Lecture 7

Very Large Instruction Word (VLIW)

 VLIW - architectures and scheduling techniques (Ch. 3.5)
v VLIW architecture (3.5.2)
v VLIW and loop unrolling (3.5.3)
v VLIW and software pipelining (3.5.4)
v Non-cyclic VLIW scheduling (3.5.5)
v’ Predicated instructions (3.5.6)

. CHALMERS

Chalmers Ui

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

Static Scheduling:
Revisiting Pipeline Design

. CHALMERS

Chalmers Ui

-]
Duality of Dynamic and Static

Techniques

Instruction scheduling: Compiler moves instructions.
Same issues: data-flow and exception model

Software register renaming for WAW and WAR hazards
Memory disambiguation must be done by the compiler
Branch prediction scheme: static prediction

Speculation: speculate based on static branch prediction.
Test dynamically and execute patch-up/recovery code if the
speculation fails

Sometimes there is no need to speculate because the
compiler knows the structure of the program (e.g. loops)

- CHALMERS

halmers Ul

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW (Very-Long Instruction Word)

Architectures

PC: LD/ST FPop1l INT/BR

WITH OR WITHOUT FORWARDING

* Pipeline is simple with no hazard detection

« Compiler schedules instructions in “packets” or long instruction
words (two memory, two floating-point and an integer
operation in the example)

* Forwarding helps but is not needed

- CHALMERS

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-
Program Example

PROGRAM EXAMPLE

INSTR. PRODUCING RESULT [INSTR. USING RESULTILATENCY
FP ALU op FP ALU op 2
LOAD DOUBLE FP ALU op 1
STORE DOUBLE LOAD DOUBLE o)
INT LOAD INT ALU op/Branch 1
BRANCH DELAY SLOT N/A 2
CONSIDER THE FOLLOWING PROGRAM: K \
FOR (i = 1000; i > O; i = i-1) .
x[i] = x[i] + = Question:
which is compiled into:
Loop: L.D FO, O(R1) _HOW _WOUId each
ADD.D F4, FO, F2 iteration be
S.D F4, O(R1)
SUBT R1 R1.#8 scheduled on the
BNE R1,R2, Loop .
NOOP \VLIW architecture? /

Compiler scheduling
« Local (inside a basic block) or global (across basic blocks)
« Cyclic (loop unrolling or software pipelining) or non-cyclic
(trace scheduling)
. CUHALIIERS |

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

Loop Unrolling for VLIW

. CHALMERS

Chalmers Ui

|
Unroll Loop Seven Times

LOOP: LD FO0,0(R1) ’ Question: O
ADD.D F4,FO,F2 How would the
unrolled loop be
288[7 :1“;(?;2 scheduled on the
N VLIW architecture?
_ J

BNE R1,R2, LOOP

. CHALMERS

Chalmers University

-
VLIW - Loop Unrolling

UNROLL LOOP 7 TIMES--VYLIW PROGRAM:

Clock MemOpl MemOp2 FPOp1 FPOp2 Int/BROp
1 L.D F0,0(R1) L.D F6,-8(R1)
2 L.D F10,-16(R1) | L.D F14,-24(R1)
3 L.D F18,-32(R1) | L.D F22,-40(R1) | ADD.D F4,F0,F2 ADD.D F8,F6,F2
4 L.D F26,-48(R1) ADD.D F12,F10,F2 | ADD.D F16,F14,F2
5 ADD.D F20,F18,F2 | ADD.D F24,F22,F2
6 S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 SUBI R1,R1,#56
7 S.D 40(R1),F12 | S.D 32(R1),F16 BNE R1,R2,Clock1
8 S.D 24(R1),F20 | S.D 16(R1),F24
9 S.D 8(R1),F28

Issues with loop unrolling

« Code size

 Empty slots

» Register pressure

« Binary compatibility

« Limited scope for ILP exploitation

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-
VLIW - Loop Unrolling

UNROLL LOOP 7 TIMES--VLIW PROGRAM:
Clock MemOpl MemOp2 FPOp1 FPOp2 Int/BROp

1 LD F0,0R1) | L.D F6,-8(R1)
2 | LDF10,-16@R1) | L.D F14,-24(R1)
2 n e o e e | e b e | e e
I— 4 |LDF6-48R1) | UNUSED | ADD.D F12,F10,F2 | ADD.D F16,F14,F2 UNUSED |
— DByl Oyl Syttt DDl liddelid 2
6 S.D 0(R1),F4 S.D -8(R1),F8 | ADD.D F28,F26,F2 SUBI R1,R1,#56
7 S.D 40(R1),F12 | S.D 32(R1),F16 BNE R1,R2,Clock1
8 S.D 24(R1),F20 | S.D 16(R1),F24
9 S.D 8(R1),F28

Issues with loop unrolling

« Code size

 Empty slots

» Register pressure

« Binary compatibility

« Limited scope for ILP exploitation

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

Software Pipelining for VLIW

. CHALMERS

Chalmers Ui

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03

1 LOOP ITERATION PER CLOCK

. CHALMERS

halmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6

INST1 01
INST2 . 01 .
INST3 02 < 01 o
INST4
INSTS
INST6
INST7 03 . 02 .
INSTS 03 02

Time W

- CHALMERS

KERNEL CODE:(WE HAVE 5 ITERATIONS BETWEEN LD AND SD

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6
INST1 o1

INST2 == 01
INST3 02 = 01
INST4
INSTS
INST6
INST7 = - =

. INSTS 03 e =z 02
Time e

v KERNEL CODE:(WE HAVE 5 ITERATIONS BETWEEN LD AND SD

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6
INST1 01
INST2 - 01 .
INST3 02 - 01 o

Prolog

INST4

INSTS

INST6

INST7 03 - - 02 -
. INSTS 03 -- -- 02

Time W
KERNEL CODE:(WE HAVE 5 ITERATIONS BETWEEN LD AND SD
Clock MemOp1 MemOp2 FPOp1 FPOp2 Int/BROp
1 L.D F0,0(R1) S.D 40(R1),F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1
Question:

What instructions are contained in the epilog?

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01

ADD.D F4,FO,F2 02

S.D O(R1),F4 03

1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6

INST1
INST2
INST3
INST4
INSTS
INST6
INST7
INSTS

Time W

Int/BROp
1 L.D F0,0(R1) S.D 40(R1),F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03

1 LOOP ITERATION PER CLOCK

ITE1 ITE2 ITE3 ITE4 ITES ITE6

Time W

Int/BROp
1 L.D F0,0(R1) S.I§ 40(Rp), F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-]
VLIW - Software Pipelining

Loop: L.D FO,0(R1) 01
ADD.D F4,FO,F2 02
S.D O(R1),F4 03
1 LOOP ITERATION PER CLOCK
ITE1 ITE2 ITE3 ITE4 ITES ITE6
INST1 01
INST2 - 01 .
INST3 02 - 01 o

Time W

Int/BROp
1 L.D F0,0(R1) S.I§ 40(Rp), F4 ADD.D F4,F0,F2 NOOP LOOPBR R1,R2,CLK1

Data hazards
 RAW hazards are handled correctly
 For WAR hazards, use rotating registers (register renaming technique)

- CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

-
— Rotating Registers

P15 P15 P15
P14 }.g P}4
3 P12 13
1 ¥ i
i ke 8
P p7 RR4—p P7
i 26 e :
_' P RRO - pg
’ P2 P2
' P1 P1
PO PO
iteration 2(rrb=2) iteration 3(rrb=3)

LD FO,0(R1)

ADD F4,FO,F2
SD F4,0(R1)

* Two iterations between LD and ADD; RR6 and RR4 point to same
physical register

* Three iterations between ADD and SD; RR3 and RRO point to same
register

. CHALMERS

halmers University

© 2017

Michel Dubois, Murali Annavaram and Per Stenstrom

I
VLIW - Slot Conflicts

* Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
 Two LD/ST per iterations so two instructions for kernel

. CHALMERS

halmers Ul

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

VLIW - Slot Conflicts

* Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
 Two LD/ST per iterations so two instructions for kernel

ITEL ITE2 ITE3 ITE4
INST1 o1

INST2 —

INST3 02 o1 KERNE
INST4 - -

INST5 - 02 o1

INST6 03 ~ ~

INST7 = 02 o1
INSTS 03

CHALMERS

halmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

VLIW - Slot Conflicts

* Restrict the number of slots: 1 LD/ST, 1 FP, 1 BR/INT
 Two LD/ST per iterations so two instructions for kernel

ITEL ITE2 ITE3 ITE4
INST1 o1

INST2

INST3 02 o1 KERNE
INST4 -

INST5 - 02 o1

INST6 03

INST7 = 02 o1
INSTS 03

KERNEL CODE: STORE IS TWO ITERATIONS BEHIND THE LOAD; SUB MOVED UP

Clock MemOpl FPOp1 Int/BROp
1 L.D F0,0(R1) ADD.D F4,F0,F2 SUBR1
2 S.D 24(R1),F4 NOOP LOOPBR

O

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

e
VLIW-Loop Carried Dependencies 1(3)

Loop carried dependency = dependency across loop iterations

Dependency spans two loop iterations:

Dependency is through memory; rotating registers do not help

Let’s look at the data dependency graph!

. CHALMERS

halmers Ul

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

VLIW-Loop Carried Dependencies 2(3)

(iteration, min cycles to resolve RAW)

Loop: L.D FO, O(R2) 01 ol
ADD.D F3, FO, F1 02 (0.2)

ADD.D F4, F3, F1 03 (2.1)

S.D F3, -16(R2) 04

5.D F4, O(R3) 05

SUBI R2, R2, 8 (0,3)

SUBI R3, R3, 8 ’

BNE R2, R4, Loop 0.3) e
e 0.3)

* The cycle in the graph takes 6 cycles and spans two
iterations; 3 cycles at least per iteration

- CHALMERS

halmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

VLIW-Loop Carried Dependencies 3(3)

ITE1 ITE2 ITE3 ITE4 ITES
PROLOGUE
NEL
[OGUE
INST10
INST11 - - -
INST12 — 05 03, 04 02
INST13 - - 01
INST14
INST15 N 05 AA 03, 04 02

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

VLIW-Loop Carried Dependencies 3(3)

ITE3 ITE4 ITES
PROLOGUE

KERNEL

INST7
INSTS
INST9 EPIL OGUE
INST10
INST11 - - -
INST12 05 03, 04 02
INST13 - - 01
INST14
INST15 N 05 AA 03, 04 02

KERNEL (USING 2 LD/SD, 2 FP AND 1 BR/INT SLOTS)

Clock MemOpl MemOp2 FPOp1 FPOp2 Int/BROp
1 NOOP L.D F0,0R2) NOOP NOOP SUB R2
2 NOOP NOOP NOOP NOOP SUB R3
3 S.D F3,-16(R2) S.D F4,0(R3) ADD.D F3,F0,F1 ADD.D F4,F3,F1 | LOOPBR R2,R4,CLK1

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2017

Non-Cyclic Scheduling

. CHALMERS

Chalmers Ui

Non-Cyclic Scheduling

a 0 SPLIT

B

D

Michel Dubois, Murali Annavaram and Per Stenstrom

o
v

Most likely path (A, B, C in the
example) is established through
profiling

This path (A, B, C), called frace, forms
a larger basic block of code for
instruction scheduling

Instruction scheduling respects RAW
dependencies but can ignore control
dependencies

Must fix the execution on branch
misspeculation so that misspeculated
trace (A, D, C) is correctly executed.

CHALMERS

halmers University

© 2017

Most likely trace

Y

A

<>

1

Example

Original code

LW R4,0(R1)
ADDI R6,R4 #1

/* block A*/
BEQ R5,R4,LAB
LW R6,0(R2)

o SPLIT /*block B*/

[*block D* empty/

LAB: SW R6,0(R1)

B

D

o
v

Trace schedule

Optimized trace

LW R4,0(R1)
ADDI R6,R4 ,#1
LW R6,0(R2)
BEQ R5,R4,LAB1
LAB2: SW R6,0(R1)

[* jump to second trace if
prediction is wrong */

LAB1: ADDI R6,R4,#1
J LAB2

LW R4,0(R1)
LW R6,0(R2)
BEQ R5,R4,LAB1

LAB2: SW R6,0(R1)
[* jump to second trace if
prediction is wrong */

LAB1

: ADDI R6,R4,#1

J LAB2

CHALMERS

Chalmers University of Technology

Predicated Execution

. CHALMERS

Chalmers Ui

-
Predicated Instructions

« Trace scheduling works well if branches are highly biased (one trace
is considerably more likely than another)

Predicated instruction = conditionally executed instruction
Example 1) CLWZ R1,0(R2),R3; if (R3)==0 then LW R1,0(R2)

« Only executed if condition is met; other No Operation
» Predication can be applied to any instruction

* Needs an additional operand — a predicate register
* Longer instruction not a problem in VLIW

. CHALMERS

Chalmers University

Example — Predicated Execution

a 0 SPLIT

Original code

B

D

o
v

LW R4,0(R1)
ADDI R6,R4 #1
BEQ R5,R4,LAB
LW R6,0(R2)

LAB: SW R6,0(R1)

Predicated code

LW R4,0(R1)
ADDI R6,R4 #1
SUB R3,R5,R4
CLWZ R6,0(R2),R3
SW R6,0(R1)

CHALMERS

Chalmers University

