
Chip multiprocessors
• Multithreading techniques (Ch. 5.2.1, 8.3)

ü Interleaved (fine-grain) multithreading 
ü Block (coarse-grain) multithreading 
ü Simultaneous multithreading

• Cache coherence solutions (Ch. 5.4.1-5.4.3)
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Multi-core and Thread-level 
Parallelism
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Thread-Level Parallelism
Process: A program that can run independently of other 

programs on a single or multiprocessor system.
Thread: A piece of a program within a process that runs on a 

processor.
Example:
A program that does matrix multiplication can be partioned into 

threads that do matrix multiplication on a part of the matrix.
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Example Sequential Algorithm
• Multiply matrices A[N,N] by B[N,N] and store result in C[N,N]
• Add all elements of C in sum

1  sum = 0;
2  for (i=0,i<N, i++)      
3    for (j=0,j<N, j++){
4      C[i,j] = 0;
5      for (k=0,k<N, k++)
6         C[i,j] = C[i,j] + A[i,k]*B[k,j];
7         sum += C[i,j];
8      }
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Shared-memory Parallel Program
/* A, B, C, BAR, LV and sum are shared. All other variables are private.
1a low = pid*N/nproc; /* pid=0...nproc-1
1b hi = low + N/nproc; /* rows of A
1c mysum = 0; sum = 0; /* A and B are in 
2  for (i=low,i<hi, i++)                 /* shared memory
3    for (j=0,j<N, j++){
4      C[i,j] = 0;
5      for (k=0,k<N, k++)
6         C[i,j] = C[i,j] +  A[i,k]*B[k,j]; /* at the end matrix C is
7         mysum +=C[i,j]; /* C is in shared memory
8      } 
9 BARRIER(BAR);
10 LOCK(LV);
11 sum += mysum;
12 UNLOCK(LV);

Guarantees that all threads have arrived before 
anyone is allowed to continue.
Critical section guarantees that sum is updated 
atomically
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Multithreading
(Ch. 5.2.1, 8.3)
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Multithreading 

Two approaches:

P1 P3P2 .... PN P1 P2
Fine-grain : Switch to another context each cycle

P1 P2P1 .... P2 P3 P3
Coarse-grain: Switch to another context on costly stalls

miss miss

Idea: Increase resource utilization by multiplexing the 
execution of multiple threads on the same pipeline

Michel Dubois, Murali Annavaram and Per Stenström © 2019



Simultaneous Multithreading
Superscalar Coarse MT Fine MT SMT
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Quiz 6.1
Which of the following statements are correct

a) Coarse-grain multithreading switches between threads 
every cycle

b) Fine-grain multithreading switches between threads 
every cycle

c) Simultaneous multithreading allows free pipeline cycles 
to be used by other threads

d) Coarse-grain multithreading switches to another thread 
on long-latency operations
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Organization of Multi-
core/Multiprocesor Systems
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Shared-memory Multiprocessors

• All processors conceptually share memory
• Challenge: How to provide low latency and high 

bandwidth for high processor counts

Shared memory

P P P
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Cache Organizations 1(4)

•Conceptual “dance-hall” model of shared memory 
multiprocessor
•No cache – not practical
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Cache Organizations 2(4)

• Shared first-level cache organization
• Advantage: constructive sharing
• Disadvantage: interconnect between 

processors and cache on critical path
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Cache Organizations 3(4)

hh• Private first-level cache organization
• Advantage: Fast access
• Disadvantage: Multiple copies of the same 

data can exist
Private caches give rise to the cache coherence 

problem 
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Cache Organizations

• Hybrid first-level private and second-level 
shared cache organization

• Common in today’s multicore chips
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Quiz 6.2
Which of the following statements are correct

a) A shared cache allows multiple processors to 
share cache space

b) A shared cache is faster than a private cache
c) Copies of the same block pose a problem for 

private caches
d) Private caches are faster than shared caches
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Cache Coherence Problem
(Ch. 5.4.1-5.4.3)
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The Cache Coherence Problem

Definition 1 [Performed]: A write is performed when the 
old value cannot be returned any more

Definition 2 [Last globally written value]: Assume that N 
processors in turn issue a write to a location: W1, W2, …, 
WN. If W1 is the last performed write, it leads to the last 
globally written value.

Michel Dubois, Murali Annavaram and Per Stenström © 2019



Example

• Writes are performed when they change memory value
• W3 corresponds to the last globally written value
• Definition 3 [Memory coherence]: At any point in time, all 

processors have a consistent view of the last globally written 
value to each memory location.

Shared memory

P P P
W1=1

W1=1

X=1

W2=2

W2=2

X=2

W3=3
W3=3

X=3
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Conventional Caches
Write-back caches

A=1

A=1

Memory

Cache
A=1

Cache

A=2

A=2 A=3

A=1

A=1

Memory

Cache
A=1

Cache

A=2

A=2

Write-through caches

• Both cases: No consistent view of last 
globally written value

• Need to devise a protocol that maintains cache 
coherence

P1 P2 P1 P2
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Quiz 6.3
Consider the following access sequence, where Wi(X) and 

Ri refer to a write and a read operation by processor Pi, 
respectively to the same variable and X refers to the 
value written.

W1(1) W2(2) R3 W3(3) R4

Which statements are correct?
a) Processor 3 reads value 1
b) Processor 3 reads value 2
c) Processor 4 reads value 3
d) Last globally written value is 3
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Cache Coherence Solutions
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A Simple Snoopy Cache Protocol

• Same actions as a write-
through cache for reads

• For writes, send invalidation 
request on the bus to all 
caches

• Snoopy cache protocol

A=1

A=1

Memory

Cache
A=1

Cache

A=2

A=2

P1 P2
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Hardware Structures

• Add new bus transaction: Invalidate
• Invalidate is broadcast on writes and “snooped” by all 

caches
• All copies of block are invalidated
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State-Transition Diagrams
• Each cache is represented by a finite state machine 

(FSM)
• Imagine P identical FSMs working together, one per 

cache
• FSM represents the behavior of a cache w.r.t. a 

memory block
• Not a cache controller!

V I(NIC)

PrRd/BusRd

BusWr/--

BusRd/--
BusWr/--
PrWr/BusWr

PrRd/--
PrWr/BusWr
BusRd/--
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Problem with Simple Protocol
• Bus transaction on every write
• Consumes precious bus bandwidth
• Especially troublesome for sequential programs 

that do not exchange data

Write-invalidate protocol:
• Build cache coherence protocol around write-

back caches
• Send invalidation only if there are other copies
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Hardware Structures
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Write-back Caches: the MSI Protocol
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Quiz 6.4
Consider the following access sequence to the same 

variable:
W1(1) W2(2) R3 W3(3) R4

Which statements are correct?
a) One invalidation are sent out under the Simple protocol
b) One invalidation are sent out under the MSI protocol
c) Three invalidations are sent out under the Simple 

protocol
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What you should know by now

• Multi-core systems
• Thread-level parallelism

• Multithreading
• Coarse and fine-grain multithreading
• Simultaneous multithreading

• Cache coherence and schemes


