Lecture 7

Very Large Instruction Word (VLIW)

 VLIW - architectures and scheduling techniques (Ch. 3.5)
v VLIW architecture (3.5.2)
v VLIW and loop unrolling (3.5.3)
v VLIW and software pipelining (3.5.4)
v Non-cyclic VLIW scheduling (3.5.5)
v’ Predicated instructions (3.5.6)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Static Scheduling:
Revisiting Pipeline Design
(Ch 3.5.2)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
Duality of Dynamic and Static

Techniques

Instruction scheduling: Compiler moves instructions.
Same issues: data-flow and exception model

Software register renaming for WAW and WAR hazards
Memory disambiguation must be done by the compiler
Branch prediction scheme: static prediction

Speculation: speculate based on static branch prediction.
Test dynamically and execute patch-up/recovery code if the
speculation fails

Sometimes there is no need to speculate because the
compiler knows the structure of the program (e.g. loops)

- CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW (Very-Long Instruction Word)

Architectures

PC: LD/ST FPop1l INT/BR

WITH OR WITHOUT FORWARDING

* Pipeline is simple with no hazard detection

« Compiler schedules instructions in “packets” or long
instruction words (two memory, two floating-point and an
integer operation in the example)

 Forwarding helps but is not needed

- CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Program Example

INSTR. PRODUCING RESULT JINSTR. USING RESULTILATENCY
FP ALU op FP ALU op 2
LOAD DOUBLE FP ALU op 1
STORE DOUBLE LOAD DOUBLE 0
INT LOAD INT ALU op/Branch 1
BRANCH DELAY SLOT N/A 2

CONSIDER THE FOLLOWING PROGRAM:
FOR (i = 1000: i > O: i = i-1)
x[i] = x[i] + s
which is compiled into:
Loop: L.D FO, O(R1)
ADD.D F4, FO, F2

S.D F4, O(R1)
SUBI R1,R1,#8
BNE R1,R2, Loop
NOOP

Compiler scheduling

« Local (inside a basic block) or global (across basic blocks)

« Cyclic (loop unrolling or software pipelining) or non-cyclic
(trace scheduling)

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Loop Unrolling for VLIW
(Ch 3.5.3)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
VLIW - Loop Unrolling

UNROLL LOOP 7 TIMES--VLIW PROGRAM:
Clock MemOpl MemOp2 FPOp1 FPOp2 Int/BROp

1 LD F0,0R1) | L.D F6,-8(R1)
2 | LDF10,-16@R1) | L.D F14,-24(R1)
2 n e o e e | e b e | e e
I— 4 |LDF6-48R1) | UNUSED | ADD.D F12,F10,F2 | ADD.D F16,F14,F2 UNUSED |
— DByl Oyl Syttt DDl liddelid 2
6 S.D 0(R1),F4 S.D -8(R1),F8 | ADD.D F28,F26,F2 SUBI R1,R1,#56
7 S.D 40(R1),F12 | S.D 32(R1),F16 BNE R1,R2,Clock1
8 S.D 24(R1),F20 | S.D 16(R1),F24
9 S.D 8(R1),F28

Issues with loop unrolling
—> « (Code size
—> « Empty slots
—> + Register pressure
— + Binary compatibility
—> « Limited scope for ILP exploitation

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Quiz 7.1

UNROLL LOOP 7 TIMES--VYLIW PROGRAM:

Clock MemOpl MemOp2 FPOp1 FPOp2 Int/BROp
1 L.D F0,0R1) L.D F6,-8(R1)
2 L.D F10,-16(R1) | L.D F14,-24(R1)
3 L.D F18,-32(R1) | L.D F22,-40(R1) | ADD.D F4,F0,F2 ADD.D F8,F6,F2
4 L.D F26,-48(R1) ADD.D F12,F10,F2 | ADD.D F16,F14,F2
5 ADD.D F20,F18,F2 | ADD.D F24,F22,F2
6 S.D 0(R1),F4 S.D -8(R1),F8§ | ADD.D F28,F26,F2 SUBI R1,R1,#56
7 S.D 40(R1),F12 | S.D 32(R1),F16 BNE R1,R2,Clock1
8 S.D 24(R1),F20 | S.D 16(R1),F24
9 S.D 8(R1),F28

Which of the following statements are correct assuming
that all instructions take a single cycle to execute

a) IPC=5
b) IPC =23/9
"he number of unused slots is 21

. CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Software Pipelining for VLIW
(Ch 3.5.4)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03

1 LOOP ITERATION PER CLOCK

. CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6

INST1 01
INST2 . 01 .
INST3 02 < 01 o
INST4
INSTS
INST6
INST7 03 . 02 .
INSTS 03 02

Time W

- CHALMERS

KERNEL CODE:(WE HAVE 5 ITERATIONS BETWEEN LD AND SD

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6
INST1 o1

INST2 == 01
INST3 02 = 01
INST4
INSTS
INST6
INST7 = - =

. INSTS 03 e =z 02
Time e

v KERNEL CODE:(WE HAVE 5 ITERATIONS BETWEEN LD AND SD

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6
INST1 01
INST2 - 01 .
INST3 02 - 01 o

INST4
INSTS
INST6
INST7 03 -- = 02 -

Tl me INSTS 03 -- -- 02

v KERNEL CODE:(WE HAVE 5 ITERATIONS BETWEEN LD AND SD
Clock MemOp1 MemOp2 FPOp1 FPOp2 Int/BROp

1 L.D F0,0(R1) S.D 40(R1),F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01

ADD.D F4,FO,F2 02

S.D O(R1),F4 03

1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6

INST1
INST2
INST3
INST4
INSTS
INST6
INST7
INSTS

Time W

Int/BROp
1 L.D F0,0(R1) S.D 40(R1),F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01

ADD.D F4,FO,F2 02

S.D O(R1),F4 03

1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6

INST1
INST2
INST3
INST4
INSTS
INST6
INST7
INSTS

Time W

Int/BROp
1 L.D F0,0(R1) S.I§ 40(Rp), F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6
INST1 01
INST2 - 01 .
INST3 02 - 01 o

Time W

Int/BROp
1 L.D F0,0(R1) S.I§ 40(Rp), F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

Data hazards
 RAW hazards are handled correctly
 For WAR hazards, use rotating registers (register renaming technique)

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
VLIW — Rotating Registers

P15 P15

1 St

P12 13

4 a

E RR6 FQ

p7 RR4 - Pg

Fg RR3 —p Eg

b3 RRO-- b3

P2 P2

P1 Pl

PO PO

iteration 2(rrb=2) iteration 3(rrb=3)

LD F0,0(R1)
ADD F4,FO,F2
SD F4,0(R1)

* Two iterations between LD and ADD; RR6 and RR4 point to same
physical register

* Three iterations between ADD and SD; RR3 and RRO point to same
register

. CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

P15
P%4 %g P}4
Flg P12 Fl
P11 P11 P11
P10 P10 P10
P9 P9 RR6 P9
P8 RRE —»- P8 P8
RR6 6 :E;' : P6 RR3 b~ P
RR4 —p- P4 i F4
RR3 —p P3 P3 > P3
P2 RRO —p»- P2 P2
P1 P1
PO PO
iterdiion 0(r'rb iteration 1(r-rb 1) iteration 2(rrb=2) iteration 3(rrb=3)
L RRB [

Let RRG point to physical register X in iteration Y. There are 18
physical registers. Which of the following statements are correct?

a) RRO points to X after Y+13 iterations
b) RRS5 points to X after Y+17 iterations
c) RRO points to X after Y+6 iterations
d) RRS5 points to X after Y+1 iterations

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

I
VLIW - Slot Conflicts

* Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
 Two LD/ST per iterations so two instructions for kernel

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

VLIW - Slot Conflicts

* Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
 Two LD/ST per iterations so two instructions for kernel

ITEL ITE2 ITE3 ITE4
INST1 o1

INST2 —

INST3 02 o1 KERNE
INST4 - -

INST5 - 02 o1

INST6 03 ~ ~

INST7 = 02 o1
INSTS 03

CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

VLIW - Slot Conflicts

* Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
 Two LD/ST per iterations so two instructions for kernel

ITEL ITE2 ITE3 ITE4
INST1 o1

INST2

INST3 02 o1 KERNE
INST4 -

INST5 - 02 o1

INST6 03

INST7 = 02 o1
INSTS 03

KERNEL CODE: STORE IS TWO ITERATIONS BEHIND THE LOAD; SUB MOVED UP

Clock MemOpl FPOp1 Int/BROp
1 L.D F0,0(R1) ADD.D F4,F0,F2 SUBR1
2 S.D 24(R1),F4 NOOP LOOPBR

O

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
VLIW-Loop Carried Dependencies 1(3)

Loop carried dependency = dependency across loop iterations

for (i = 0; i < N; i++)
{Ali+2] = A[i] +1;
B[i] = A[i+2]+1;}

Dependency spans two loop iterations:

Loop: L.D FO, O(R2) o1
ADD.D F3, FO, F1 02
ADD.D F4, F3, F1 O3
S.D F3, -16(R2) 04
S.D F4, O(R3) 05
SUBI R2, R2, 8
SUBI R3, R3, 8

BNE R2, R4, Loop

Dependency is through memory; rotating registers do not help

Let’s look at the data dependency graph!

- CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Loop Carried Dependencies

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

VLIW-Loop Carried Dependencies 2(3)

(iteration, min cycles to resolve RAW)

Loop: L.D FO, O(R2) 01 ol
ADD.D F3, FO, F1 02 (0.2)

ADD.D F4, F3, F1 03 (2.1)

S.D F3, -16(R2) 04

5.D F4, O(R3) 05

SUBI R2, R2, 8 (0,3)

SUBI R3, R3, 8 ’

BNE R2, R4, Loop 0.3) e
e 0.3)

* The cycle in the graph takes 6 cycles and spans two
iterations; 3 cycles at least per iteration

- CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

VLIW-Loop Carried Dependencies 3(3)

ITE1 ITE2 ITE3 ITE4 ITES
PROLOGUE
NEL
[OGUE
INST10
INST11 - - -
INST12 — 05 03, 04 02
INST13 - - 01
INST14
INST15 N 05 AA 03, 04 02

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

VLIW-Loop Carried Dependencies 3(3)

ITE3 ITE4 ITES
PROLOGUE

KERNEL

INST7
INSTS
INST9 EPIL OGUE
INST10
INST11 - - -
INST12 05 03, 04 02
INST13 - - 01
INST14
INST15 N 05 AA 03, 04 02

KERNEL (USING 2 LD/SD, 2 FP AND 1 BR/INT SLOTS)

Clock MemOpl MemOp2 FPOp1 FPOp2 Int/BROp
1 NOOP L.D F0,0R2) NOOP NOOP SUB R2
2 NOOP NOOP NOOP NOOP SUB R3
3 S.D F3,-16(R2) S.D F4,0(R3) ADD.D F3,F0,F1 ADD.D F4,F3,F1 | LOOPBR R2,R4,CLK1

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

.
Quiz 7.3

ITE1 ITE2 ITE3 ITE4 ITES
INST1 PROLOGUE
INST2
INST3
INST4
INSTS
INST6
INST7
INSTS
INST9
INST10
INST11 --
INST12 05 03, 04 02
INST13 -- - 01
INST14
INST15 N 05 A 03, 04 02

NEL

| OGUE

How many clocks does it take to execute all instructions in each of
the original iterations?

a) 3
b) 6
c) 9

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Non-Cyclic Scheduling
(Ch 3.5.5)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Non-Cyclic Scheduling

* Most likely path (A, B, C in the
example) is established through
profiling

« This path (A, B, C), called frace, forms
a larger basic block of code for

o SPLIT) _ _
o instruction scheduling
1 Instruction scheduling respects RAW
8 5 dependencies but can ignore control
dependencies

misspeculation so that misspeculated
trace (A, D, C) is correctly executed.

+‘—JZEN'I Must fix the execution on branch
C
Y

CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Most likely trace

Y

A

<>

1

Example

Original code

LW R4,0(R1)

ADDI R6,R4 #1
/* block A*/

BEQ R5,R4,LAB

LW R6,0(R2)

o SPLIT /*block B*/

[*block D* empty/
LAB: SW R6,0(R1)

B

D

o
v

Trace schedule

Optimized trace

LW R4,0(R1)
ADDI R6,R4 ,#1
LW R6,0(R2)
BEQ R5,R4,LAB1
LAB2: SW R6,0(R1)

[* jump to second trace if
prediction is wrong */

LAB1: ADDI R6,R4,#1
J LAB2

LW R4,0(R1)
LW R6,0(R2)
BEQ R5,R4,LAB1

LAB2: SW R6,0(R1)
[* jump to second trace if
prediction is wrong */

LAB1

: ADDI R6,R4,#1

J LAB2

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Quiz 7.4

Original code Trace schedule Optimized trace
LW R4,0(R1) LW R4,0(R1) LW R4,0(R1)
ADDI R6,R4 #1 ADDI R6,R4 #1 LW R6,0(R2)

/* block A*/ LW R6,0(R2) BEQ R5,R4,LAB1
BEQ R5,R4,LAB BEQ R5,R4,LAB1 LAB2: SW R6,0(R1)
LW R6,0(R2) LAB2: SW R6,0(R1) /* jump to second trace if

[*block B*/ /* jump to second trace if prediction is wrong */

[*block D* empty/ prediction is wrong */

LAB: SW R6,0(R1) LAB1: ADDI R6,R4,#1
LAB1: ADDI R6,R4,#1 J LAB2
J LAB2

Which of the following statements are correct?

a)The “non-taken” trace consists of 1 more instruction in the original
code compared to the optimized trace

b)The “non-taken” trace consists of the same number of instructions in
the original code and the optimized trace

c)The “taken” optimized trace executes two more instructions than in
the original code

______________________________________CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Predicated Execution
(Ch 3.5.6)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Predicated Instructions

« Trace scheduling works well if branches are highly biased (one trace
is considerably more likely than another)

Predicated instruction = conditionally executed instruction
Example 1) CLWZ R1,0(R2),R3; if (R3)==0 then LW R1,0(R2)

« Only executed if condition is met; other No Operation
» Predication can be applied to any instruction

* Needs an additional operand — a predicate register
* Longer instruction not a problem in VLIW

. CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Example — Predicated Execution

Original code Predicated code
LW R4,0(R1) LW R4,0(R1)
ADDI R6,R4,#1 ADDI R6,R4,#1
BEQ R5,R4,LAB SUB R3,R5,R4
LW R6,0(R2) CLWNZ R6,0(R2),R3
LAB: SW R6,0(R1) SW R6,0(R1)

a 0 SPLIT

B D

o
v

CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
What you should know by nhow

 VLIW architectures
— Parallel simple pipelines
— No support for dynamic scheduling
— Assumes compiler does static scheduling

 VLIW and loop unrolling

— Challenge is to fill operation slots
 VLIW and software pipelining

— Renaming using rotating registers

— Impact of slot conflicts

— Impact of loop-carried dependencies
 Trace scheduling

* Predicated (conditional) instructions

. CHALMERS

Chalmers University

MichieliEhed disidisr il natidvanaraeant Bed HenStemsti@ 20822019

