Llecture 2

Instruction scheduling techniques

—> Statically scheduled pipelines (Ch 3.3.2 - 3.3.6)

v’ Out-of-order instruction completion (Ch 3.3.2)
v' Superpipelined and superscalar CPUs (Ch 3.3.3)
v Static instruction scheduling (Ch 3.3.4-3.3.5)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Pipelines with Out-of-Order
Completion (Ch 3.3.2)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

T
Out-of-order Instruction Completion

IJEX EX EXIME ME/WB
IFID € \ o
MEP—>
IF -pl-) ID WB
IDIFP " epiiFp2 FP2IFP3 FP3IFP4 FPA4/FPS
FP/ME

FP2~HFP3| FP4~|—-‘FP
——] I

» Floating-point (FP) instructions take 5 clocks and are pipelined
« Integer unit: Handles integer inst., branches and Loads/Stores
« Two separate register files: integer and FP

« Forwarding paths into EX and FP1

* Instructions wait in ID until they can proceed data hazard free (RAW
and WAW)

« Still in-order execution but out-of-order completion

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Latency vs Repeat Interval

« Latency of operation:

— Minimum number of cycles between an instruction producing a result and
the instruction consuming it

— Dependent instruction must stall in ID until its operand is forwarded

— If functional units are linear pipelines then operation latency is execution
time minus 1

 Repeat/Inititation interval:

— Number of cycles that must elapse between consecutive issues of
instructions to the same execution unit

— If a functional unit is not pipelined, two consecutive instructions may not
be issued to it in consecutive cycles because of structural hazards

For the new FP capable pipeline:

FUNCTIONAL UNITS LATENCYJINITIATION INTERVAL

— 0 !

—> L !

— 4 |1(5 IF NOT PIPELINED)
CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

New Structural Hazards

cLock==> | ct|ca|c3|ca|cs|ce|c7| e8| colcio
I1 | ADD.S FI,F2,FL | IF | ID | FPL | FP2 | FP3 | FP4 | FP5 | ME [IWB]| |
I2 | ADD.S F4F2F3 IF | ID | FP1 | FP2 | FP3 | FP4 | FP5 | ME | WB
I3 L.S F10 IF | ID | EX | ME | WB [
14 L5 F12 IF [ID | EX [ME [WB | W

I5 L.S F14 IF | ID | EX | ME IWBI

Approach: scan columns for common resource usage:
— At cycle C8: |1 and I5 are both in the ME stage (but |11 doesn’t access memory)
— At cycle C9: 11 and I5 are both in the WB stage => structural hazard!

Avoiding structural hazard in the case of WB
— Add resources: another write port to the FP register file
— Stall one of the instructions (i.e., 15) in ID

Also: Structural hazards on execution units

Two general techniques to avoid structural hazards
 Add hardware resources

« Deal with it by stalling instructions to serialize conflicts

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

New Data Hazards

WAW hazards on FP registers are possible since instructions now
reach WB out of (process/program) order

ADD.D F2,F4,F6

L.D F2,0(R2)
— The LD must stall in ID

NOTE: WAR hazards are not an issue because reads happen early

More RAW hazards due to longer operation latency:

CLOCK ==> Cl | C2 | C3 | C4 |Cb | C6|CT |C8 | CO9 |C10|Cll

11 | LDF4,0R2) | IF | ID (ME WB
I2 | MULT.D FO,F4F6 IF | ID | ID |[FPL | FP2 | FP3 | FP4 | FP5 | ME | WB

I3 | S.DFO,0(R2) —TF ID | ID | ID | ID | ID | EX | ME

No data hazards on memory instructions
Loads/Stores follow the same pipeline path

Control hazards are unchanged

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

T
Quiz 2.1

CLOCK-> C1 C2 C3 C4 C5 C6 C7 cg C9 C10 C11

11 MULT.D IF ID FP1 FP2 FP3 FP4 ME WB
F1,F2,F3
2 MULTD F ID ID ID ID FP1 FP2 FP FP ME
F4,F1,F2 3 4
13 ADD IF ID EX ME WB
R1,R2,R3
4 ADD IF ID EX ME WB
R4,R1, R6

Which of the following statements isare correct

a) There is potentially a structural hazard in C8 for the registerfile
b) Forwarding is needed between |2 and I3

c) Forwarding is needed between |1 and 12

d) Forwarding is needed between 13 and 14

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Coping with Precise Exceptions

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Precise Exceptions

Consider the following code:

11: ADD.S F1, F2, F1 ***floating-point ADD
12: ADD R2,R1,R3 ***integer ADD

Exceptions may happen out of process/program order (12 before 11)!

Cl C2 3 C4
ADD.SF1F2F1 | IF | ID FPL | FP2
ADD R2 R1R3 IF ID EX

10 11

» |2 stores its result in C6
* |1 causes an exception in C6
 R2 has already been modified!

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Coping with Precise Exceptions

 Forget precision on exceptions
— Not viable today in machines with virtual memory and IEEE FP standard
— Give state to software and let software figure it out. Not feasible for
complex pipelines.

— Support two operational modes:
SLOW: No pipelining, all exceptions enabled (debugging mode)
FAST: Pipelining, some exceptions are disabled.

« Deal with exceptions as if they were hazards

— Do not issue an instruction in ID until it is sure that all prior instructions
are exception free
— Detect exceptions as early as possible in the execution

— May stiffle pipelining
 Force in-order completion + /
ME

EX

IF ->|—.|E FP1 -»l—-lez -;|-> FP3-.|—b |=P4—-|—> Fps-»l—» wB

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Superpipelining and Superscalar
(Ch 3.3.3)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

IF1

Superpipelined CPU

— Here, IF, EX and ME are now 2 pipeline stages

i IF2

— Y

/‘_,

EX1

W" FP PIPELINE(s)

« Some stages in the 5-stage pipeline are further pipelined
— to increase clock rate

— Clock is 2X as faster

« BUT: There is no ’free lunch” though:

— Branch penalty when taken is now 3 clocks

— Latencies counted in clock cycles are higher
Assuming unchanged 5-stages for FP

ME1 [~

ME2

FUNCTIONAL UNITS __ JLATENCYJINITIATION INTERVAL]
INTEGER ALU | 1 1
LOAD 3 1
I FP OP | 4 | 1(5 IF NOT PIPELINED)
CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Superscalar CPU

IF J 1D _.){ EX{> > ME[~

IF bl ID 1 | j‘ e
ﬂm o »| FP2{>—{FP3 TP es

 Fetch, decode and execute up to 2 instructions per clock

— Same clock rate as basic pipeline
— Easy (in this case) because of the the 2 (INT and FP) register files

* Issue a pair of instructions:
— Pair must be integer/branch/ memory AND FP (compiler can do that)
— Instruction pair must be independent and has no hazard with prior instr.
— Same latencies as basic pipeline; branches execute in EX
— Exceptions are more complex to deal with

* Hard to build more than 2-way
« |PC (instructions per clock) instead of CPI (IPC=1/CPI)
Add superpipelining to superscalar

CHALMERS

Chalmers University of Technology

A 4

y

A 4

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

T
Quiz 2.2

CLOCK-> C1 C2 C3 C4 C5 C6 C7 C8 c9 C10 CN
11 DIV.D IF ID FP1 FP2 FP3 FP4 FP5 ME WB
F1,F2,F3
12 ADD IF ID EX ME WB
R1,R2,R3
I3 MULT.D IF 1D FP1 FP2 FP3 FP4 ME WB
F4,F5,F6
14 ADD IF 1D EX ME WB
R4,R1, R6

Which of the following statements are correct

a) Instructions finish in this order: 11, 12, I3 and 14

b) Instructions finish in this order: 12, 14, 11, I3

c) If the registerfile has two write ports |11 and 13 both finish in C9
d) A single-issue pipeline would finish the sequence in C12

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Static Instruction Scheduling
(Ch 3.3.4)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Static Branch Prediction

Hardwired branch prediction

 Always predict untaken and execute in EX

 Branches at the bottom of a loop are mostly mispredicted
* No compiler assist is possible

« Could predict taken, but not very useful here (Why?)
 Decisions made at design time (benchmarking)

Compile-time branch prediction

 Each branch instr. has a "hint” bit set by the compiler
« Compiler profiles the code and sets the hint bit

« Taken/Not taken prediction is much more flexible

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Static Instruction Scheduling

To maximize instruction throughput (IPC) of static pipelines

Compiler schedules instructions in code chunks
* Local (basic block level)
* Global (across basic blocks):

— Cyclic (loops)
— Non-cyclic (traces)

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Local Scheduling Example 1(2)

for (i=0;i<100;i++)
Ali]:==Ali] + BII[;

An unoptimized code for the loop in the basic pipeline:
Loop L.S FO,0(R1) (1)

.s FD), 0 (R2)
ADD.@‘@,FO (
S.S ‘,O(Rl) (
(
(
(

Two pairs of instructions with
RAW dependencies between them

ADDI R1,R1,#4
ADDI R2,R2,#4
SUBI R3,R3, #1
BNEZ R3, Loop (
Total execution time : 15 clocks; CPl =15/8 = 1.88

CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Local Scheduling Example 2(2)

Compiler moves instructions inside the loop body:
—> + Move SUBI up
—> ¢« Move S.S down

Loop L.S FO,0(R1)
L.S F1,0(R2)
SUBI R3,R3,1
ADD.S F2,F1,FO
ADDI R1,RI1, #4
ADDI R2,R2, #4
S.S F2,-4(R1)
BNEZ R3, Loop

—> « Must change the displacement of the Store (WAR in R1)
—> ¢+ Execution time is 12 clocks, a speed up of 15/12 =1.25
Local scheduling scope is too limited

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

w WP PR R

\4

—

e
Quiz 2.3

I1: L.s FO,0(RL) (1) Which of the following transformations
I2: L.S F1,0(R2) (1)

13: ADD.S F2,F1,F0 (2) ave correct
I4: S.S F2,0(R1) (5) a) Moving |7 before |1
I5: ADDI R1,R1,#4 (1) b) Moving I6 before 12
ij: Zﬁgi ii’z’:: 21; c) Moving 16 before 13
I8: BNEZ R3,Loop (3) d) Moving |4 after I5 without changing it
e) Moving 14 after |5 and changing
itto S.S F2,#-4(R1)

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Global Static Instruction
Scheduling: Loop Unrolling
(Ch 3.3.5)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Loop Unrolling 1(2)

Unroll twice Rename FP register Schedule Times(basic/super)
L.S FO,0(R1) L.S EQJO(R1) L.S FO,0(R1) CHREEY)
L.S F1,0(R2) L.S ELD(R2) L.S F1,0(R2) 1 @)
ADD.S F2,F1,FO ADD.S[FZ,F1,FO L.S F3,#4(R1) CHINEY)
S.5 F2 0(R1) S.S[F2]0(R1) L.S F4,#4(R2) 1 @
L.S FO,#4(R1) L.S E3J#4(R1) ADD.SFZ2JFI,FO (1) (2)
L.S F1,#4(R2) L.S F4J#4(R2) ADD.SF5,F3F4 (1) (2)
ADD.S F2,F1,FO ADD.S[F8,F3,F4 SUBIR3R3#2 (1) (1)
S.5 F2 #4(R1) S.S[FB#4(R1) ADDIRLRL#8 (1) (1)
ADDI R1R1#8 ADDI R1R1,#8 ADDI R2R2#8 (1) (1)
ADDI R2,R2 #8 ADDI R2,R2 #8 S.SF2#-8R1)| (1) ()
SUBI R3,R3 #2 SUBI R3,R3 #2 SSF5,#-4R1)| (1) (1)
BNEZ R3,Loop BNEZ R3,Loop BNEZ R3,Loop (3) 4)

Superpipelined processor (2" column)

Total time (Basic): 14 clocks or 7 clocks per iteration of original
Loop speedup: 15/7 = 2.14

« Total time: 17 clocks or 8.5 clocks per iteration of orig. loop
 Clock rate is 2X as fast. Speedup: 2X 15/8.5 = 3.52

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Loop Unrolling 2(2)

Superscalar processor

Schedule Time Program
L.S FO,0(R1) 1) L.S FO,0(R1)
L.S F1,0(R2) (1) L.S F1,0(R2)
L.S F3 #4(R1) 1) L.S F3,#4(R1)
L.S F4 #4(R2) €)) L.S F4,#4(R2)
SUBI R3,R3#2 ADD.SF2F1LFO (1) SUBI R3,R3 #2
ADDI R1R1,#8 ADD.SF5F3F4 (1) ADD.S F2,F1,FO
ADDI R2,R2 #8 1) ADDI R1,R1,#8
S.S F2 #-8(R1) (3) ADD.S F5,F3,F4
S.S F5 #-4(R1) (1) ADDI R2 R2 #8
BNEZ R3,Loop (3) S.S F2 #-8(R1)
5.5 F5 #-4(R1)
BNEZ R3,Loop

Limited opportunities because of the unbalance
between integer and FP instructions

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Limitations of Loop Unrolling

Works well if loop iterations are independent
for (i=5;i<100;i++)
Alil:= A[i-5] + BJi];
Loop-carried RAW dependency recurrence with distance 5 iter.

— Unroll loop 4 times
— 5 times => Loop carried dependency limits code motion

Consumes architectural registers for renaming

Code expansion
— Affects instruction cache (I-cache) and memory

Problem when the number of iterations is unknown at compile
time.

CHALMERS

Chalmers University

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Global Static Instruction
Scheduling: Software Pipelining
(Ch 3.3.5)

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Software Pipelining

Original loop is translated into a pipelined loop
* Pipelines dependent instructions in different iterations
Application to the simple loop:

« Since the ADD.S is the long latency operation, we can pipeline
the two Loads and the ith the Store

O_ITE1 O_ITE3 O_IT4

L.S FO,0(R1
Prologue | L.S F1,0(R2
ADD.S F2,F1,FO

P_ITEL | S.5F2,0(R1)

L.5 FO,0(RI
P_ITE2 $.5F2,0R1) || L.5F1.0(zi
ADD.S F2,F1,FO

S.5 F2,0(R1) L.S F1,0(R2

P_ITE3
ADD.S F2 F1,FO
Epilogue 5.5 F2,0(R1)
*NOTE THAT EXACTLY THE SA ARE EXECUTED IN EXACTLY THE SAME

ORDER IN BOTH THE ORIGINAL LOOP AND THE PIPELINED LOOP
*THE CODE IS SIMPLY REORGANIZED

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
Software Pipelining Example

r?rologue:IL.S FO, 0 (R1)

L.S F1,0(R2)

SUBRI R3,R3,1

ADD.S F2,F1,FO

ADDI R1,R1, #4

ADDI R2,R2“?9////
Loop S.S F2,#-4(R1) (1)
L.S FO,0(R1) (1)
L.S F1,0(R2) (1)
SUBI R3,R3,1 (1) €—f—
ADD.S F2,F1,F0 (1)

— ADDI RI,RI,#4 (1)

ADDI R2,R2,#4 (1)

BNEZ R3, Loop (3)
|Epilogue:|S.S F2,#-4 (R1)

——>°* No stalls (base), no code expansion; no register renaming
—>+ Use loop unrolling and then software pipelining

CHALMERS

Chalmers University of Technology

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

Limits of Static Pipelines

Strengths
 Hardware simplicity: clock rate advantage over complex designs
* Predictable: static performance predictions are reliable
« Compiler has global view, e.g., optimize loops
 Power/energy advantage
« Good target for embedded systems
Weaknesses
« Dynamic events (cache misses and cond. branches)
* Freeze the processor on a miss (can’t deal with latency tolerance)
« Lack of dynamic information (memory addresses)
* No good solution for precise exceptions
We consider dynamically scheduled pipelines next

CHALMERS

Chalmers University of Technolog

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

T
Quiz 2.4

LOOP: L.S FO0,0(R1) LOOP: L.S FO0,0(R1)
L.S F1,0(R1) L.S F1,0(R1)
ADD.S F2,F1,FO0 L.S F2,#4(R1)
S.S F2,0(R1) L.S F3 #4(R1)
ADDI R1,R1,#4 ADD.S F2,F1,FO0
SUBI R3,R3,#1 ADD.S F4,F2,F3
BNEZ R3,LOOP ADDI R1,R1,#4
What is wrong with the unrolled loop SUBI R3,R3,#2
a)L.S F2,#4 (R1) should be L.S F2,0(R1l) S.S F2,0(R1)

b) ADDI R1,R1,#4 should be ADDI R1,R1,#8 S.S F4,0(R1)
c)S.S F2,0(R1l) should be S.S F2,#-8(R1) BNEZ R3,LOOP
d) S.S F4,0(R1l) should be S.S F4,#-4(R1)

CHALMERS

Chalmers

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

-
What you should know by now

Statically scheduled pipelines
* How out-of-order completion can lower CPI
 Static instruction scheduling techniques
— Local: Reorder instructions inside a basic block
— Loop unrolling
— Software pipelining
» Superpipelined and superscalar static pipelines
* Exception handling in static pipelines

CHALMERS

Chalmers U

Michel Dubois, Murali Annavaram and Per Stenstrom © 2019

