Llecture 3

Instruction scheduling techniques

—> + Dynamically scheduled pipelines (Ch 3.4)
v Tomasulo’s algorithm (Ch 3.4.1)
v'Speculative execution (Ch 3.4.2)
v'Dynamic branch prediction (Ch 3.4.3)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Dynamic Instruction Scheduling

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Dynamic Instruction Scheduling

Static pipelines can only exploit the parallelism exposed to it by
the compiler

* Instructions are stalled in ID until they are hazard-free and then
are scheduled for execution

 The compiler strives to limit the number of stalls in ID
« However, compiler is limited in what it can do

Potentially there is a large amount of Instruction Level Parallelism
(ILP) to exploit (across 100s of instructions)

 Must cross basic block boundaries (10s of branches)
« Data-flow order (dependencies) — not program order

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Dynamic Instruction Scheduling (Cont’d)

Dynamic instruction scheduling

 Decode instructions then dispatch them in queues where they
wait to be scheduled until input operands are available

* No stall at decode for data hazard — only structural hazards

To extract and exploit the vast amount of ILP we must meet
several challenges

 All data hazards — RAW, WAW, and WAR - are now possible
both on memory and registers and must be avoided

 Execute beyond conditional branches — speculative execution
« Enforce the precise exception model

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Example of Dynamic Scheduling

Loop L.S FO,0(R1) « ADDI R1 could pass through ID while the
L.S F1,0(R2) Store waits (watch for WAR hazard on R1)

ADD.S F2,F1,F0 « ADDI R2 is fetched and bypass store as well
S.S F2,0(R1) « SUBI R3 is fetched and bypass the store.

ADDI R1,R1,#4 By that time the ADD.S is in FP4 and the
ADDI R2,R2, #4 Store has to stall one more cycle
SUBI R3,R3,#1 » Could even have the branch bypass the

BNEZ R3, Loop Store

ADDI R2 ADD.S F2
S.S F2,0(R1
SUBI R3 (R1) W
S FP1-|—- FP2 FP3 FP4

Limits to this aﬁﬁroach: Piﬁeline has to be redesigned

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

N N N =] OS] =

o

\

ADDI R1
IF ID

C

e
Quiz 3.1

Loop L.S FO0,0(R1) (1) In how many cycles would the
L.S F1,0(R2) (1) above loop iteration be
ADD.S F2,F1,F0 (2) executed under ideal
5.5 F2,0(R1) (5) dynamic scheduling with an

integer and floating point
APDI RI,R1,#4 (1) execution unit?
ADDI R2,R2,#4 (1) a) 8 cycles
SUBI R3,R3,#1 (1) b) 13 cycles
BNEZ R3, Loop (3) c) 9 cycles

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Dynamic Instruction Scheduling:

Tomasulo’s Algorithm
(Ch 3.4.1)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Tomasulo: Pipeline Structure

lcac
tage I-fetch
tags
inkeber o FRONT-END
r rs ue s FP regl
l&decod
i AKA "RESERVATION
— NS™ IN ORIGINAL
TOM i&
:r L intkger . 1110111 Noating-poi
. BAGK-END
I55 tags
nteger AGU FP
valfe « tag
queu 1 ueue
D-Cache

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Tomasulo: Algorithm Overview

™ Front-end
O, = « Instructions are fetched and stored in a
Y o FIFO Queue — "Instruction Fetch Queue”

e o= FRONT-END (IFQ)
* When an instruction reaches the top, it is

rogitors L — FP registdrs

(-duod) ?
dlspatc; AKA "RESERVATION
el » | STATIONS" N ORIGINAL — decoded and

e — dispatched to an Issue Queue
(Integer/Branch, Memory or FP) even if
some of its operands are being
computed, i.e., not ready

Back-end

Instructions in Issue Queues wait for their
input (register) operands and are scheduled
when available

Instructions execute in their functional unit

and their result is put on the common
databus (CDB)

All instructions in queues and all registers
watch the CDB and grab the value they are
waiting for

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

BACK-END

Tomasulo Algorithm: Hazards

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

[
Tomasulo: Hazards on Registers 2(2)

The output register is assigned a TAG
o (the Q entry number where
Moteh instruction is dispatched)
tags —= The TAG is stored in the register file
fu FRONT-END and is reclaimed when the
e registys instruction has written its value on
,&,:;:& . the CDB and releases .ItS Q e.ntry
AKA "RESERVATION The TAG of the result is carried by

¢ Ly SUL:, the CDB and ”"snooped” by queues

_.:I'n - and by register files
emory

ntoger flofing-poit * When TAG match is detected the

BACK-END value is stored in Q or in register
— TAG is invalidated in registers
0 AGU FP — Operand in instruction is valid

¢0B value + tag This is a form of dynamic register

ool %n renaming

L L Register values are renamed to Q entry
numbers

Multiple values for the same register
may be pending at any time

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

lags

Integer
regipters

155 tags

D-c.ﬂ' —

e
Tomasulo: Memory Hazards

- All types of hazards are possible
— Hoh - on memory (RAW, WAR, WAW)
A - .
oogs = % == FPrgetys buffer to solve memory
(ﬁ”’“ AKA"RESERVATION hazards
Y Y STATIONS" IN ORIGINAL
g m— — Stores are split in 2 sub-
m
F intmv:: ey R osigpont instructions:
=i @W BACKEND 1) compute address
mm - = — Both are dispatched to the memory
= and results are latched in the L/S Q
Lo
e e — L/S resolves memory hazards
— (memory disambiguation)

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Structural and Control Hazards

Structural hazards:

« |-fetch must stall if the IF Q is full

« Dispatch must stall if all entries in the issue Q or L/S Q are
occupied

* Instructions cannot be issued in case of conflicts for the CDB
or functional units

Control hazards:

 Dispatcher stalls when it reaches a branch instruction
 Branches are dispatched to integer issue Q as integer instr.

 They wait for their register operands and put outcome on CDB:
— If untaken, then dispatch resumes from the IFQ

— If taken, then dispatch clears the IFQ and directs I-fetch to fetch the target
instruction stream

Precise exceptions
 Not supported

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Quiz 3.2

Which of the following statements are correct

a) Tomasulo resolves structural hazards by not issuing
any instruction to a queue until an empty slot in the
gueue is available

b) Tomasulo resolves WAR hazards by forcing instructions
to read from the registerfile in program order

c) Tomasulo resolves RAW, WAR and WAW hazards by
associating a TAG instead of a register to the
destination operand

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Discussion 1(2)

WAW and WAR dependencies are also called "False” or "Name”
dependencies

« RAW dependencies are called "True” dependencies

 False or Name dependencies are due to limited memory
resources

Tomasulo algorithm solves WAW and WAR hazards by assigning
result (output) operands a TAG - the issue Q number

CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

[
Discussion 2(2)

Example:

11: L.S FO,0(R1)

12: ADD.S F1,F1,F0

13: L.S FO, 0(R2)
Important observations:

* 13 may complete its execution before I1, if 11 misses and I3 hits
in cache

« BUT: 12 waits on the TAG of |1, not on F0O or on the TAG of I3.
Thus, the WAR hazard between 12 and 13 is avoided

« The TAG of FO in the register file is set to I1’s TAG when I1 is
dispatched and then to I13’s TAG when I3 is dispatched

« Even if I3 completes before I1, the final value of FO is I13’s. Thus,
the WAW hazard between I1 and I3 is avoided.

 The value of FO produced by I1 is never stored in register. It is a
fleeting value only consumed by 12

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Tomasulo:

Example

Dispatch | Issue | Exec/ | Exec/ | Cache | CDB | COMMENTS
start | complete
I1 L.S FO,0(R1) 1 2 3) 3 4) | (B
I2 L.S F1,0(R2) 2 3 4) 4 ®) | (6)
I3 | ADD.S F2F1,FO 3 7 (8) 12 -- (13) | wait for F1
I4 | 5.5-AF2,0(R1) 4 5 6) 6 --
I5 | S.5-D F2,0(R1) 5 13 | (14) 14 (15y - | wait for F2
16 | ADDI R1R1#4 6 7 | ®) 8 -9
I7 | ADDI R2,R2 #4 7 8) 9 (10)
I8 | SUBI R3 R3 #1 8 9 (10) 10 (€3]
I9 | BNEZ R3 Loop 9 12 (13) 13 -- (14) | wait for R3
I10| L.SFO,0(R1) 15 16 17) 17 (18) | (19) alglgor' I’hl)
patc

I11 | L.SF1,0(R2) 16 17 (18) 18 (19) | (20)
I12 | ADD.S F2 F1FO 17 21 (22) 26 -- | (@7) | wait for F1

Integer instr.: 1 cycle
FP instr.: 5 cycles

Each entry is clock cycle number; fill table clock by clock
* Instructions are issued and start execution out of (process) order

 Large overhead to manage instructions

- Latency of operation is effectively increased

« Structural hazards: CDB/FU conflicts
— Could take advantage of static scheduling (e.g., SUBI->BRANCH)

— Branch acts as a barrier to iarallelism

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Dynamic Branch Prediction
(Ch 3.4.2)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Execution Beyond Unresolved Branches

Basic block: Block of consecutive instructions with no branch and

no target of branch. Execution looks like a tree of possibilities.
Current PC

Conditional

Basic Block Branches

speculative
execution

All-path execution: Execute all paths after branch and then cancel
all but one path.

—> + Very hardware intensive
—> « Hard to keep track of order of instructions in a tree
—> « Unwanted exceptions

Predict branches and execute most likely path
CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Dynamic Branch Prediction 1(2)

Branch prediction buffer (BPB) accessed with
instruction in I-fetch

instruction

memory / /

branch
prediction buffer (BPB)

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

[
Dynamic Branch Prediction 2(2)

Branch prediction buffer (BPB)

—> +Small memory indexed with LSBs of PC in I-fetch
—> °+Prediction is dropped if not a branch
—> +Otherwise the prediction bits are decoded into T/NT prediction
—> +Once the branch condition is known and if it is incorrect
— Rollback execution
— Update prediction bits
—> <Aliasing in BPB (different branches affect each others’ predict.)

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

1-Bit Predictor

Each BPB entry is 1 bit

 Bit records the last outcome of the branch
 Predicts that outcome is same as last outcome

Loop 1:
Loop 2:

BEZ R2, Loop2
BEZ R3,Loop1

Always mispredict twice for every loop execution
—> + Once on entry and once on exit

—> + The mispredict on exit is unavoidable (loop count unknown)
—> + But the next mispredict on entry could be avoided
SOLUTION: Use a 2-bit predictor

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

2-Bit Branch Predictor

2-bit Up-Down saturating counter in each entry of the BPB

N N

U
00
Predict U
T
1

01 U: Untaken
Predict U T: Taken

N L

Predict T Predict T
U

Taken: Add 1; Untaken: Subtract 1
—> + Now it takes 2 mispredictions in a row to change the prediction
—> + For the nested loop, the misprediction at entry is avoided
—> + Could have more than 2 bits, but two bits cover most patterns

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
Quiz 3.3

Assume a branch predictor with a 2-bit counter with the
initial state 00. How many times does it mispredict for the
following loop:

for (i=0; i<100; i++);

o Q

@)
~ WO N -

)
)
)
)

O

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

e
What you should know by now

Dynamically scheduled pipelines
* Tomasulo algorithm
* Pipeline structure

* How to avoid RAW, WAR, WAW register and memory
nazards

« Simple dynamic branch prediction techniques

CHALMERS

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

