ilecture 4

Speculative Instruction Execution

 Dynamically scheduled pipelines (Ch 3.4)

—> v'Two-level dynamic branch prediction (Ch 3.4.3)

—> Putting it Together:

—> v Tomasulo + Branch prediction + Speculation (Ch 3.4.4)
—> v' Dynamic memory disambiguation (Ch 3.4.5)

—> v’ Register renaming techniques (Ch 3.4.6)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Two-Level Branch Prediction
(Ch 3.4.3)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Correlating Branch Predictors 1(2)

To improve on two-bit predictors, we need to look at other
branches than branches in loops.

Consider the following code snippet:

if (a==2) then a:=0;
if (b==2) then b:=0;
if (al=b) then ---

—> « |f the first two conditions succeed, the 3 will fail
—>» + Thus: The 3" branch is correlated with the first two
—> + Previous predictors track the history of each branch only

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Correlating Branch Predictors 2(2)

In general, a branch may behave differently if it is reached through
different code sequences

« The code sequence can be characterized by the outcome of the
latest branches to execute

We can use N bits of prediction and the outcomes of the last M
branches to execute

« Global vs. local history
* Note that the branch itself may be part of the global history

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

O
(M,N) BPB

Outcome of the last M branches is the global branch history
Use N bit predictor:

—> +« BPB is indexed with P bits of the branch program counter (PC)
and M bits from branch history register

—> + BPBsize:Nx2Mx2P

branch
outcome

bit _’M global branch pc | | P_'Ibits

| history register
/ (shift register) |—|—|
’G‘)‘ \

branch
prediction buffer

Global history is used to differentiateI \

between various behaviors of a particular branch
This can be generalized: Two level predictors

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Two-level Branch Predictors

global

s predictor
table

| Global History Register

GAg

private history| global

table predictor
_r table

x
-1}
°
i
&)
o
=
Q
<
o
™3
S

branch PC index

PAg

In a two-level predictor we add history bits to access the BTB
*History can be global (all branches) or private (this branch only)

‘Notation: The first (capital) letter refers to the type of history. The
last letter refers to whether each predictor is private in the table

G or g means “Global”; P or p means “Private”

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

[
Branch Target Buffer (BTB)

Aim: To eliminate the branch penalty

 Need to know the target address by the end of I-fetch
The BTB: Cache for all branch target addresses (no aliasing)

BTB

PC: |

tag

index |

/7

2RX

T,

I BCEGATCE (D

~LL

i PC<-Tardet address IF branch
s predicted taken
i

 Accessed in I-Fetch in parallel with instructions and BPB entry

 Relies on the fact that the target address of a branch never
changes: predicting indirect jumps

* Procedure return is a major cause of indirect jump
Use a stack to track the stack of procedure calls

m
mers University of T

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

T
Quiz 4.1

Consider the following program:

for (i=0;i<100;i++)
then a=1
else a=0;
Consider a 6-bit branch history register for the high-lighted branch.
Which of the following statements are correct?
a) 010101
b) 110011
c) 101010
d) 001100

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Hardware Supported Speculation
(Ch 3.4.4)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Hardware Supported Speculation

Combination of three main ideas:

 Dynamic O00 instruction scheduling (Tomasulo)

« Dynamic branch prediction, allowing scheduling across branches
« Speculative execution: all control dependencies are resolved

Hardware-based speculation uses a data-flow approach: instructions
execute when their operands are available, across predicted branches

Key ideas:
- Separate the completion of instruction execution and the commit of
its result

« Between completion and commit, results are speculative

« Commit the results to registers and storage in process/program
order

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Tomasulo with Speculative Execution
New structures:

 Reorder buffer (ROB)

« Branch prediction buffer (BPB)

« Branch target buffer (BTB)

ROB:
« Keeps track of process order (FIFO)
 Holds speculative results

B3R, fags « No more snooping by registers
“ CcDB

AGU

, Registers:
ey ieue * Pending in back-end
L 2 2 . .
D Gache « Speculative in ROB

« Committed in the register file
Use ROB entry ID as TAG for renaming

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Speculative Tomasulo Algorithm 1(2)

Normal operation (no mispredicted branch, no

FRONT-END

exception)

—1. |-FETCH

l-cach
& I-fetch
BTB

instructiol

integer
registers

fetch

ecod
ispatch

FP
registers

>

A

integer memory

I |ssug

AGU

FP

y

floatin

@‘ tags

CDB
it

cbB

Y v

Store
queue

D-Cache

A

Fetch instruction
Predict branches and their target

Fill the instruction fetch Q (IFQ) following
the branch prediction

2. |-DECODE/DISPATCH

Decode opcode

Allocate 1 issue Q entry + 1 ROB entry + 1
L/S Q entry for Load/Store

Rename destination register (TAG) with

ROB entry ID, mark “pending in Register
Alias Table (RAT)

Fill input register operand field

If value is marked “pending” in RAT fill
operand field with TAG (not ready)

If marked “completed” in RAT fetch
value from ROB (ready)

If marked “committed” in RAT, fetch
value from register file (ready)

CHALNVIERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Speculative Tomasulo Algorithm 2(2)
3. ISSUE
— Wait in issue Q until all inputs are ready (snoop the CDB)
— Issue in a cycle when conflicts for FU and CDB can be avoided
4. COMPLETE EXECUTION AND WRITE RESULTS
— Result is written to the ROB via the CDB
— Destination register is marked “Completed” in the RAT
5. COMMIT (OR GRADUATE OR RETIRE)
— Wait to reach the head of the ROB
— Write result to register or to memory (store)
Branch misprediction

— All instructions following the branch in the ROB must be flushed

— Wait until the branch reaches the top of the ROB and flush the
ROB AND flush all instructions in the back-end

— Instructions at the correct target are fetched.
Exceptions: Similar to branch misprediction

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

T
Quiz 4.2

Which of the following statements are correct?
a) The ROB keeps instructions in the order they are executed

b) The ROB keeps instructions in the order they are issued for
execution

c) The ROB keeps instructions in the order they read their operands
d) The ROB keeps instructions in the order they are dispatched

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Memory Disambiguation
(Ch 3.4.5)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Solving Memory Hazards

For Loads/Stores we use the same approach as in Tomasulo:
— Load/store instructions issue to L/S Q through the AGU
— Stores are split into 2 instructions: address + cache access
— Each sub-instruction is allocated 1 issue Q entry

All WAW and WAR hazards are automatically solved

— Because stores update the cache in process order when
they reach the top of the reorder buffer

Check for RAW hazards in the L/S Q before sending the Load to
cache

— Load can issue to cache as soon as it reaches the L/S Q

— However, if a store with the same address is in front of the
load in the L/S Q then
« Wait until store reaches the cache (at the top of the ROB), or
* Return the value when it is ready

What to do when there are stores in front whose address is

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Dynamic Memory Disambiguation 1(2)

Figuring out if two addresses are equal to avoid hazards
« Conservative approach:

— A ready Load must wait in the L/S Q until addresses of all
Stores preceding it in the L/S Q are known

— Problem: The situation where a Load depends on a Store in
the L/S Q is quite rare
« Optimistic approach: Speculative disambiguation

— Use the mechanisms in place for speculative execution
(ROB + roll-back)

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

[
Dynamic Memory Disambiguation 2(2)

« Speculative disambiguation (cont’d)
— If a Load is ready and Stores with unknown addresses are in
front of itin the L/S Q

—> + Speculatively assume that their addresses are different from
the load’s address

-—>» + |ssue load to cache

-—>» « Later, when the store’s address has been computed and is
ready, check all following Loads in L/S Q

—> « |f a Load has the same address and is completed, the load and
all the following instructions must be replayed (as a
mispredicted branch)

 [Intermediate:

— Keep track that a load has violated in the past

— Treat that load conservatively; treat all other loads
speculatively

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Example

Dispatch | Issue Efaergr E;(riél ote | Cache Retire |ICOMMENTS

I1 L.S FO,0(R1) 1 2 (3) 3 4) 6

12 L.S F1,0(R2) 2 3 4) 4 () 7

I3 | ADD.S F2 F1FO 3 7 (8) 12 -- wait for F1

14 | S.S-AF2,0(R1) 4 5 (6) 6 --

I5 | S.5-D F2,0(R1) B 14 (15) (15) (16) wait for F2

16 | ADDI R1,R1,#4 6 7 (8) 8 --

I7 | ADDI R2 R2 #4 7 8 %) 9 --

I8 | SUBI R3,R3 #1 8 9 (10) 10 --

I9 | BNEZRS3 Loop 9 12 (13) 13 -- wait for R3

I10| L.SFO,0(R1) 10 12 (13) 13 (14) CDB conflict
with I9

I11] L.SF1,0(R2) 11 13 (14) 14 (15) issue conflict
with I10

112 | ADD.S F2 F1FO 12 17 (18) 22 -- wait for F1

New column: Retire
 Load can be dispatched right after the Branch
« Store to cache must wait until it reaches the top of the ROB

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Quiz 3.3

Consider the following program:
1. SW R1,0(R2)
12: LW R4,0(R3)
13: LW R6,0(R5)

Which of the following statements are correct
a)l1, 12 and I3 can execute in any order correctly

b)I2 can return value from store queue. |12 can read from cache before
|1 when [1's address is known

c)I3 can read from cache before 11 and 12 execute if it reads from a
different address than |1 and if 12 reads from same address that |1
stores

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Register Renaming
(Ch 3.4.6)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Explicit Register Renaming

ROB orders instruction commits and provides storage for
speculative register values until they commit

Speculative register values may also be kept in physical registers
— Then the role of the ROB is limited to ordering instruction
commits
— Physical registers are “shadow” registers keeping non-
committed results

Large number of physical registers (more than # of architectural
registers — the registers visible from the ISA)

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Physical vs architectural registers

Architectural registers are mapped to physical registers
dynamically

At any one time one architectural register may map to multiple
physical registers
*Architectural registers are renamed to physical at dispatch

‘Whenever a new value is stored in a register, a new physical
register is allocated and the mapping is changed to point to this
latest value

*One physical register must hold the latest committed (retired)
value of each architectural register

*Physical registers must be reclaimed

‘ROB entry carries the mapping of architectural to physical
number

Can’t dispatch if all physical registers are allocated

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Register Renaming: Structures

0
frontend RAT
(latest value) latest €&
-
register # 5 31 -
¢ : :
(from instruction) —_— e
r1 "’0 retired (
7
1
retirement RAT speculative
(latest retired value)
127

 Frontend RAT points to most recent value. Retirement RAT
points to most recent retired value (could be the same)

 More speculative values of the same architectural register may
be in the register file

« “Updating register” now means “Updating the pointer in the
retirement RAT”

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Register Renaming: Algorithm

When an instruction is dispatched its operands are renamed
A physical register is allocated to the destination register
 The frontend RAT is updated

 The physical register number mapped by the frontend is now
the TAG used in Tomasulo algorithm (not the ROB entry #)

* Input register operands are mapped to their physical register
through the frontend RAT

« If value is ready it is dispatched to the issue Q. Otherwise the
physical register number is dispatched (Not Ready)

« When an instruction retires, its destination physical register
has the retired value and the retirement RAT is updated

— Previous physical register mapped by the retirement RAT is
reclaimed

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Quiz 3.4

Consider the following program

1. ADD R1,R2,R3 (STATUS: COMMITTED)

12: ADD R1,R4,R5 (STATUS: RETIRED)

|13: ADD R1,R6,R7 (STATUS: UNDER EXECUTION)

Which of the following statements are incorrect?

a)l3’'s R1 value is the latest value

b)I1’s R1 value is the latest value

c)I2’'s R1 value is the latest value

d)The register file contains the R1 value produced by 2
e)The registerfile contains the R1 value produced by I1

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Register Fetch After Issue

I-cache
_] RoB
BPB
& I-fetch) e —
BTB -

instruction
fetch
queue

e
[B)ISPATCHED WITH READY
IT

ROLE OF THE CDB:

« TRANSFER VALUES TO €
REGISTER

4 e AWAKE INSTRUCTIONS BY G
B 4 — SETTING READY BITS IN
] —] i ISSUE Qs
n¥mbers
| |

eer i i REGISTERS ARE FETCHED RIGHT €
intege g foating-point BEFORE EXECUTION

integer
registers
(physical)

ront-en I-decode/
RAT dispatch

PROBLEMS:
+EFFECTIVE LATENCY MUCH €=
HIGHER

EF e SIMILAR PROBLEM IN

¥ , TOMASULO

integer
bralgch

CDB

Load Store
queue queue

D-Cache

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
What you should know by now

 Dynamic branch prediction

— Simple 1- and 2-bit predictors

— Correlated branch prediction

— Two level branch prediction

» Local/global branch history and predictors

 Speculative execution

— Combination of Tomasulo + branch prediction + speculation

— Structures needed for speculation

— Speculative Tomasulo algorithm

— Techniques for dynamic memory disambiguation

— Register renaming techniques

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

