
Chip multiprocessors
• Multithreading techniques (Ch. 5.2.1, 8.3)

ü Interleaved (fine-grain) multithreading
ü Block (coarse-grain) multithreading
ü Simultaneous multithreading

• Cache coherence solutions (Ch. 5.4.1-5.4.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Multi-core and Thread-level
Parallelism

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Thread-Level Parallelism
Process: A program that can run independently of other

programs on a single or multiprocessor system.
Thread: A piece of a program within a process that runs on a

processor.
Example:
A program that does matrix multiplication can be partioned into

threads that do matrix multiplication on a part of the matrix.

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Example Sequential Algorithm
• Multiply matrices A[N,N] by B[N,N] and store result in C[N,N]
• Add all elements of C in sum

1 sum = 0;
2 for (i=0,i<N, i++)
3 for (j=0,j<N, j++){
4 C[i,j] = 0;
5 for (k=0,k<N, k++)
6 C[i,j] = C[i,j] + A[i,k]*B[k,j];
7 sum += C[i,j];
8 }

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Shared-memory Parallel Program
/* A, B, C, BAR, LV and sum are shared. All other variables are private.
1a low = pid*N/nproc; /* pid=0...nproc-1
1b hi = low + N/nproc; /* rows of A
1c mysum = 0; sum = 0; /* A and B are in
2 for (i=low,i<hi, i++) /* shared memory
3 for (j=0,j<N, j++){
4 C[i,j] = 0;
5 for (k=0,k<N, k++)
6 C[i,j] = C[i,j] + A[i,k]*B[k,j]; /* at the end matrix C is
7 mysum +=C[i,j]; /* C is in shared memory
8 }
9 BARRIER(BAR);
10 LOCK(LV);
11 sum += mysum;
12 UNLOCK(LV);

Guarantees that all threads have arrived before
anyone is allowed to continue.
Critical section guarantees that sum is updated
atomically

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Multithreading
(Ch. 5.2.1, 8.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Multithreading

Two approaches:

P1 P3P2 PN P1 P2
Fine-grain : Switch to another context each cycle

P1 P2P1 P2 P3 P3
Coarse-grain: Switch to another context on costly stalls

miss miss

Idea: Increase resource utilization by multiplexing the
execution of multiple threads on the same pipeline

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Simultaneous Multithreading
Superscalar Coarse MT Fine MT SMT

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Register
File TN

Register
File T2

An SMT Pipeline

Front-end and register file must be replicated

Fetch
Instruction
Thread 1

Fetch
Instruction
Thread 2

Fetch
Instruction
Thread N

Fetch
queue

Register
File T1

Get operands

Memory
Access

Integer &
Logic

Floating
Point

ROB

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 6.1
Which of the following statements are correct

a) Coarse-grain multithreading switches between threads
every cycle

b) Fine-grain multithreading switches between threads
every cycle

c) Simultaneous multithreading allows free pipeline cycles
to be used by other threads

d) Coarse-grain multithreading switches to another thread
on long-latency operations

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Organization of Multi-
core/Multiprocesor Systems

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Shared-memory Multiprocessors

• All processors conceptually share memory
• Challenge: How to provide low latency and high

bandwidth for high processor counts

Shared memory

P P P

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Organizations 1(4)

•Conceptual “dance-hall” model of shared memory
multiprocessor
•No cache – not practical

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Organizations 2(4)

• Shared first-level cache organization
• Advantage: constructive sharing
• Disadvantage: interconnect between

processors and cache on critical path

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Organizations 3(4)

hh• Private first-level cache organization
• Advantage: Fast access
• Disadvantage: Multiple copies of the same

data can exist
Private caches give rise to the cache coherence

problem

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Organizations

• Hybrid first-level private and second-level
shared cache organization

• Common in today’s multicore chips

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 6.2
Which of the following statements are correct

a) A shared cache allows multiple processors to
share cache space

b) A shared cache is faster than a private cache
c) Copies of the same block pose a problem for

private caches
d) Private caches are faster than shared caches

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Coherence Problem
(Ch. 5.4.1-5.4.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

The Cache Coherence Problem

Definition 1 [Performed]: A write is performed when the
old value cannot be returned any more

Definition 2 [Last globally written value]: Assume that N
processors in turn issue a write to a location: W1, W2, …,
WN. If W1 is the last performed write, it leads to the last
globally written value.

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Example

• Writes are performed when they change memory value
• W3 corresponds to the last globally written value
• Definition 3 [Memory coherence]: At any point in time, all

processors have a consistent view of the last globally written
value to each memory location.

Shared memory

P P P
W1=1

W1=1

X=1

W2=2

W2=2

X=2

W3=3
W3=3

X=3

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Conventional Caches
Write-back caches

A=1

A=1

Memory

Cache
A=1

Cache

A=2

A=2 A=3

A=1

A=1

Memory

Cache
A=1

Cache

A=2

A=2

Write-through caches

• Both cases: No consistent view of last
globally written value

• Need to devise a protocol that maintains cache
coherence

P1 P2 P1 P2

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 6.3
Consider the following access sequence, where Wi(X) and

Ri refer to a write and a read operation by processor Pi,
respectively to the same variable and X refers to the
value written.

W1(1) W2(2) R3 W3(3) R4

Which statements are correct?
a) Processor 3 reads value 1
b) Processor 3 reads value 2
c) Processor 4 reads value 3
d) Last globally written value is 3

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Coherence Solutions

Michel Dubois, Murali Annavaram and Per Stenström © 2019

A Simple Snoopy Cache Protocol

• Same actions as a write-
through cache for reads

• For writes, send invalidation
request on the bus to all
caches

• Snoopy cache protocol

A=1

A=1

Memory

Cache
A=1

Cache

A=2

A=2

P1 P2

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Hardware Structures

• Add new bus transaction: Invalidate
• Invalidate is broadcast on writes and “snooped” by all

caches
• All copies of block are invalidated

Michel Dubois, Murali Annavaram and Per Stenström © 2019

State-Transition Diagrams
• Each cache is represented by a finite state machine

(FSM)
• Imagine P identical FSMs working together, one per

cache
• FSM represents the behavior of a cache w.r.t. a

memory block
• Not a cache controller!

V I(NIC)

PrRd/BusRd

BusWr/--

BusRd/--
BusWr/--
PrWr/BusWr

PrRd/--
PrWr/BusWr
BusRd/--

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Problem with Simple Protocol
• Bus transaction on every write
• Consumes precious bus bandwidth
• Especially troublesome for sequential programs

that do not exchange data

Write-invalidate protocol:
• Build cache coherence protocol around write-

back caches
• Send invalidation only if there are other copies

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Hardware Structures

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Write-back Caches: the MSI Protocol

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 6.4
Consider the following access sequence to the same

variable:
W1(1) W2(2) R3 W3(3) R4

Which statements are correct?
a) One invalidation are sent out under the Simple protocol
b) One invalidation are sent out under the MSI protocol
c) Three invalidations are sent out under the Simple

protocol

Michel Dubois, Murali Annavaram and Per Stenström © 2019

What you should know by now

• Multi-core systems
• Thread-level parallelism

• Multithreading
• Coarse and fine-grain multithreading
• Simultaneous multithreading

• Cache coherence and schemes

