it takes 1000 cycles to invoke the page-fault handler, 100 cycles to send an interprocessor
interrupt, 200 cycles to invoke a software handler on each processor to shoot down a TLB
entry, 20 cycles to invalidate possible block entries for the physical page in each cache,
and 100 cycles for each processor to send back an acknowledgment to the processor that

5.14

Exercises 305

executes the page-fault handler to notify it that the TLB entries and all its traces in the
caches are removed. How long does it take to carry out the TLB shootdown operation?

We consider a scalable implementation of a shared-memory multiprocessor using a set
of nodes that each contains a processor, a private cache, and a portion of the memory, as
shown in Figure 5.19. Cache coherence is maintained using a directory cache protocol,
where the directory uses a presence-flag vector associated with each memory block to
keep track of which nodes have copies of that block and with the protocol according to
Figure 5.20. The time it takes to process a directory request at the home and a remote
node is 50 cycles. Further, the latency and traffic of all consistency-induced requests and
responses are detailed in Table 5.9, and the block size is 32 bytes.

Table 5.9 Timing and traffic parameters for protocol actions
B is the block size

Request type Time to carry out protocol action Traffic
Read hit 1 cycle N/A

Write hit 1 cycle N/A
BusRd 20 cycles 6 bytes
RemRd 20 cycles 6 bytes
RdAck 40 cycles 6 bytes
Flush 100 cycles 6 bytes + B
InvRq 20 cycles 6 bytes
InvAck 20 cycles 6 bytes
UpgrAck 20 cycles 6 bytes

(a) Determine the number of cycles needed to handle a cache miss when the home node
is the same as the requesting node and the memory copy is clean. Also determine the
amount of traffic (in bytes) caused by the coherence transaction.

(b) Determine the number of cycles needed to handle a cache miss when the home node
is the same as the requesting node and the memory copy is dirty. Also determine the
amount of traffic (in bytes) caused by the coherence transaction.

(c) Determine the number of cycles needed to handle a cache miss when the home node
is different from the requesting’node and the memory copy is clean. Also determine
the amount of traffic (in bytes) caused by the coherence transaction.

(d) Determine the number of cycles needed to handle a cache miss when the home node
is different from the requesting node, the memory copy is dirty, and the remote node



306 Multiprocessor systems

is the same as the home node. Also determine the amount of traffic (in bytes) caused

by the coherence transaction.

(e) Determine the number of cycles needed to handle a cache miss when the home node
is different from the requesting node, the memory copy is dirty, and the remote node
is different from the home node (and of course different from the requesting node).
Also determine the amount of traffic (in bytes) caused by the coherence transaction.

5.15 Now consider instead the directory-based protocol of Figure 5.21, but use the latency and
traffic parameters from Table 5.9 and assume that the block size is 32 bytes.

(a) Determine the number of cycles needed to handle a cache miss when the home node
is the same as the requesting node and the memory copy is clean. Also determine the
amount of traffic (in bytes) caused by the coherence transaction.

(b) Determine the number of cycles needed to handle a cache miss when the home node
is the same as the requesting node and the memory copy is dirty. Also determine the
amount of traffic (in bytes) caused by the coherence transaction.

(c) Determine the number of cycles needed to handle a cache miss when the home node
is different from the requesting node and the memory copy is clean. Also determine
the amount of traffic (in bytes) caused by the coherence transaction.

(d) Determine the number of cycles needed to handle a cache miss when the home node
is different from the requesting node, the memory copy is dirty, and the remote node
is the same as the home node. Also determine the amount of traffic (in bytes) caused

by the coherence transaction.

(e) Determine the number of cycles needed to handle a cache miss when the home node
is different from the requesting node, the memory copy is dirty, and the remote node
is different from the home node (and of course different from the requesting node).
Also determine the amount of traffic (in bytes) caused by the coherence transaction.

(f) In what cases do the latency and traffic results differ from those in Exercise 5.147.

5.16 We consider a scalable implementation of a shared-memory multiprocessor using a set
of nodes that each contains a processor, a private cache, and a portion of the memory,
as shown in Figure 5.19. Cache coherence is maintained using a directory protocol
according to Figure 5.20, where the directory uses a presence-flag vector associated with
each memory block to keep track of which nodes have copies of that block. The time it
takes to process a directory request at the home and a remote node is 50 cycles. Further,
the latency and traffic of all consistency-induced requests and responses are detailed in

Table 5.9, and the block size is 32 bytes.

(a) Determine the number of cycles needed to handle the coherence transaction resulting
from a write to a block in state Shared when the home node is the same as the

Exercises 307

requesting node and the memory copy is the only copy. Also determine the amount
of traffic (in bytes) caused by the coherence transaction.

- (b) Determine the number of cycles needed to handle the coherence transaction resulting
from a write to a block in state Shared when the home node is the same as the
requesting node and the number of sharers is four. Also determine the amount of
traffic (in bytes) caused by the coherence transaction.

(c) Determine the number of cycles needed to handle the coherence transaction resulting
from a write to a block in state Shared when the home node is different from the
requesting node and the memory copy is the only copy. Also determine the amount
of traffic (in bytes) caused by the coherence transaction.

(d) Determine the number of cycles needed to handle the coherence transaction resulting
from a write to a block in state Invalid when the home node is different from the
requesting node, the memory copy is dirty, and the remote node is the same as the
home node. Also determine the amount of traffic (in bytes) caused by the coherence
transaction.

(e) Determine the number of cycles needed to handle the coherence transaction resulting
from a write to a block in state Invalid when the home node is different from the
requesting node, the memory copy is dirty, and the remote node is different from the
home node. Also determine the amount of traffic (in bytes) caused by the coherence
transaction.

5.17 In the design exploration of a new chip-multiprocessor system that is designéd to use 128
processors, the architecture team has decided to use a hierarchical organization according
to Figure 5.23. Each cluster consists of eight processors with their private caches. Each
cluster also has a shared second-level cache. Different alternatives to maintain coherence
inside and across the clusters are contemplated. The block size is 32 bytes. Determine
the overhead in maintaining directory information, regarding the second-level cache as
well as memory for the following alternatives:

(a) a presence-flag-based directory cache protocol inside each cluster and across clusters;

(b) a limited-pointer directory cache protocol with two pointers inside each cluster and
a coarse-vector directory protocol that partitions the clusters into groups of four
clusters in each across clusters;

(c) a cache-centric directory cache protocol according to Figure 5.22 inside each cluster
and a limited-pointer scheme with four pointers across clusters.

5.18 Consider a cache-centric directory cache protocol according to Figure 5.22. We want
to determine the time it takes to carry out an invalidation if N copies are maintained.
Assume that a request and a response take K cycles. What would be the number of cycles
under the same assumptions for a presence-flag-based directory cache protocol?









