
Michel Dubois, Murali Annavaram and Per Stenström © 2019

Memory Hierarchies
• Cache memory (Ch. 4.3)

ü Classification of cache misses (Ch 4.3.5)
ü Cache hierarchy performance (Ch 4.3.4)
ü Memory inclusion (Ch. 4.3.3)
ü Non-blocking (Lock-up free) caches (Ch. 4.3.6)
ü Cache prefetching and preloading (Ch. 4.3.7)

• Virtual memory (Ch. 4.4)



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Miss Classification
(Ch 4.3.5)

Michel Dubois, Murali Annavaram and Per Stenström © 2019



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Classification of Cache Misses
The 3 C’s miss classification model
•Compulsory (Cold) misses: On the first reference to a block
•Capacity misses: Space is not sufficient to host data or code
•Conflict misses: Happen when two memory blocks map the same 
cache block in direct-mapped or set-associative caches
•(Related to communication:  Coherence misses, the 4th C.) 
How to find out?
•Cold misses: Simulate infinite cache size 
•Capacity misses: Simulate fully associative cache, then deduct cold 
misses 
•Conflict misses: Simulate cache, then deduct cold and capacity 
misses 

Classification is useful to understand how to eliminate misses



Michel Dubois, Murali Annavaram and Per Stenström © 2019

ExampleAssumptions:
• A 2-way set-associative cache with 4 blocks
• Access sequence: 0 1 2 3 4 0 5 1 8 4 9 5
Simulation of infinite cache: 
0

M

0
1

M

0
1
2

M

0
1
2
3

M

0
1
2
3

4

M

0
1
2
3

4

H

0
1
2
3

4
5

M

0
1
2
3

4
5

H

0
1
2
3

4
5
8

M

0
1
2
3

4
5
8

H

0
1
2
3

4
5
8
9

M

0
1
2
3

4
5
8
9

H
Cold misses: 8
Simulation of a fully associative cache with OPT replacement policy: 

Simulation of a 2-way set-associative cache with LRU replacement policy: 
4
1

2
3

M

4
1

0
3

M

4
5

0
3

M

4
5

0
1

M

8
5

0
1

M

8
5

4
1

M

8
9

4
1

M

8
9

4
5

M

0
1

4
3

M

0
1

4
3

H

0
1

4
5

M

0
1

4
5

H

8
1

4
5

M

8
1

4
5

H

8
9

4
5

M

8
9

4
5

H

Cap. misses: 0

Conf. misses: 4



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 5.1
Given the following access sequence (block addresses):
0,1,8,0,1,9,5,4,0,8,1

How many cold misses are there?
a) 10
b) 5
c) 6



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Impact of Cache Organization
on Performance

(Ch 4.3.4)



Michel Dubois, Murali Annavaram and Per Stenström © 2019
7

Memory System Performance

Average access time = h1T1 + m1(T1+T2)
• hx= hit rate = probability of finding data in level x
• (1-hx) = mx = miss rate for level x
• Tx = hit time = access time for level x
• (Tx+Tx+1) = miss penalty for level x (assuming processor stalls for 

the entire duration of a miss)
Impact on performance:
CPI = CPI0 + MPI1x T2

where MPI1 is the number of misses per instruction at level 1 

P M1 M2



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Effect of Cache Parameters
Larger caches
• Slower
• Less capacity misses
Larger block size
• Exploit spatial locality
• Too big a block increases capacity misses
• Big blocks also increase miss penalty
Higher associativity
• Reduces number of conflict misses
• 8-16 way set-assoc. as good as fully assoc. 
• 2-way set-assoc. cache of size N has similar miss rate as a direct-
mapped cache of size 2N
• Higher hit time



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Multi-level Cache Hierarchies
(Ch 4.2.3)



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Multi-level Cache Hierarchies

Today, 1st, 2nd and 3rd level are on-chip and 4th level is off-chip

Memory

Cache inclusion is maintained:
• When a block misses in L1 then it must be brought into all levels
• When a block is replaced in any level Li, it must be removed from 

all levels Lj where j<i



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Exclusion

A block can only exist at one level
Benefits: improved utilization of cache space
Disadvantages: Complicates locating a block
Conditions:  
• If a block is in Li then it is not in Lj, j>i
• If a block is in L1 then all copies are removed from all 

Lj’s, j>1
• If a block is replaced in Li then it is allocated in Li+1



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Example of Exclusion Management

Note:
• Blocks B and C have to be moved to lower levels even if they are 

clean
• In an inclusive cache hierarchy, replacements are “silent” (no write-

back needed) for clean blocks

L1 cache L2 cache Memory

Read
A

C ABAA
C

C B



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 5.2

Which of the following statements are correct?
a) The effective cache capacity is 4 MB + 6 x 256 KB if L2 includes L1
b) The effective cache capacity is 4 MB - 6 x 256 KB if L2 includes L1
c) The effective cache capacity is 4 MB if L2 includes L1
d) The effective cache capacity is 4 MB + 6 x 256 KB if L2 excludes L1

L1 L1L1 L1 L1 L1

L2 (size 4 MB)

Size:
256 KB

P P P P P P

A multicore cache memory organization



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Non-Blocking (Lockup-free) 
Caches (Ch 4.3.6)

Michel Dubois, Murali Annavaram and Per Stenström © 2019



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Non-blocking (Lockup-free) Cache

• If the cache misses, it does not block
– Rather, it handles the miss and keeps accepting accesses from the 

processor
– Permits the concurrent processing of multiple misses and hits

• Cache has to bookkeep all pending misses
– MSHRs (Miss Status Handling Registers) contain the address of 

pending miss, the destination block in cache and the destination 
register

– Number of MSHRs limits the number of pending misses
• Data dependencies eventually block the processor 
• Non-blocking caches are required in dynamically scheduled 

processors and for prefetches (to be considered next)



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Lockup-free Caches: 
Primary and Secondary Misses

Primary: The first miss to a block
Secondary: Following accesses to blocks pending due to primary 
miss

– Lot more misses (blocking cache only has primary misses)
– Needs MSHRs for both primary and secondary misses

Misses are overlapped with computation and with other miss

Example:
TOY: LW R1,0(R2)

ADDI R2,R2,#4
BNEZ R2,R4, TOY



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Cache Prefetching
(Ch 4.3.7)

Michel Dubois, Murali Annavaram and Per Stenström © 2019



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Hardware Prefetching
• Sequential prefetching of instructions

– On an I-fetch miss, fetch two blocks instead of one 
– Second block is stored in an I-stream buffer
– If I-stream-buffer hits, block is moved to L1
– I-stream buffer blocks are overlaid if not accessed
– Also applicable to data, but less effective

Michel Dubois, Murali Annavaram and Per Stenström © 2017

• Hardware prefetching: detect strides in streams of accesses 
and fetch ahead



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Compiler-controlled Prefetching 1(2)
• Insert prefetch instructions in code 
• These are non-binding, load in cache only
• In a loop, we may insert prefetch instructions in the body of the 

loop to prefetch data needed in future loop iterations

LOOP L.D F2,0(R1) 
PREF -24(R1) 

ADD.D F4,F2,F0 
S.D F4,O(R1) 

SUBI R1,R1,#8 
BNEZ R1, LOOP



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Compiler-controlled Prefetching 2(2)
What is required to make it work: 
• Can work for both Loads and Stores
• Requires a non-blocking (lockup-free) cache
• Causes instruction overhead
• Data must be prefetched on time, so that they are present in 

cache at the time of access
• Data may not be prefetched too early so that they are still in 

cache at the time of the access
• Can easily be done for arrays, but it is also possible to act on 

pointer accesses



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 5.3
Consider software prefetching applied to the following loop and assume that 
the block size is 8 bytes.
LOOP L.D F2,0(R1) 

PREF -24(R1) 

ADD.D F4,F2,F0 
S.D F4,O(R1) 

SUBI R1,R1,#8 

BNEZ R1, LOOP

How many miss handling status registers are needed to support it?
a) 1
b) 2
c) 3
d) 8



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Virtual Memory
(Ch 4.4)



Michel Dubois, Murali Annavaram and Per Stenström © 2019
23

Motivation: Virtual Memory
Main motivation for using virtual memory:
• Memory protection between processes
• More flexible software:

– Possible to allocate larger virtual memory than 
physical memory available

– Relocation easier



Michel Dubois, Murali Annavaram and Per Stenström © 2019
24

B4

B3

B2

B1

B6

B5

Addr 0

Addr Max

Virtual Memory 1(3)

3

2

1

5

4

Addr 0

Addr Max

R3

R2

R1

R4

Addr 0

Addr Max

PROGRAM “R” MAIN MEMORY

Virtual Addresses Physical Addresses

PROGRAM “B”

Each program uses
its own “virtual”
address space

Main memory is
shared and uses a
physical address

space



Michel Dubois, Murali Annavaram and Per Stenström © 2019
25

B4

B3

B2

B1

B6

B5

Addr 0

Addr Max

Virtual Memory 2(3)

R3

R2

R1

R4

Addr 0

Addr Max

3

2

1

5

4

R1

B5

R2

R3

B1

Addr 0

Addr Max

MAIN MEMORY

Virtual Addresses Physical Addresses

PROGRAM “R” PROGRAM “B”

Virtual addresses
get translated to

physical addresses

Different
translations for

different programs



Michel Dubois, Murali Annavaram and Per Stenström © 2019
26

B4

B3

B2

B1

B6

B5

Addr 0

Addr Max

Virtual Memory 3(3)

R3

R2

R1

R4

Addr 0

Addr Max

SECONDARY
MEMORY

(disk storage)

3

2

1

5

4

R1

B5

R2

R3

B1

Addr 0

Addr Max

R3

R2

R1

R4

B4

B3

B2

B1

...Virtual Addresses Physical Addresses

MAIN MEMORYPROGRAM “R” PROGRAM “B”

Main memory  acts as a cache for
secondary memory



Michel Dubois, Murali Annavaram and Per Stenström © 2019
27

Where to place a block (in main memory)?

The Four Questions for Virtual Memory

– always LRU (or some approximation)

– fully associative, a page can be placed anywhere

– look up in the page table
– on page fault, interrupt CPU and OS fetches 

from disk

– always write back (copy back)

How to find a block (in main memory)?

Which block to replace?

What happens on a write?



Michel Dubois, Murali Annavaram and Per Stenström © 2019
28

Virtual Address
Translation

031 Page offsetVirtual page number Virtual (program) address

Block called page
Typically 4-16 KB

Page table
stored in
main
memory

Present Physical page locationProtection

Block place
= physical
page in main
memory

027

Page offsetPhysical page number

Physical (main memory) address



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 4.4
Assuming 64-bit virtual addresses and 8-KB pages and that each page-table 
entry occupies 4 bytes. How much space does the page table entry occupy?

a) 264 bytes
b) 253 bytes
c) 244 bytes
d) 234 bytes



Michel Dubois, Murali Annavaram and Per Stenström © 2019
30

PTE, Page Table Entry
One entry in the page table: Present in memory or

must be fetched from
disk?

Page fault
if not present

• Presence bit
• Dirty bit
• Protection bits
• Reference (accessed) bits
• Physical page location (page number)



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Translation Lookaside Buffer 
(TLB)



Michel Dubois, Murali Annavaram and Per Stenström © 2019
32

Translation Lookaside Buffer (TLB)
• PTEs are cached in a small buffer called the Translation 

Lookaside Buffer (TLB for short).
• A TLB entry:

– The same as a PTE but instead of the Presence bit we have a Valid bit 
(like in a cache)

• A translation not found in the TLB causes a TLB miss



Michel Dubois, Murali Annavaram and Per Stenström © 2019
33

Virtual Memory Implementation
031 Page offsetVirtual page number

Virtual address

Memory
hierarchy

Physical    address

MMU

Data

Data

Translation
Lookaside
Buffer

Page table
address

MMU
Control

TLB miss

Physical
page

Valid
Protected

PTE

Valid?
Legal?

Process
info

Page
fault



Michel Dubois, Murali Annavaram and Per Stenström © 2019
34

TLB miss handling
• TLB misses are handled in hardware or software
• When PTE not found in TLB:

– Look up entry in page table (main memory)
– If page not present generate Page Fault
– If page not mapped generate Exception (invalid 

adress)
– Insert entry in TLB

• Stall while handling or restart instruction after handling



Michel Dubois, Murali Annavaram and Per Stenström © 2019

Page Fault Handling

1. Mark current process as not executable
2. Execute replacement algorithm
3. If modified, initiate write of chosen page to secondary memory
4. Switch to other tasks during write
5. Write finish causes exception that restarts memory manager
6. Initiate read of requested page from secondary memory
7. Switch to other tasks during read
8. Read finish causes exception that restarts memory manager
9. Update page table (and TLB)
10.Mark process that caused page fault as executable
11.Eventually, original process is restarted

Page fault handled by software (OS). Takes very long time!



Michel Dubois, Murali Annavaram and Per Stenström © 2019

What you should know by now
• Cache performance equation

– Impact of miss penalty on execution time
• Classification of cache misses – the 3C model

– Impact of cache organizational parameters on miss type
• Multi-level memory hierarchies

– Inclusion and exclusion
• Non-blocking or lockup-free caches 

– Primary/secondary misses and MSHRs
• Hardware and software prefetching

– Sequential/stride pref. and pref. instructions
• Virtual memory and hardware support (TLB)

Michel Dubois, Murali Annavaram and Per Stenström © 2017


