
Michel Dubois, Murali Annavaram and Per Stenström © 2019

Speculative Instruction Execution
• Dynamically scheduled pipelines (Ch 3.4)

üTwo-level dynamic branch prediction (Ch 3.4.3)
Putting it Together:
ü Tomasulo + Branch prediction + Speculation (Ch 3.4.4)
ü Dynamic memory disambiguation (Ch 3.4.5)
ü Register renaming techniques (Ch 3.4.6)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Two-Level Branch Prediction
(Ch 3.4.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Correlating Branch Predictors 1(2)
To improve on two-bit predictors, we need to look at other
branches than branches in loops.

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Consider the following code snippet:

if (a==2) then a:=0;
if (b==2) then b:=0;
if (a!=b) then ---

• If the first two conditions succeed, the 3rd will fail
• Thus: The 3rd branch is correlated with the first two
• Previous predictors track the history of each branch only

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Correlating Branch Predictors 2(2)
In general, a branch may behave differently if it is reached through
different code sequences

• The code sequence can be characterized by the outcome of the
latest branches to execute

We can use N bits of prediction and the outcomes of the last M
branches to execute

• Global vs. local history
• Note that the branch itself may be part of the global history

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

(M,N) BPB
Outcome of the last M branches is the global branch history

Global history is used to differentiate
between various behaviors of a particular branch
This can be generalized: Two level predictors

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Use N bit predictor:
• BPB is indexed with P bits of the branch program counter (PC)

and M bits from branch history register
• BPB size: N x 2 M x 2 P

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Two-level Branch Predictors

In a two-level predictor we add history bits to access the BTB
•History can be global (all branches) or private (this branch only)
•Notation: The first (capital) letter refers to the type of history. The
last letter refers to whether each predictor is private in the table
•G or g means “Global”; P or p means “Private”

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Branch Target Buffer (BTB)
Aim: To eliminate the branch penalty
• Need to know the target address by the end of I-fetch
The BTB: Cache for all branch target addresses (no aliasing)

• Accessed in I-Fetch in parallel with instructions and BPB entry
• Relies on the fact that the target address of a branch never

changes: predicting indirect jumps
• Procedure return is a major cause of indirect jump
• Use a stack to track the stack of procedure calls

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 4.1
Consider the following program:

for (i=0;i<100;i++)
if (i%2==0)

then a=1
else a=0;

Consider a 6-bit branch history register for the high-lighted branch.
Which of the following statements are correct?
a) 010101
b) 110011
c) 101010
d) 001100

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Hardware Supported Speculation
(Ch 3.4.4)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Hardware Supported Speculation
Combination of three main ideas:
• Dynamic OoO instruction scheduling (Tomasulo)
• Dynamic branch prediction, allowing scheduling across branches
• Speculative execution: all control dependencies are resolved
Hardware-based speculation uses a data-flow approach: instructions
execute when their operands are available, across predicted branches

Key ideas:
• Separate the completion of instruction execution and the commit of

its result
• Between completion and commit, results are speculative
• Commit the results to registers and storage in process/program

order

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo with Speculative Execution
New structures:
• Reorder buffer (ROB)
• Branch prediction buffer (BPB)
• Branch target buffer (BTB)

Michel Dubois, Murali Annavaram and Per Stenström © 2017

ROB:
• Keeps track of process order (FIFO)
• Holds speculative results
• No more snooping by registers
Registers:
• Pending in back-end
• Speculative in ROB
• Committed in the register file
Use ROB entry ID as TAG for renaming

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Speculative Tomasulo Algorithm 1(2)
Normal operation (no mispredicted branch, no
exception)
1. I-FETCH

– Fetch instruction
– Predict branches and their target
– Fill the instruction fetch Q (IFQ) following

the branch prediction

Michel Dubois, Murali Annavaram and Per Stenström © 2017

2. I-DECODE/DISPATCH
– Decode opcode
– Allocate 1 issue Q entry + 1 ROB entry + 1

L/S Q entry for Load/Store
– Rename destination register (TAG) with

ROB entry ID, mark “pending in Register
Alias Table (RAT)

– Fill input register operand field
• If value is marked “pending” in RAT fill

operand field with TAG (not ready)
• If marked “completed” in RAT fetch

value from ROB (ready)
• If marked “committed” in RAT, fetch

value from register file (ready)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Speculative Tomasulo Algorithm 2(2)
3. ISSUE

– Wait in issue Q until all inputs are ready (snoop the CDB)
– Issue in a cycle when conflicts for FU and CDB can be avoided

4. COMPLETE EXECUTION AND WRITE RESULTS
– Result is written to the ROB via the CDB
– Destination register is marked “Completed” in the RAT

5. COMMIT (OR GRADUATE OR RETIRE)
– Wait to reach the head of the ROB
– Write result to register or to memory (store)

Branch misprediction
– All instructions following the branch in the ROB must be flushed
– Wait until the branch reaches the top of the ROB and flush the

ROB AND flush all instructions in the back-end
– Instructions at the correct target are fetched.

Exceptions: Similar to branch misprediction

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 4.2
Which of the following statements are correct?
a) The ROB keeps instructions in the order they are executed
b) The ROB keeps instructions in the order they are issued for

execution
c) The ROB keeps instructions in the order they read their operands
d) The ROB keeps instructions in the order they are dispatched

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Memory Disambiguation
(Ch 3.4.5)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Solving Memory Hazards
For Loads/Stores we use the same approach as in Tomasulo:

– Load/store instructions issue to L/S Q through the AGU
– Stores are split into 2 instructions: address + cache access
– Each sub-instruction is allocated 1 issue Q entry

All WAW and WAR hazards are automatically solved
– Because stores update the cache in process order when

they reach the top of the reorder buffer
Check for RAW hazards in the L/S Q before sending the Load to
cache

– Load can issue to cache as soon as it reaches the L/S Q
– However, if a store with the same address is in front of the

load in the L/S Q then
• Wait until store reaches the cache (at the top of the ROB), or
• Return the value when it is ready

What to do when there are stores in front whose address is
unknown

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Memory Disambiguation 1(2)
Figuring out if two addresses are equal to avoid hazards
• Conservative approach:

– A ready Load must wait in the L/S Q until addresses of all
Stores preceding it in the L/S Q are known

– Problem: The situation where a Load depends on a Store in
the L/S Q is quite rare

• Optimistic approach: Speculative disambiguation
– Use the mechanisms in place for speculative execution

(ROB + roll-back)

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Memory Disambiguation 2(2)
• Speculative disambiguation (cont’d)

– If a Load is ready and Stores with unknown addresses are in
front of it in the L/S Q

• Speculatively assume that their addresses are different from
the load’s address

• Issue load to cache
• Later, when the store’s address has been computed and is

ready, check all following Loads in L/S Q
• If a Load has the same address and is completed, the load and

all the following instructions must be replayed (as a
mispredicted branch)

Michel Dubois, Murali Annavaram and Per Stenström © 2017

• Intermediate:
– Keep track that a load has violated in the past
– Treat that load conservatively; treat all other loads

speculatively

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Example

New column: Retire
• Load can be dispatched right after the Branch
• Store to cache must wait until it reaches the top of the ROB

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 3.3
Consider the following program:
I1: SW R1,0(R2)
I2: LW R4,0(R3)
I3: LW R6,0(R5)

Which of the following statements are correct
a)I1, I2 and I3 can execute in any order correctly
b)I2 can return value from store queue. I2 can read from cache before
I1 when I1’s address is known
c)I3 can read from cache before I1 and I2 execute if it reads from a
different address than I1 and if I2 reads from same address that I1
stores

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Register Renaming
(Ch 3.4.6)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Explicit Register Renaming
• ROB orders instruction commits and provides storage for

speculative register values until they commit

• Speculative register values may also be kept in physical registers
– Then the role of the ROB is limited to ordering instruction

commits
– Physical registers are “shadow” registers keeping non-

committed results
• Large number of physical registers (more than # of architectural

registers – the registers visible from the ISA)

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Physical vs architectural registers
Architectural registers are mapped to physical registers
dynamically
•At any one time one architectural register may map to multiple
physical registers
•Architectural registers are renamed to physical at dispatch
•Whenever a new value is stored in a register, a new physical
register is allocated and the mapping is changed to point to this
latest value
•One physical register must hold the latest committed (retired)
value of each architectural register
•Physical registers must be reclaimed
•ROB entry carries the mapping of architectural to physical
number
Can’t dispatch if all physical registers are allocated

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Register Renaming: Structures

• Frontend RAT points to most recent value. Retirement RAT
points to most recent retired value (could be the same)

• More speculative values of the same architectural register may
be in the register file

• “Updating register” now means “Updating the pointer in the
retirement RAT”

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Register Renaming: Algorithm
When an instruction is dispatched its operands are renamed
• A physical register is allocated to the destination register
• The frontend RAT is updated
• The physical register number mapped by the frontend is now

the TAG used in Tomasulo algorithm (not the ROB entry #)
• Input register operands are mapped to their physical register

through the frontend RAT
• If value is ready it is dispatched to the issue Q. Otherwise the

physical register number is dispatched (Not Ready)
• When an instruction retires, its destination physical register

has the retired value and the retirement RAT is updated
– Previous physical register mapped by the retirement RAT is

reclaimed

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 3.4
Consider the following program
I1: ADD R1,R2,R3 (STATUS: COMMITTED)
I2: ADD R1,R4,R5 (STATUS: RETIRED)
I3: ADD R1,R6,R7 (STATUS: UNDER EXECUTION)

Which of the following statements are incorrect?
a)I3’s R1 value is the latest value
b)I1’s R1 value is the latest value
c)I2’s R1 value is the latest value
d)The register file contains the R1 value produced by I2
e)The registerfile contains the R1 value produced by I1

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Register Fetch After Issue

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

What you should know by now
• Dynamic branch prediction

– Simple 1- and 2-bit predictors
– Correlated branch prediction
– Two level branch prediction

• Local/global branch history and predictors

• Speculative execution
– Combination of Tomasulo + branch prediction + speculation
– Structures needed for speculation
– Speculative Tomasulo algorithm
– Techniques for dynamic memory disambiguation
– Register renaming techniques

Michel Dubois, Murali Annavaram and Per Stenström © 2017

