
Instruction scheduling techniques
• Dynamically scheduled pipelines (Ch. 3.4)

ü Tomasulo’s algorithm (3.4.1)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Dynamic Instruction
Scheduling

Loop L.S F0,0(R1) (1)
L.S F1,0(R2) (1)
ADD.S F2,F1,F0 (2)
S.S F2,0(R1) (5)
ADDI R1,R1,#4 (1)
ADDI R2,R2,#4 (1)
SUBI R3,R3,#1 (1)
BNEZ R3,Loop (3)

Limitations of Static Scheduling

IF

IF/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

X

FP1 FP2 FP5

M
U

X

ADD.S

S.SADDIADDI

Loop L.S F0,0(R1) (1)
L.S F1,0(R2) (1)
ADD.S F2,F1,F0 (2)
S.S F2,0(R1) (5)
ADDI R1,R1,#4 (1)
ADDI R2,R2,#4 (1)
SUBI R3,R3,#1 (1)
BNEZ R3,Loop (3)

IF

IF/ID ID/EX

EX

EX/MEM

MEM

MEM/WB

ID WB

M
U

X

FP1 FP2 FP5

M
U

X

ADD.SS.SADDIADDI

Five cycles later Limitations of Static Scheduling

Question:
How many cycles
would the code
need, ideally?

Answer:
One cycle per
instruction yields
eight cycles

IF IS EXID WB

Instruction
Fetch

Instruction
Decode/
Dispatch

Instruction
Issue/Read
Operands

Execute Write
Back

IF ID WB

EX 1

EX 2

EX N

IQ 1

IQ 2

IQ N

Fetch Decode/
Dispatch

Read
Operands Execute Write

Back

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F0,0(R1)

Cycle: 1

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F0,0(R1)L.S F1,0(R2)

Cycle: 2

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F0,0(R1)

L.S F1,0(R2)ADD.S F2,F1,F0

Cycle: 3

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F0,0(R1)L.S F1,0(R2)

ADD.S F2,F1,F0S.S F2,0(R1)

Cycle: 4

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F0,0(R1)

L.S F1,0(R2)

ADD.S F2,F1,F0

ADDI R1,R1,#4 S.S F2,0(R1)

Cycle: 5

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F1,0(R2)

ADD.S F2,F1,F0

ADDI R1,R1,#4ADDI R2,R2,#4

S.S F2,0(R1)

Cycle: 6

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

ADD.S F2,F1,F0

ADDI R2,R2,#4 SUBI R3,R3,#1

S.S F2,0(R1)

ADDI R1,R1,#4
Cycle: 7

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

ADD.S F2,F1,F0

SUBI R3,R3,#1 BNEZ R3,Loop

S.S F2,0(R1)

ADDI R1,R1,#4ADDI R2,R2,#4 Cycle: 8

The ADDI R1,R1,#4 is being executed Out-of-program-order
with respect to the S.S F2,0(R1)!

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F0,0(R2)

ADD.S F2,F1,F0

SUBI R3,R3,#1

BNEZ R3,Loop

S.S F2,0(R1)

ADDI R1,R1,#4

ADDI R2,R2,#4
Cycle: 9

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F1,0(R1) L.S F0,0(R2)

ADD.S F2,F1,F0

SUBI R3,R3,#1 BNEZ R3,Loop

S.S F2,0(R1)

ADDI R2,R2,#4

Cycle: 10

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F1,0(R1) L.S F0,0(R2)

ADD.S F2,F1,F0

SUBI R3,R3,#1

BNEZ R3,Loop

S.S F2,0(R1)

Cycle: 11

IF ID WB

INT

FP

MEM

I-Q

FP-Q

M-Q

Loop L.S F0,0(R1)
L.S F1,0(R2)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3,#1
BNEZ R3,Loop

L.S F1,0(R1)

L.S F0,0(R2)

ADD.S F2,F1,F0ADD,S F2,F1,F0

BNEZ R3,Loop

S.S F2,0(R1)

Cycle: 12

Question:
Consider the program below and determine how
many cycles it takes to execute one iteration on the
example pipeline.

Loop L.S F0,0(R1)
ADD.S F2,F1,F0
S.S F2,0(R1)
ADDI R1,R1,#4
SUBI R3,R3,#1
BNEZ R3,Loop

Answer:
We fill out the pipeline diagram below.

Loop I1:L.S F0,0(R1)
I2:ADD.S F2,F1,F0
I3:S.S F2,0(R1)
I4:ADDI R1,R1,#4
I5:SUBI R3,R3,#1
I6:BNEZ R3,Loop

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
I1 IF ID IS EX WB
I2 IF ID IS EX EX EX EX EX WB
I3 IF ID IS IS IS IS IS EX WB
I4 IF ID IS EX WB
I5 IF ID IS EX WB
I6 IF ID IS EX WB WB WB

Answer:
It takes 12 cycles

Question:
In what order are the instructions fetched and in what
order are they completed

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
I1 IF ID IS EX WB
I2 IF ID IS EX EX EX EX EX WB
I3 IF ID IS IS IS IS IS EX WB
I4 IF ID IS EX WB
I5 IF ID IS EX WB
I6 IF ID IS EX WB WB WB

Answer:
Fetch order = program order: I1,I2,I3,I4,I5
Completion order: I1, I4,I5,I2,I3,I6

Tomasulo algorithm

IF ID WB

INT

FP

MEM

I-Q

FP-Q

MEM-Q

Structural hazards
Data hazards

Control hazards

Structural hazards

Data hazards
Control hazards

IF ID WB

INT

FP

MEM

Registers

Out-of-order execution => All data hazards show up!

Key recipe to resolve data hazards: register renaming!

Structural hazards

Data hazards
Control hazards

IF ID WB

INT

FP

MEM

Value Tag

…
ADD.S F2,F1,F0
S.S F2,0(R1)
…

ADD.S F2,F1,F0

Tag= T1

The Tomasulo Algorithm

Tag assignment is a form
of register renaming

Structural hazards

Data hazards
Control hazards

IF ID WB

INT

FP

MEM

F2
Value Tag

…
ADD.S F2,F1,F0
S.S F2,0(R1)
…

ADD.S T1,F1,F0

Tag= T1

T1

S.S T1,0(R1)

Structural hazards

Data hazards
Control hazards

IF ID CDB

INT

FP

MEM

Registers

Common
Data Bus

Structural hazards

Data hazards
Control hazards

IF ID CDB

INT

FP

MEM

F2
Value Tag

…
ADD.S F2,F1,F0
S.S F2,0(R1)
…

ADD.S T1,F1,F0

T1

S.S T1,0(R1)

Value + Tag

Register renaming

Structural hazards

Data hazards
Control hazards

IF ID CDB

INT

FP

MEM

F2
Value Tag

…
ADD.S F2,F1,F0
S.S F2,0(R1)
…

R

S.S F2,0(R1)

Structural hazards

Data hazards
Control hazards

IF ID CDB

INT

FP

MEM

F2
Value Tag

…
ADD.S F2,F1,F0
S.S F2,0(R1)
…

R

S.S F2,0(R1)

Resolution of Data Hazards
in the Tomasulo algorithm

Read-After-Write (RAW)
Write-After-Read (WAR)

Write-After-Write (WAW)

ADD.S F2,F1,F0
S.S F2, 0(R1)

Read-After-Write (RAW)

Write-After-Read (WAR)
Write-After-Write (WAW)

ADD.S F2,F1,F0
L.S F1,0(R1)

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F1,0(R1)
…

R

L.S F1,0(R1)

ADD.S T1,T0,F0

F1 T0

Read-After-Write (RAW)

Write-After-Read (WAR)
Write-After-Write (WAW)

F2 T1

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F1,0(R1)
…

R

L.S T2,0(R1)

ADD.S T1,T0,F0

F1 T2

Read-After-Write (RAW)

Write-After-Read (WAR)
Write-After-Write (WAW)

F2 T1

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F1,0(R1)
…

R

L.S T2,0(R1)

ADD.S T1,T0,F0

F1 T2

Read-After-Write (RAW)

Write-After-Read (WAR)
Write-After-Write (WAW)

F2 T1

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F1,0(R1)
…

R

L.S T2,0(R1)

F1 R

Read-After-Write (RAW)

Write-After-Read (WAR)
Write-After-Write (WAW)

F2 T1

ADD.S T1,T0,F0

Read-After-Write (RAW)

Write-After-Read (WAR)

Write-After-Write (WAW)

ADD.S F2,F1,F0
L.S F2,0(R1)

Question:
How is this WAW hazard eliminated
by Tomasulo algorithm?

Answer:
We will demonstrate this next.

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F2,0(R1)
…

R

L.S F2,0(R1)

ADD.S T1,F1,F0

F1 R

F2 T1

Read-After-Write (RAW)

Write-After-Read (WAR)

Write-After-Write (WAW)

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F2,0(R1)
…

R

L.S T2,0(R1)

ADD.S T1,F1,F0

F1 R

F2 T2

Read-After-Write (RAW)

Write-After-Read (WAR)

Write-After-Write (WAW)

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F2,0(R1)
…

R

L.S T2,0(R1)

ADD.S T1,F1,F0

F1 R

F2 T2

Read-After-Write (RAW)

Write-After-Read (WAR)

Write-After-Write (WAW)

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F2,0(R1)
…

R

L.S T2,0(R1)

ADD.S T1,F1,F0

F1 R

F2 R

Read-After-Write (RAW)

Write-After-Read (WAR)

Write-After-Write (WAW)

IF ID CDB

INT

FP

MEM

F0
Value Tag

…
ADD.S F2,F1,F0
L.S F2,0(R1)
…

R

ADD.S T1,F1,F0

F1 R

F2 R

Read-After-Write (RAW)

Write-After-Read (WAR)

Write-After-Write (WAW)

Question:
Consider the following code segment:
I1: ADD F1,F2,F3
I2: ADD F2,F4,F5
How many cycles will it take until I1 and I2 are
completed assuming there are two floating-point
execution units?

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
I1 IF ID IS EX EX EX EX EX WB
I2 IF ID IS EX EX EX EX EX WB

Answer:
In 9 and 10 cycles, respectively

