
Michel Dubois, Murali Annavaram and Per Stenström © 2019

Instruction scheduling techniques
Statically scheduled pipelines (Ch 3.3.2 - 3.3.6)
ü Out-of-order instruction completion (Ch 3.3.2)
ü Superpipelined and superscalar CPUs (Ch 3.3.3)
ü Static instruction scheduling (Ch 3.3.4-3.3.5)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Pipelines with Out-of-Order
Completion (Ch 3.3.2)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Out-of-order Instruction Completion

• Floating-point (FP) instructions take 5 clocks and are pipelined
• Integer unit: Handles integer inst., branches and Loads/Stores
• Two separate register files: integer and FP
• Forwarding paths into EX and FP1
• Instructions wait in ID until they can proceed data hazard free (RAW

and WAW)
• Still in-order execution but out-of-order completion

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Latency vs Repeat Interval
• Latency of operation:

– Minimum number of cycles between an instruction producing a result and
the instruction consuming it

– Dependent instruction must stall in ID until its operand is forwarded
– If functional units are linear pipelines then operation latency is execution

time minus 1
• Repeat/Inititation interval:

– Number of cycles that must elapse between consecutive issues of
instructions to the same execution unit

– If a functional unit is not pipelined, two consecutive instructions may not
be issued to it in consecutive cycles because of structural hazards

For the new FP capable pipeline:

Michel Dubois, Murali Annavaram and Per Stenström © 2019

New Structural Hazards

Approach: scan columns for common resource usage:
– At cycle C8: I1 and I5 are both in the ME stage (but I1 doesn’t access memory)
– At cycle C9: I1 and I5 are both in the WB stage => structural hazard!

Avoiding structural hazard in the case of WB
– Add resources: another write port to the FP register file
– Stall one of the instructions (i.e., I5) in ID

Also: Structural hazards on execution units
Two general techniques to avoid structural hazards
• Add hardware resources
• Deal with it by stalling instructions to serialize conflicts

Michel Dubois, Murali Annavaram and Per Stenström © 2019

More RAW hazards due to longer operation latency:

New Data Hazards
WAW hazards on FP registers are possible since instructions now

reach WB out of (process/program) order
ADD.D F2,F4,F6

L.D F2,0(R2)
– The LD must stall in ID

NOTE: WAR hazards are not an issue because reads happen early

No data hazards on memory instructions
Loads/Stores follow the same pipeline path

Control hazards are unchanged

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 2.1
CLOCK-> C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

I1 MULT.D
F1,F2,F3

IF ID FP1 FP2 FP3 FP4 ME WB

I2 MULT.D
F4,F1,F2

IF ID ID ID ID FP1 FP2 FP
3

FP
4

ME

I3 ADD
R1,R2,R3

IF ID EX ME WB

I4 ADD
R4,R1, R6

IF ID EX ME WB

Which of the following statements isare correct
a) There is potentially a structural hazard in C8 for the registerfile
b) Forwarding is needed between I2 and I3
c) Forwarding is needed between I1 and I2
d) Forwarding is needed between I3 and I4

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Coping with Precise Exceptions

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Precise Exceptions
Consider the following code:
I1: ADD.S F1, F2, F1 ***floating-point ADD
I2: ADD R2,R1,R3 ***integer ADD
Exceptions may happen out of process/program order (I2 before I1)!

• I2 stores its result in C6
• I1 causes an exception in C6
• R2 has already been modified!

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Coping with Precise Exceptions
• Forget precision on exceptions

– Not viable today in machines with virtual memory and IEEE FP standard
– Give state to software and let software figure it out. Not feasible for

complex pipelines.
– Support two operational modes:

• SLOW: No pipelining, all exceptions enabled (debugging mode)
• FAST: Pipelining, some exceptions are disabled.

• Deal with exceptions as if they were hazards
– Do not issue an instruction in ID until it is sure that all prior instructions

are exception free
– Detect exceptions as early as possible in the execution
– May stiffle pipelining

• Force in-order completion

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Superpipelining and Superscalar
(Ch 3.3.3)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Superpipelined CPU

• Some stages in the 5-stage pipeline are further pipelined
– to increase clock rate
– Here, IF, EX and ME are now 2 pipeline stages
– Clock is 2X as faster

• BUT: There is no ”free lunch” though:
– Branch penalty when taken is now 3 clocks
– Latencies counted in clock cycles are higher

Assuming unchanged 5-stages for FP

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Superscalar CPU

• Fetch, decode and execute up to 2 instructions per clock
– Same clock rate as basic pipeline
– Easy (in this case) because of the the 2 (INT and FP) register files

• Issue a pair of instructions:
– Pair must be integer/branch/ memory AND FP (compiler can do that)
– Instruction pair must be independent and has no hazard with prior instr.
– Same latencies as basic pipeline; branches execute in EX
– Exceptions are more complex to deal with

• Hard to build more than 2-way
• IPC (instructions per clock) instead of CPI (IPC=1/CPI)

Add superpipelining to superscalar

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 2.2

Which of the following statements are correct
a) Instructions finish in this order: I1, I2, I3 and I4
b) Instructions finish in this order: I2, I4, I1, I3
c) If the registerfile has two write ports I1 and I3 both finish in C9
d) A single-issue pipeline would finish the sequence in C12

CLOCK-> C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

I1 DIV.D
F1,F2,F3

IF ID FP1 FP2 FP3 FP4 FP5 ME WB

I2 ADD
R1,R2,R3

IF ID EX ME WB

I3 MULT.D
F4,F5,F6

IF ID FP1 FP2 FP3 FP4 ME WB

I4 ADD
R4,R1, R6

IF ID EX ME WB

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Static Instruction Scheduling
(Ch 3.3.4)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Static Branch Prediction
Hardwired branch prediction
• Always predict untaken and execute in EX
• Branches at the bottom of a loop are mostly mispredicted
• No compiler assist is possible
• Could predict taken, but not very useful here (Why?)
• Decisions made at design time (benchmarking)
Compile-time branch prediction
• Each branch instr. has a ”hint” bit set by the compiler
• Compiler profiles the code and sets the hint bit
• Taken/Not taken prediction is much more flexible

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Static Instruction Scheduling
To maximize instruction throughput (IPC) of static pipelines

Compiler schedules instructions in code chunks
• Local (basic block level)
• Global (across basic blocks):

– Cyclic (loops)
– Non-cyclic (traces)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Two pairs of instructions with
RAW dependencies between them

Local Scheduling Example 1(2)

An unoptimized code for the loop in the basic pipeline:
Loop L.S F0,0(R1) (1)

L.S F1,0(R2) (1)

ADD.S F2,F1,F0 (2)

S.S F2,0(R1) (5)

ADDI R1,R1,#4 (1)

ADDI R2,R2,#4 (1)

SUBI R3,R3,#1 (1)

BNEZ R3,Loop (3)

for (i=0;i<100;i++)
A[i]:= A[i] + B[i];

Total execution time : 15 clocks; CPI = 15/8 = 1.88

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Local Scheduling Example 2(2)
Compiler moves instructions inside the loop body:
• Move SUBI up
• Move S.S down
Loop L.S F0,0(R1) (1)

L.S F1,0(R2) (1)
SUBI R3,R3,1 (1)

ADD.S F2,F1,F0 (1)

ADDI R1,R1,#4 (1)
ADDI R2,R2,#4 (1)

S.S F2,-4(R1) (3)

BNEZ R3,Loop (3)

• Must change the displacement of the Store (WAR in R1)
• Execution time is 12 clocks, a speed up of 15/12 = 1.25

Local scheduling scope is too limited

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 2.3
I1: L.S F0,0(R1) (1)
I2: L.S F1,0(R2) (1)
I3: ADD.S F2,F1,F0 (2)
I4: S.S F2,0(R1) (5)
I5: ADDI R1,R1,#4 (1)
I6: ADDI R2,R2,#4 (1)

I7: SUBI R3,R3,#1 (1)
I8: BNEZ R3,Loop (3)

Which of the following transformations
are correct
a) Moving I7 before I1
b) Moving I6 before I2
c) Moving I6 before I3
d) Moving I4 after I5 without changing it
e) Moving I4 after I5 and changing

it to S.S F2,#-4(R1)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Global Static Instruction
Scheduling: Loop Unrolling

(Ch 3.3.5)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Loop Unrolling 1(2)

• Total time (Basic): 14 clocks or 7 clocks per iteration of original
• Loop speedup: 15/7 = 2.14
Superpipelined processor (2nd column)
• Total time: 17 clocks or 8.5 clocks per iteration of orig. loop
• Clock rate is 2X as fast. Speedup: 2X 15/8.5 = 3.52

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Loop Unrolling 2(2)
Superscalar processor

Limited opportunities because of the unbalance
between integer and FP instructions

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Limitations of Loop Unrolling
Works well if loop iterations are independent
for (i=5;i<100;i++)

A[i]:= A[i-5] + B[i];

Loop-carried RAW dependency recurrence with distance 5 iter.
– Unroll loop 4 times
– 5 times => Loop carried dependency limits code motion

Consumes architectural registers for renaming
Code expansion

– Affects instruction cache (I-cache) and memory

Problem when the number of iterations is unknown at compile
time.

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Global Static Instruction
Scheduling: Software Pipelining

(Ch 3.3.5)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Software Pipelining
Original loop is translated into a pipelined loop
• Pipelines dependent instructions in different iterations
Application to the simple loop:
• Since the ADD.S is the long latency operation, we can pipeline

the two Loads and the ADD.S with the Store

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Software Pipelining Example
Prologue: L.S F0,0(R1)

L.S F1,0(R2)
SUBI R3,R3,1

ADD.S F2,F1,F0

ADDI R1,R1,#4
ADDI R2,R2,#4

Loop S.S F2,#-4(R1) (1)

L.S F0,0(R1) (1)
L.S F1,0(R2) (1)

SUBI R3,R3,1 (1)
ADD.S F2,F1,F0 (1)

ADDI R1,R1,#4 (1)

ADDI R2,R2,#4 (1)
BNEZ R3,Loop (3)

Epilogue: S.S F2,#-4(R1)

• No stalls (base), no code expansion; no register renaming
• Use loop unrolling and then software pipelining

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Limits of Static Pipelines
Strengths
• Hardware simplicity: clock rate advantage over complex designs
• Predictable: static performance predictions are reliable
• Compiler has global view, e.g., optimize loops
• Power/energy advantage
• Good target for embedded systems
Weaknesses
• Dynamic events (cache misses and cond. branches)
• Freeze the processor on a miss (can’t deal with latency tolerance)
• Lack of dynamic information (memory addresses)
• No good solution for precise exceptions

We consider dynamically scheduled pipelines next

Michel Dubois, Murali Annavaram and Per Stenström © 2019

Quiz 2.4
LOOP: L.S F0,0(R1)

L.S F1,0(R1)

ADD.S F2,F1,F0

S.S F2,0(R1)

ADDI R1,R1,#4
SUBI R3,R3,#1

BNEZ R3,LOOP

LOOP: L.S F0,0(R1)

L.S F1,0(R1)

L.S F2,#4(R1)

L.S F3 #4(R1)

ADD.S F2,F1,F0
ADD.S F4,F2,F3

ADDI R1,R1,#4

SUBI R3,R3,#2

S.S F2,0(R1)

S.S F4,0(R1)
BNEZ R3,LOOP

What is wrong with the unrolled loop
a)L.S F2,#4(R1) should be L.S F2,0(R1)
b)ADDI R1,R1,#4 should be ADDI R1,R1,#8
c)S.S F2,0(R1) should be S.S F2,#-8(R1)
d) S.S F4,0(R1) should be S.S F4,#-4(R1)

Michel Dubois, Murali Annavaram and Per Stenström © 2019

What you should know by now
Statically scheduled pipelines
• How out-of-order completion can lower CPI
• Static instruction scheduling techniques

– Local: Reorder instructions inside a basic block
– Loop unrolling
– Software pipelining

• Superpipelined and superscalar static pipelines
• Exception handling in static pipelines

