Lecture 6

Chip multiprocessors

« Multithreading techniques (Sections 5.2.1, 8.3)
v'Interleaved (fine-grain) multithreading
v'Block (coarse-grain) multithreading
v'Simultaneous multithreading

« Cache coherence solutions (Sections 5.4.1-5.4.3)

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Multicore
Programming Model

Architecture Model of a Multicore System

Processor Processor Processor
(Core) (Core) ® o o (Core)
L1 Cache L1 Cache L1 Cache
L2 Cache

¢

Memory

Programming Model of a Multicore System

X=1
Shared memory

Write X,1 Read X=1

P P

\/

Processors (cores) (- .
Discussion:

Make a parallel version of vector
addition:
for(i=0;i<100;i++)
Ali] = B[i] + CIiJ;
\On 10 processors

Thread-Level Parallelism

P

Shared
memory

P

statement1;
statement2;’
statement3;

statementN

Independent
programs

statement1; |_statement1;
m statement2;’
/ statement3; statement3;

statementN statementN

...or part of same program
— a parallel program

run on one physical processor

Thread: program code

Goal: Parallel Execution

Execution time 1 thread

Speedup (N) =

Speedun (N) " Execution time N threads
A
--- SP < 1/f
K f— fraction of serial code

« See Amdahl’s Law

Discussion:
What are the sources for
sub-linear speedup?

> N

p
Question:

Assume that 90% of a sequential
program can be parallelized.

What is the maximum speedup we
can get?

_

/Answer:

According to Amdahl’'s Law:

SP = 1/(f — (1-f)/P)

Hence, SP<1/f=1/(1-0.90) = 10

&

Multithreading
(Sections 5.2.1, 8.3)

Motivation Question:
What is the utilization?
1 time unit 3 time units
| |
[| |
[Compute][Cache Miss Latency]
» Time
Utilization: 25%! Question:
. - .o
[Compute][Cache Miss Latency] What is the utilization*
[Compute I Cache Miss Latency]
[Compute I Cache Miss Latency]
[Compute I Cache Miss Latency ...]

» Time
Four programs (threads) could overlap the latency
Utilization: 100%!

Multi-threading aims at

Thread 1 Thread 2 .. Thread N utilizing processor resources better

Processor Processor Processor
(Core) (Core) ® o o (Core)
L1 Cache L1 Cache L1 Cache
L2 Cache

¢

Memory

Interleaved : Switch to another thread every cycle
T1 12 '![;3 L IITN [T T2

Blocked: Switch to another thread on costly stalls
T ITfim2 1.l [T2 [T3 |T3

Simultaneous:Threads share microarchitecture resources

11 12
11 11
MISS

7
7

IF/ID

ID/EX

Interleaved Multithreading

Blocked Multithreading

Simultaneous Multithreading

EXMEM MEM/WB

L

EX]

MEM WB

IF/TS

TS/ID

TS

[

T

ID/EX

Interleaved Multithreading

Blocked Multithreading

Simultaneous Multithreading

EXMEM MEM/WB

L

EX]

MEM WB

Thread selection

PC1

Reg
Re T1

[Z |

Interleaved Multithreading

Blocked Multithreading

Simultaneous Multithreading

IF/TS TH/ID
(\JR

PC2

y TS " ID

\ A

ID/E

K

EXMEM MEM/WB

Thread selection

Round robin

EX]

MEM WB

Thread ID follows the instruction

PC1

PC2

Interleaved Multithreading

Blocked Multithreading

) '?re19 Simultaneous Multithreading
[Z]
IF/TS TS/ID ID/EX EXMEM MEM/WB
.
- |F TS ID S EX MEM WB
——— Thread selection
Fetch Select || Decode Execute Mem Write B.
T1 T2 T1 T2 T1 T2

Hazards have less impact. Can hide long latencies

g
Question: Answer:
How many threads are needed to Four threads
eliminate the cycles lost for control
hazards in the multithreaded pipeline - Reg

o) ¢ T1
below" T

IF/TS TS/ID | ID/EX EX/MEM MEM/WB
La
IF TS ID S EX MEM WB

UNUSED UNUSED UNUSED BNEZ R1, LOOP
T4 T3 T2 T1: BNEZ R1, LOOP

4 N 4
Question: Answer:
How many cycles are unused if T1 S cycles are unused. T2 can make
experiences a cache miss that use of half of the cycles.
takes 10 cycles to serve?
& J &
. Data
Miss Returned

T1 T2[T1 T2[T1 T2[T1 T2[T1 T2 T2TIT2T1IT2TIT2T1T1 T2 ...

12 3 45 6 7 8 910 111213141516 171819 20 21

» Time

Interleaved Multithreading

Blocked Multithreading

Reg - : :
Re T4 Simultaneous Multithreading

[Z |

a

IF/TS TS/ID ID/EX EXMEM MEM/WB

PC1 > La

— |F TS ID gj > EX| MEM WB

PC2 >

{

Miss/completion event

a

—— Thread selection

On miss/completion event

Cycle X

PC1

PC2

Interleaved Multithreading

Blocked Multithreading

) '?re19 Simultaneous Multithreading
[Z]
IF/TS TS/ID ID/EX EXMEM MEM/WB
-
- |F TS ID S EX MEM WB
. Miss
— Thread selection |«
Fetch Select || Decode Execute Mem Write B.
T1 T1 T1 T1 T1 T1

I

Must be flushed

Cycle X + 1

PC1

PC2

Reg
Re T1
[2]

a

Interleaved Multithreading

Blocked Multithreading

Simultaneous Multithreading

IF/TS TS/ID ID/EX

EXMEM MEM/WB

= |F TS ID <] » EX| MEM WB
—— Thread selection «
Fetch Unused || Unused Unused Unused || Unused
T2

Only effective for long-latency operations
Significant overhead in deep out-of-order pipelines

Interleaved Multithreading

Blocked Multithreading

Simultaneous Multithreading

INT cos|| ||| cT
FP ((
MEM

Interleaved Multithreading

Blocked Multithreading

Simultaneous Multithreading

\ R

INT CDB CT
FP ((
MEM

Cache Coherence Solutions
(Sections 5.4.1-5.4.3)

Latest Write to a Location:

Single Processor
Notation:

* Processor i reads from location X: R;(X)

* Processor i writes a value Y to location X: W;(X)=Y

Example: Consider the following sequence of reads and writes to location X:

WiX)=1 = R(X) = W{X)=2 == R(X) =—> W(X)=3 =—> R(X)

(Question:) ‘Answer:)

What value is returned by the last The returned value is 3 because it

read request? is reflected by the latest write to
location X.

- J - J

Latest Write to a Location:
Two Processors

Example: Consider the following sequence of reads and writes to location X
from two processors 1 and 2:

Wi(X)=1 == Ry(X) = W (X)=2=> Ry(X) =—> W (X)=3—>

Wi (X)=4 == Ry(X) = W(X)=5==> Ry(X) => Wy(X)=6—">

R+(X)

Ra(X)

4 4
Question: Answer:

What value is returned by the last
read request from processor 1?

-

It all depends on the order by
which writes arrive at memory!

(&

Latest Write to a Location:
Two Processors — One Scenario

Wi(X)=1 == Ry(X) = W, (X)=2=> Ry(X) => W (X)=3=> Ry(X)

Il ~ ~ 7 7 ~~
Wa(X)=4 == R,(X) == W (X)=5==> Ry(X) => Wy(X)=6=—> RyX)

—p Program-order relation
—p Happens-before relation

(Question:) Answer:

What value is returned by the last Now it's unambiguously 6 because

read request from processor 1? the last write from Processor 2 is
the last write.

_ Y N\ J

Latest Write to a Location:
Two Processors — Another Scenario

Wi(X)=1 = R(X) =—> W, (X)=2=—=> R,(X) =—> W,(X)=3=—> Ry(X)
7 ™\ ~N N N 7
Wo(X)=4 == Ry(X) == W,(X)=5==> R,(X) => Wy(X) =6=—=""> Ry(X)

—p Program-order relation
—p Happens-before relation

(Question:) Answer:

What value is returned by the last It's unambiguously 3 and the last

read request from processor 27 write from Processor 1 is the last
write.

_ J G J

Definition: Cache Coherence

Two executions:

Wi(X)=1 == Ry(X) = W, (X)=2=> Ry(X) => W (X)=3=> Ry(X)

Il ~ ~ 7 7 ~~
Wa(X)=4 == R,(X) == W (X)=5==> Ry(X) => Wy(X)=6=—> RyX)

Wi(X)=1 == Ry(X) = W (X)=2==> R,(X) = W(X)=3="> R¢(X)

7 S\ ~N N ~ ~
Wo(X)=4 == R,(X) => Wy(X)=5==> R,(X) => W,(X)=6=—"> RyX)

For any execution (beyond the two shown) a memory system is coherent if:

« Memory operations form one serial order with respect to the same memory location
 Memory operations from each thread respect program order

« The value returned by a read is the value of the latest write in the serial order

Why Coherence is Important!

Assume A=0, initially

P1 P2
A=1 Wi(A)=1 =A R2i(A)
A=2 W, (A)=2 =A R2(A)

Programmer expectation: .
If first read from P2 returns a value X, second read must return a value >=X

Examples of correct (coherent) interleavings:
Wi(A)=1=—=> Ry(A)=—> W;,(A)=2 = Ry,(A)
Ro(A) = W (A)=1=——> W;(A)=2 =——> R,,(A)

Examples of incorrect (incoherent) interleavings:
W, (A)=2 == Ry(A) =—> W;(A)=1=—=> R,,A)

W, (A)=1 ==> Rx(A) =—> W, (A)=2=—> R,,(A)

Assume A=0, initially (.
P1 P2 Questlon. |
A=1 W, (A)=1 A Ry (A) List all correct serial orders of the
A=2 W.(A)=2 "=A R,,(A) program and what R, and Ry,
f B return in each case.
Answer:

Ro/(A) | R5.(A)

Ro.(A) Roa(A) W, A)=1 W, (A)=2

Ro4(A) WA)=1 Raq(A) W (A)=2

W, (A)=1 R,4(A) R,,(A) W, (A)=2

W, (A)=1 ﬁ?'I(A) VV1(A)=2 ﬁoo(A)

Q
0
Ro:(A) WiA)=1 Wi (A)=2 Rx(A) 0
1
1
2

o O | lIW] DI -~
N IN [—=1IN] FLP

W, (A)=1 VV1(A)=é ﬁ21(A) ﬁ22(A)

Snoopy Cache
Coherence Protocols

The Cache Coherence Problem

Inconsistent
view of content
L2 Bank 1 of A

A=2

Inconsistent
L2 Bank 1 view of content
of A

A=1

Bus

L1 Cache L1 Cach L1 €ache
A=2 X A=3 A=2 A=1

Write-back caches Write-through caches

A Simple Snoopy Cache Protocol

A=2 / Invalidation request

_

A=2 ”

Write-through caches

« Bus acts as serialization point

» Write atomicity is maintained

Implementing the Simple Cache Protocol

Processor-side requests: Bus-side requests:
- Processor read — PrRd » Bus read — BusRd
* Processor write — PrWr « Bus read exclusive (inval.) - BusRdX

« Bus write (inval.) — BusWr
Cache states per block:

e Valid-V PrRd/BusRd
 |nValid — | PrWr/BusRdX
Buswr-- PrRd/--
BusRdX/-- PrWr/BusWr
BusWr/--

BusRdX/--

A=1 A=1
PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/BusWr BUSRAX/-- PrwWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

A=2

A=2 *

PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/Bus\r BUSRAX/-- PrWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

A=2

A=2 *

PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/BusWr BUSRAX/-- PrWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

A=2

D

A=2 A=2
PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/BusWr BUSRAX/-- PrWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

A=2

———

A=2 A=2
PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/BusWr BUSRAX/-- PrWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

/Question: A=
What transactions
are launched in
response to a
write request

i ed by P27 _ _
\SSU Yy) A=2 A=2
PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/BusWr BUSRAX/-- PrWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

A=3

y
A=2 A=3
PrRd/BusRd PrRd/BusRd
PrWr/BusRdX PrWr/BusRdX
BusWr/-- PrRd/-- BusWr/-- PrRd/--
BusRdX/-- PrWr/BusWr BUSRAX/-- PrWr/BusWr
BusWr/-- BusWr/--

BusRdX/-- BusRdX/--

MSI — A Write-Back Cache-Protocol 1(3)

« Writes carried out locally if
block is not shared

Write-back caches

MSI — A Write-Back Cache-Protocol 2(3)

: BusUpgrade request invalidates other
BusUpgr copies, including memory
w 3

Write-back caches

MSI — A Write-Back Cache-Protocol 3(3)

Subsequent writes from P1 happen
locally in P1’s cache

A=3 ®

Write-back caches

MSI — State Transition Diagram

BusRdX/Flush
BusUpgr/--

BusRdX/--

BusRd/Flush

PrRd/-- PrRd/-- BusRd/--
PrWr/-- BusRd/-- BusUpgr/--
PrWr/BusUpgr \ BusRdX/--

PrRd/BusRd

PrWr/BusRdX

