
Michel Dubois, Murali Annavaram and Per Stenström © 2019

Instruction scheduling techniques
• Dynamically scheduled pipelines (Ch 3.4)

üTomasulo’s algorithm (Ch 3.4.1)
üSpeculative execution (Ch 3.4.2)
üDynamic branch prediction (Ch 3.4.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Instruction Scheduling

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Instruction Scheduling
Static pipelines can only exploit the parallelism exposed to it by

the compiler
• Instructions are stalled in ID until they are hazard-free and then

are scheduled for execution
• The compiler strives to limit the number of stalls in ID
• However, compiler is limited in what it can do
Potentially there is a large amount of Instruction Level Parallelism

(ILP) to exploit (across 100s of instructions)
• Must cross basic block boundaries (10s of branches)
• Data-flow order (dependencies) – not program order

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Instruction Scheduling (Cont’d)
Dynamic instruction scheduling
• Decode instructions then dispatch them in queues where they

wait to be scheduled until input operands are available
• No stall at decode for data hazard – only structural hazards

To extract and exploit the vast amount of ILP we must meet
several challenges

• All data hazards – RAW, WAW, and WAR – are now possible
both on memory and registers and must be avoided

• Execute beyond conditional branches – speculative execution
• Enforce the precise exception model

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Example of Dynamic Scheduling
Loop L.S F0,0(R1) (1)

L.S F1,0(R2) (1)
ADD.S F2,F1,F0 (2)

S.S F2,0(R1) (5)

ADDI R1,R1,#4 (1)

ADDI R2,R2,#4 (1)
SUBI R3,R3,#1 (1)

BNEZ R3,Loop (3)

• ADDI R1 could pass through ID while the
Store waits (watch for WAR hazard on R1)
• ADDI R2 is fetched and bypass store as well
• SUBI R3 is fetched and bypass the store.

By that time the ADD.S is in FP4 and the
Store has to stall one more cycle

• Could even have the branch bypass the
Store

Limits to this approach: Pipeline has to be redesigned

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 3.1
Loop L.S F0,0(R1) (1)

L.S F1,0(R2) (1)

ADD.S F2,F1,F0 (2)

S.S F2,0(R1) (5)

ADDI R1,R1,#4 (1)

ADDI R2,R2,#4 (1)

SUBI R3,R3,#1 (1)

BNEZ R3,Loop (3)

In how many cycles would the
above loop iteration be
executed under ideal
dynamic scheduling with an
integer and floating point
execution unit?

a) 8 cycles
b) 13 cycles
c) 9 cycles

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Instruction Scheduling:
Tomasulo’s Algorithm

(Ch 3.4.1)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo: Pipeline Structure

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo: Algorithm Overview
Front-end
• Instructions are fetched and stored in a

FIFO Queue – ”Instruction Fetch Queue”
(IFQ)

• When an instruction reaches the top, it is
– decoded and
– dispatched to an Issue Queue

(Integer/Branch, Memory or FP) even if
some of its operands are being
computed, i.e., not ready

Back-end
• Instructions in Issue Queues wait for their

input (register) operands and are scheduled
when available

• Instructions execute in their functional unit
and their result is put on the common
databus (CDB)

• All instructions in queues and all registers
watch the CDB and grab the value they are
waiting for

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo Algorithm: Hazards

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo: Hazards on Registers 2(2)
The output register is assigned a TAG

(the Q entry number where
instruction is dispatched)

• The TAG is stored in the register file
and is reclaimed when the
instruction has written its value on
the CDB and releases its Q entry

• The TAG of the result is carried by
the CDB and ”snooped” by queues
and by register files

• When TAG match is detected the
value is stored in Q or in register

– TAG is invalidated in registers
– Operand in instruction is valid

This is a form of dynamic register
renaming

Register values are renamed to Q entry
numbers

Multiple values for the same register
may be pending at any time

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo: Memory Hazards
All types of hazards are possible

on memory (RAW, WAR, WAW)
Load/Store Q (L/S Q): Staging

buffer to solve memory
hazards

– Stores are split in 2 sub-
instructions:

1) compute address
2) wait f. data
– Both are dispatched to the memory

and results are latched in the L/S Q
– L/S resolves memory hazards

(memory disambiguation)

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Structural and Control Hazards
Structural hazards:
• I-fetch must stall if the IF Q is full
• Dispatch must stall if all entries in the issue Q or L/S Q are

occupied
• Instructions cannot be issued in case of conflicts for the CDB

or functional units
Control hazards:
• Dispatcher stalls when it reaches a branch instruction
• Branches are dispatched to integer issue Q as integer instr.
• They wait for their register operands and put outcome on CDB:

– If untaken, then dispatch resumes from the IFQ
– If taken, then dispatch clears the IFQ and directs I-fetch to fetch the target

instruction stream
Precise exceptions
• Not supported

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 3.2
Which of the following statements are correct
a) Tomasulo resolves structural hazards by not issuing

any instruction to a queue until an empty slot in the
queue is available

b) Tomasulo resolves WAR hazards by forcing instructions
to read from the registerfile in program order

c) Tomasulo resolves RAW, WAR and WAW hazards by
associating a TAG instead of a register to the
destination operand

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Discussion 1(2)
WAW and WAR dependencies are also called ”False” or ”Name”

dependencies
• RAW dependencies are called ”True” dependencies
• False or Name dependencies are due to limited memory

resources
Tomasulo algorithm solves WAW and WAR hazards by assigning

result (output) operands a TAG – the issue Q number

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Discussion 2(2)
Example:
I1: L.S F0,0(R1)
I2: ADD.S F1,F1,F0
I3: L.S F0, 0(R2)
Important observations:
• I3 may complete its execution before I1, if I1 misses and I3 hits

in cache
• BUT: I2 waits on the TAG of I1, not on F0 or on the TAG of I3.

Thus, the WAR hazard between I2 and I3 is avoided
• The TAG of F0 in the register file is set to I1’s TAG when I1 is

dispatched and then to I3’s TAG when I3 is dispatched
• Even if I3 completes before I1, the final value of F0 is I3’s. Thus,

the WAW hazard between I1 and I3 is avoided.
• The value of F0 produced by I1 is never stored in register. It is a

fleeting value only consumed by I2

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Tomasulo: Example

Each entry is clock cycle number; fill table clock by clock
• Instructions are issued and start execution out of (process) order
• Large overhead to manage instructions
• Latency of operation is effectively increased
• Structural hazards: CDB/FU conflicts

– Could take advantage of static scheduling (e.g., SUBI->BRANCH)
– Branch acts as a barrier to parallelism

13 (14) 14 (15)
7

Integer instr.: 1 cycle
FP instr.: 5 cycles

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Branch Prediction
(Ch 3.4.2)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Execution Beyond Unresolved Branches
Basic block: Block of consecutive instructions with no branch and
no target of branch. Execution looks like a tree of possibilities.

All-path execution: Execute all paths after branch and then cancel
all but one path.
• Very hardware intensive
• Hard to keep track of order of instructions in a tree
• Unwanted exceptions
Predict branches and execute most likely path

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Branch Prediction 1(2)
Branch prediction buffer (BPB) accessed with
instruction in I-fetch
instruction memory

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Branch Prediction 2(2)

Branch prediction buffer (BPB)
•Small memory indexed with LSBs of PC in I-fetch
•Prediction is dropped if not a branch
•Otherwise the prediction bits are decoded into T/NT prediction
•Once the branch condition is known and if it is incorrect

– Rollback execution
– Update prediction bits

•Aliasing in BPB (different branches affect each others’ predict.)

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

1-Bit Predictor
Each BPB entry is 1 bit
• Bit records the last outcome of the branch
• Predicts that outcome is same as last outcome

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Loop 1:
Loop 2:
BEZ R2, Loop2

BEZ R3,Loop1
Always mispredict twice for every loop execution
• Once on entry and once on exit
• The mispredict on exit is unavoidable (loop count unknown)
• But the next mispredict on entry could be avoided
SOLUTION: Use a 2-bit predictor

Michel Dubois, Murali Annavaram and Per Stenström © 2019

2-Bit Branch Predictor
2-bit Up-Down saturating counter in each entry of the BPB

Taken: Add 1; Untaken: Subtract 1
• Now it takes 2 mispredictions in a row to change the prediction
• For the nested loop, the misprediction at entry is avoided
• Could have more than 2 bits, but two bits cover most patterns

Michel Dubois, Murali Annavaram and Per Stenström © 2017

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 3.3
Assume a branch predictor with a 2-bit counter with the
initial state 00. How many times does it mispredict for the
following loop:

for (i=0; i<100; i++);

a) 1
b) 2
c) 3
d) 4

Michel Dubois, Murali Annavaram and Per Stenström © 2019

What you should know by now
Dynamically scheduled pipelines
• Tomasulo algorithm
• Pipeline structure
• How to avoid RAW, WAR, WAW register and memory

hazards
• Simple dynamic branch prediction techniques

