Optional Lecture 2

Basic Memory Hierarchy Concepts

» The pyramid of memory levels (Ch. 4.2)
« Cache hierarchy (parts of Ch. 4.3)
v' Cache mapping and organization (4.3.1)
v' Replacement policies (4.3.2)
v" Write policies (4.3.3)
v' Cache hierarchy performance (4.3.4)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/

N

QA
QN

/

The Locality Principle
(Ch 4.2)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/]
/

N

QA

7 /)
Y,

Processor
(Core)

Memory

Memory

o ...
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4,#1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
0 ..
A: aN
B: bN
C:cN
100 | LABEL: LD R2, 0(R10) o
101 LD R3, O(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4,#1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
@
C:cN
100 | LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
0 ..
A: aN
B: bN
@
C:cN O
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11) o
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4,#1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
BT bN
C:cN
100 | LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
BT bN
C:cN
100 | _LABEL:1D R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Time

Processor
(Core)

Memory

Location

Memory
o ..
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4 #1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

TEMPORAL LOCALITY

Time

Processor
(Core)

Memory

Location

Memory
0o ...
A: aN
B: bN
C:cN — -
\
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4,#1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

D

SPATIAL LOCALITY

Time

Cache Mapping Policies
and Organizations
(Ch 4.3.1)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/
/

AN
N

N

/i
Y

A Simple Cache Design

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/
/

QA
QA
DRINI

Y,

Instruction memory

0

4

8
12
16
20
24
28
32
36
40
44
48

124
127

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction memory

127

&

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBTRAREFT |
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4 Memory blocks —
— BNEZ R4,LABEL | 16 bytes each
36
40 4 N
44 Question: Answer:
48 How many blocks 128/16 = 8
does the memory
contain?
124

J

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction memory

0

Memory Block 0

16

Memory Block 1

32

Memory Block 2

48

Memory Block 3

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

127

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction memory Instruction cache

Memory Block 0 ’

Memory Block 1 10

32
Memory Block 2

Memory Block 3 *

63

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction memory

0

Memory Block 0

16

Memory Block 1

Instruction cache

0

Block Frame 0

32

Memory Block 2

16

Block Frame 1

48

Memory Block 3

32

Block Frame 2

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

48

63

Block Frame 3

'Question:
Where do we place
memory blocks

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

4 =77

~
Answer:
Memory block N 1s
placed 1n cache block
frame N modulo 4. For
example, memory block 6
1s placed in cache block
frame 2. |

\

Instruction memory

0

Memory Block 0

16

Memory Block 1

32

Memory Block 2

48

Memory Block 3

AN

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction cache

0

Block Frame 0

16

Block Frame 1

32

Block Frame 2

48

63

Block Frame 3

Instruction memory

0

Memory Block 0

16

Memory Block 1

32

Memory Block 2

48

Memory Block 3

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

Memory Block 7

Instruction cache

0 Block Frame 0

10 Block Frame 1

32
Block Frame 2

48
Block Frame 3

63

/]
Question:

How do we distinguish between
memory blocks 0 and 4, blocks 1 and

5, blocks 2 and 6, and blocks 3 and 7?

.

o A

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction memory

0

0

Instruction cache

Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Block 0 Tag Block 0 Block Frame 0

10 Block 1 TagBlock 1[|[| "® Block Frame 1
32 32

Block 2 Tag Block 2 Block Frame 2
48 Il 4s

Block 3 Tag Block 3 Block Frame 3
o Block 4 e
ol

Block 5
% Block 6

Block address: 3 bits

g:ggt ? 88? The Tag is a single bit

Block 2: 010

Block 3: 011 Memory Size _ ., _ :

Blggk 21100 Cache};ize = N => log,N tag bits

Block 5: 101

Block 6: 110

Block 7: 111

4) e N

Question: Answer:

How many tag bits are needed Number of memory blocks that map to

if the memory is 64 Gbytes and the same block frame is

the cache is 1 Mbytes? 64 Gbytes/1 Mbytes = 64 x 1024. mh |

.) |log,(64 x 1024) = 16 bits. WW
Michel Dubois, Murali A\ _

6 65 4 3 0
Tag Block Offset Block Frame 0
]
HIT

Instruction cache
Tag Block 0 Tag Block 0 0 Block Frame 0
Tag Block 1 10 Block Frame 1

S

Tag Block 2

32

Block Frame 2

Tag Block 3

48

63

Block Frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

6 65 4 3 0
Tag Block Offset
MISS
Instruction cache
Tag Block 0 Tag Block 0 0 Block Frame 0
Tag Block 1 10 Block Frame 1
S

Tag Block 2

32

Block Frame 2

Tag Block 3

48

63

Block Frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Memory address (log,128 = 7 bits):

6 65

4 3 0

Tag

Block

Offset

‘Question:

How many bits would be required for
Tag, Block and offset for a memory of
1024 bytes divided into blocks of 32
bytes and a cache containing 4 blocks?

&

J

/Answer:

» Tag bits: log,(Memory size/Cache
size) = log,(1024/(4x32))= 3 bits

« Block bits: 4 blocks, so 2 bits

» Offset bits: 32 bytes, so 5 bits

 Memory address: 10 bits

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Set-Associative Caches

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Data cache

A
NN
NN

Mem. Block 3

64

C:

Mem. Block 4 /

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory Data cache

© A Mem. Block 0

16

Mem. Block 1

32

® Mem. Block 2 Mem. Block 2

A
NN
NN

48 Mem. Block 3

64 C:

Mem. Block 4 /

%0 Mem. Block 5

% Mem. Block 6

112
Mem. Block 7

127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Mem. Block 3

A
NN
NN

64

“Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

Data cache

Mem. Block 4

Mem. Block 2

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

Mem. Block 0

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Mem. Block 3

64

“Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

7
77

%

Data cache

Mem. Block 4

Mem. Block 2

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Mem. Block 3

A
NN
NN

64

“Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

Data cache

Mem. Block 0

Mem. Block 2

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory Data cache

Mem. Block 4

° * Mem. Block 0 /’ Mem. Block 0

16 Mem. Block 1
_ //

B: Mem. Block 2 /// Mem. Block 2
48 Mem. Block 3

64 C:

Mem. Block 4 /

80

Mem. Block 5
% Mem. Block 6 Direct-mapped caches suffer
112 from mapping conflicts

Mem. Block 7

127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

Fully associative cache

0

A:

Mem. Block 0

16

Mem. Block 1

32

B:

Mem. Block 2

48

Mem. Block 3

64

C:

Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

.| Tag Way 0

Tag Way 1

Tag Way 2

Tag Way 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

FULLY ASSOCIATIVE CACHE

Block Frame 0

J

6 4 3 0
Tag Offset
HIT
tl'ag Way 0
Tag Way 1
Tag Way 2

Tag Way 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

2-WAY ASSOCIATIVE CACHE

0

A:

Mem. Block 0

16

Mem. Block 1

32

B:

Mem. Block 2

48

Mem. Block 3

64

C:

Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

M\Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

2-WAY ASSOCIATIVE CACHE

Block Frame 0

J

6 54 4 3 0
Tag Set Offset
HIT
Tag Way 0 Set 0 —
Tag Way 1
> i
Set1 —
Question: —

Why is the tag field 2 bits?

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/
Answer:

We have to determine how many blocks that
can map to a given block frame. There are
eight memory blocks and half of them will be
mapped to Set 0 and half to Set 1. So there
are four memory blocks that can be mapped to

a given block frame.
N y

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Replacement Policies
(Ch 4.3.2)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/

AN
N

QA

7))
Y,

Data memory Fully associative cache

0 A Mem. Block 0 Tag Way 0 Mem. Block 0
16
Mem. Block 1 Tag Way 1 Mem. Block 1
21 B Mem. Block 2 Tag Way 2 Mem. Block 2
48 Mem. Block 3 Tag Way 3 Mem. Block 3
* %Mem. Block 4
® Mem. Block 5
' The Cache Replacement Algorithm
96 Mem. Block 6 determines which block should be
replaced.
112
Mem. Block 7
127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Least Recently Used (LRU)

Fully associative cache

Tag Way 0 Mem. Block 0
Tag Way 1 Mem. Block 1
Tag Way 2 Mem. Block 2
Tag Way 3 \ Mem. Block 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Write Policies
(Ch 4.3.3)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/
/

QA
D)

< /)

Processor
(Core)

1ns Cache

100ns Memory

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1ns

100ns

Processor
(Core)

Memory

Read hits: 1ns
Read miss: 100 ns

Write hits: 100 ns
Write miss: 100 ns

THE WRITE-THROUGH POLICY

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Processor
(Core)

1ns Cache

FIFO buffer : Buffer NOT full
Write hits: 1 ns

100ns Memory

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1ns

100ns

Processor
(Core)

Memory

Read hits: 1ns
Read miss: 100 ns

Write hits: 1 ns
Write miss: 100 ns

THE WRITE-BACK POLICY

NEED TO KEEP TRACK OF
MODIFIED BLOCKS

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Cache Performance
(Ch 4.3.4)

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

/]
/

N

QA

7 /)
Y,

Instruction memory

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,H1T |
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL |
36
40
44
48
124
127

Direct-mapped Instruction cache

Block frame 0

Block frame 1

Block frame 2

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Instruction memory

0 LABEL: LD R2,0(R10)

4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

Block frame 1

Block frame 2

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1 MISS
3 HITS

Instruction memory

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Block frame 2

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1 MISS
3 HITS

Instruction memory

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1 MISS
0 HITS

Instruction memory

0 LABEL: LD R2,0(R10)

4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4

ADDIRI2.R12.7#4
BNEZ R4,LABEL

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

4 HITS

Instruction memory

LABEL: LD R2,0(R10)

LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

BNEZ R4,LABEL

Block 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Direct-mapped Instruction cache

4 HITS

Instruction memory

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1 HIT

Number of instruction fetches: 100 x 9 =900
Number of MISSES: 3
Number of HITS: 897

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory

O A Block0
16 Block 1
2. B Block 2
48 Block 3
% % Block 4
%0 Block 5
% Block 6

112
Block 7
127

Michel Dubois, R/Iurah Annavaram, Per Stenstrom © 2019

4-Way Set Associative Data cache (4 Blocks)

'Question:

Why is a 4-way associative cache with this
configuration equivalent with a fully associative
cache?

J

'Answer:
Because the cache is configured with four
blocks only.

~

Data memory 4-Way Set Associative Data cache (4 Blocks)

0 A Block 0 1 MISS
16 Block 1 1 MISS
32 B: Block 2 1 MISS
48 Block 3
* C Block 4
50 Block 5
96]] u

Block 6 First iteration

112

Block 7
127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory 4-Way Set Associative Data cache (4 Blocks)

O A Block 0 1 HIT
16 Block 1 THIT
32 B: Block 2 1 HIT
48 Block 3
* C Block 4
50 Block 5
96 - .

Block 6 Second iteration
112

Block 7
127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory 4-Way Set Associative Data cache (4 Blocks)

0 A Block 0 1 HIT
16 Block 1 THIT
32 B: Block 2 1 HIT
48 Block 3
* C Block 4
50 Block 5
96 n n n

Block 6 Third iteration
112

Block 7
127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Data memory 4-Way Set Associative Data cache (4 Blocks)

0 A Block 0 1 HIT
16 Block 1 THIT
32 B: Block 2 1 HIT
48 Block 3
* C Block 4
50 Block 5
96 H 1

Block 6 Fourth iteration
112

Block 7
127

Data memory 4-Way Set Associative Data cache (4 Blocks)

0 A Block 0 1 MISS
16 Block 1 1 MISS
32 B: Block 2 1 MISS
48 Block 3
* C Block 4
50 Block 5
96] u]

Block 6 Fifth iteration

112

Block 7
127

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Number of data accesses: 100 x 3 = 300
Number of MISSES: 75
Number of HITS: 225

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Processor
(Core)

1ns
\ 4
20ns Multi-level
cache

Read hits: 1ns
Read miss: 50 ns

Write hits: 1 ns
Write miss: 50 ns

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

T =IC x (CPI,+MPI x MP) x TPC

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Total number of misses: 3+75 =78
Total number of instructions: 900

Miss rate Per Instruction (MPI): 78/900 = 0.087
CPI=1 + 0.087 x 20 =2,74

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

LABEL: LD R2, 0(R10)
LD R3, 0(R11)
UNUSED
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,4#4

Type Instruction CPI x NS
Count (IC) TPC [nS] BNEZ R4, LABEL

100 x 5=500 2.74 2.74 nuseo
Load 100 x 2 =200 3.74 3.74
Store 100 x 1 =100 2.74 2.74
Control 100 x 1 =100 4.74 4.74

T=500x274+200x3.74+100x2.74 + 100 x4.74 =29 us

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1ns

10ns

100ns

Processor Processor Processor
(Core) (Core) ® & o (Core)
L1 Cache L1 Cache L1 Cache
L2 Cache

1ns

10ns

100ns

Processor Processor Processor
(Core) (Core) ® & o (Core)
A L1 Cache L1 Cache L1 Cache
[wss | 1
A L2 Cache
MISS $

1ns

10ns

100ns

Processor Processor Processor
(Core) (Core) ® & o (Core)
B L1 Cache L1 Cache L1 Cache
[wss | 1
A,B L2 Cache
MISS $

Processor Processor Processor
(Core) (Core) ® & o (Core)
1ns A L1 Cache L1 Cache L1 Cache
[wss] !
10ns A.B HIT L2 Cache

100ns Memory

You should know by now

* The locality principle

« Cache mapping principles and cache organizations
* Replacement policies

* Write policies

» Cache hierarchy performance models

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

