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Very Large Instruction Word (VLIW)
• VLIW – architectures and scheduling techniques (Ch. 3.5)

ü VLIW architecture (3.5.2)
ü VLIW and loop unrolling (3.5.3)
ü VLIW and software pipelining (3.5.4)
ü Non-cyclic VLIW scheduling (3.5.5)
ü Predicated instructions (3.5.6)
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Static Scheduling: 
Revisiting Pipeline Design

(Ch 3.5.2)
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Duality of Dynamic and Static 
Techniques

• Instruction scheduling: Compiler moves instructions.        
Same issues: data-flow and exception model

• Software register renaming for WAW and WAR hazards
• Memory disambiguation must be done by the compiler
• Branch prediction scheme: static prediction
• Speculation: speculate based on static branch prediction. 

Test dynamically and execute patch-up/recovery code if the 
speculation fails

Sometimes there is no need to speculate because the 
compiler knows the structure of the program (e.g. loops)
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VLIW (Very-Long Instruction Word)
Architectures 

• Pipeline is simple with no hazard detection
• Compiler schedules instructions in “packets” or long 

instruction words (two memory, two floating-point and an 
integer operation in the example)

• Forwarding helps but is not needed
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Program Example

Compiler scheduling 
• Local (inside a basic block) or global (across basic blocks)
• Cyclic (loop unrolling or software pipelining) or non-cyclic

(trace scheduling)
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Loop Unrolling for VLIW
(Ch 3.5.3)
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VLIW – Loop Unrolling

UNUSED UNUSED

Issues with loop unrolling
• Code size
• Empty slots
• Register pressure
• Binary compatibility
• Limited scope for ILP exploitation
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Quiz 7.1

Which of the following statements are correct assuming 
that all instructions take a single cycle to execute

a) IPC = 5
b) IPC = 23/9
c) The number of unused slots is 21



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Software Pipelining for VLIW
(Ch 3.5.4)
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VLIW – Software Pipelining
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VLIW – Software Pipelining

Time
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VLIW – Software Pipelining
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VLIW – Software Pipelining

Time

Data hazards
• RAW hazards are handled correctly
• For WAR hazards, use rotating registers (register renaming technique)
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VLIW – Rotating Registers

LD F0,0(R1)
ADD F4,F0,F2
SD F4,0(R1)

• Two iterations between LD and ADD; RR6 and RR4 point to same 
physical register

• Three iterations between ADD and SD; RR3 and RR0 point to same 
register
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Quiz 7.2

Let RR6 point to physical register X in iteration Y.  There are 18 
physical registers. Which of the following statements are correct?

a) RR0 points to X after Y+13 iterations
b) RR5 points to X after Y+17 iterations
c) RR0 points to X after Y+6 iterations
d) RR5 points to X after Y+1 iterations
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VLIW – Slot Conflicts

With rotating registers

• Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
• Two LD/ST per iterations so two instructions for kernel
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VLIW – Slot Conflicts

With rotating registers

• Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
• Two LD/ST per iterations so two instructions for kernel
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VLIW–Loop Carried Dependencies 1(3)
Loop carried dependency = dependency across loop iterations

Dependency spans two loop iterations:

Dependency is through memory; rotating registers do not help

Let’s look at the data dependency graph!
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Loop Carried Dependencies
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VLIW–Loop Carried Dependencies 2(3)
(iteration, min cycles to resolve RAW)

• The cycle in the graph takes 6 cycles and spans two 
iterations; 3 cycles at least per iteration
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VLIW–Loop Carried Dependencies 3(3)
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VLIW–Loop Carried Dependencies 3(3)
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Quiz 7.3

How many clocks does it take to execute all instructions in each of
the original iterations?
a) 3
b) 6
c) 9
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Non-Cyclic Scheduling
(Ch 3.5.5) 
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Non-Cyclic Scheduling

S• Most likely path (A, B, C in the 
example) is established through 
profiling

• This path (A, B, C), called trace, forms 
a larger basic block of code for 
instruction scheduling

• Instruction scheduling respects RAW 
dependencies but can ignore control 
dependencies

• Must fix the execution on branch 
misspeculation so that misspeculated
trace (A, D, C) is correctly executed.
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Example

LW R4,0(R1)
LW R6,0(R2)
BEQ R5,R4,LAB1

LAB2: SW R6,0(R1)
/* jump to second trace if 
prediction is wrong */
….
LAB1: ADDI R6,R4,#1

J LAB2

LW R4,0(R1)
ADDI R6,R4,#1

/* block A*/
BEQ R5,R4,LAB
LW R6,0(R2)

/*block B*/
/*block D* empty/
LAB: SW R6,0(R1)

LW R4,0(R1)
ADDI R6,R4,#1
LW R6,0(R2)
BEQ R5,R4,LAB1

LAB2: SW R6,0(R1)
/* jump to second trace if 
prediction is wrong */
….
LAB1: ADDI R6,R4,#1

J LAB2

Most likely trace

Original code Trace schedule Optimized trace
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Quiz 7.4
LW R4,0(R1)
LW R6,0(R2)
BEQ R5,R4,LAB1

LAB2: SW R6,0(R1)
/* jump to second trace if 
prediction is wrong */
….
LAB1: ADDI R6,R4,#1

J LAB2

LW R4,0(R1)
ADDI R6,R4,#1

/* block A*/
BEQ R5,R4,LAB
LW R6,0(R2)

/*block B*/
/*block D* empty/
LAB: SW R6,0(R1)

LW R4,0(R1)
ADDI R6,R4,#1
LW R6,0(R2)
BEQ R5,R4,LAB1

LAB2: SW R6,0(R1)
/* jump to second trace if 
prediction is wrong */
….
LAB1: ADDI R6,R4,#1

J LAB2

Original code Trace schedule Optimized trace

Which of the following statements are correct?
a)The “non-taken” trace consists of 1 more instruction in the original 
code compared to the optimized trace
b)The “non-taken” trace consists of the same number of instructions in 
the original code and the optimized trace
c)The “taken” optimized trace executes two more instructions than in 
the original code
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Predicated Execution
(Ch 3.5.6)
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Predicated Instructions
• Trace scheduling works well if branches are highly biased (one trace 

is considerably more likely than another)

Predicated instruction = conditionally executed instruction

Example 1) CLWZ R1,0(R2),R3;   if (R3)==0 then LW R1,0(R2)

• Only executed if condition is met; other No Operation
• Predication can be applied to any instruction
• Needs an additional operand – a predicate register
• Longer instruction not a problem in VLIW



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Example – Predicated Execution

LW R4,0(R1)
ADDI R6,R4,#1
BEQ R5,R4,LAB
LW R6,0(R2)

LAB: SW R6,0(R1)

Original code Predicated code

LW R4,0(R1)
ADDI R6,R4,#1
SUB R3,R5,R4
CLWNZ R6,0(R2),R3
SW R6,0(R1)
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What you should know by now
• VLIW architectures

– Parallel simple pipelines
– No support for dynamic scheduling
– Assumes compiler does static scheduling

• VLIW and loop unrolling
– Challenge is to fill operation slots

• VLIW and software pipelining
– Renaming using rotating registers
– Impact of slot conflicts
– Impact of loop-carried dependencies

• Trace scheduling
• Predicated (conditional) instructions
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