
Basic Memory Hierarchy Concepts

• The pyramid of memory levels (Ch. 4.2)
• Cache hierarchy (parts of Ch. 4.3)

ü Cache mapping and organization (4.3.1)
ü Replacement policies (4.3.2)
ü Write policies (4.3.3)
ü Cache hierarchy performance (4.3.4)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

The Locality Principle
(Ch 4.2)

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

TimeMichel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

Time

TEMPORAL LOCALITY

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory
LABEL: LD R2, 0(R10)

LD R3, 0(R11)
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4, LABEL

…
100
101
102
103
104
105
106
107
108

M

0
…

…
A: aN
…
B: bN
…
C: cN
…

Memory
Location

Time

SPATIAL LOCALITY

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Cache Mapping Policies
and Organizations

(Ch 4.3.1)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

A Simple Cache Design

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory
LABEL: LD R2,0(R10)

LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory
LABEL: LD R2,0(R10)

LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL

Memory blocks –
16 bytes each

Question:
How many blocks
does the memory
contain?

Answer:
128/16 = 8

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

64

80

96

112

127

Instruction memory

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

63

Instruction cache

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Instruction memory

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame 2

Block Frame 3

Question:
Where do we place
memory blocks
4 – 7?

Answer:
Memory block N is
placed in cache block
frame N modulo 4. For
example, memory block 6
is placed in cache block
frame 2.

0

16

32

48

64

80

96

112

127

Instruction memory

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame 2

Block Frame 3

0

16

32

48

64

80

96

112

127

Instruction memory

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Question:
How do we distinguish between
memory blocks 0 and 4, blocks 1 and
5, blocks 2 and 6, and blocks 3 and 7?

0

16

32

48

64

80

96

112

127

Instruction memory

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame 2

Block Frame 3

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

64

80

96

112

127

Instruction memory

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Tag Block 1

Tag Block 0

Tag Block 3

Tag Block 2

0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame 2

Block Frame 3

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Block address: 3 bits

Block 0: 000
Block 1: 001
Block 2: 010
Block 3: 011
Block 4: 100
Block 5: 101
Block 6: 110
Block 7: 111

The Tag is a single bit

!"#$%& '()"
*+,-" '()"

= N => log2N tag bits

Question:
How many tag bits are needed
if the memory is 64 Gbytes and
the cache is 1 Mbytes?

Answer:
Number of memory blocks that map to
the same block frame is
64 Gbytes/1 Mbytes = 64 x 1024.
log2(64 x 1024) = 16 bits.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Block 1

Tag Block 0

Tag Block 3

Tag Block 2

0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame 2

Block Frame 3

Tag Block Offset
6 6 5 4 3 0

Tag Block 0

= HIT

Block Frame 0

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Block 1

Tag Block 0

Tag Block 3

Tag Block 2

0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame 2

Block Frame 3

Tag Block Offset
6 6 5 4 3 0

Tag Block 0

<> MISS

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Memory address (log2128 = 7 bits):

Tag Block Offset

6 6 5 4 3 0

Question:
How many bits would be required for
Tag, Block and offset for a memory of
1024 bytes divided into blocks of 32
bytes and a cache containing 4 blocks?

Answer:
• Tag bits: log2(Memory size/Cache

size) = log2(1024/(4x32))= 3 bits
• Block bits: 4 blocks, so 2 bits
• Offset bits: 32 bytes, so 5 bits
• Memory address: 10 bits

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Set-Associative Caches

Data cache
0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Data cache
0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Mem. Block 2

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Data cache
0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Mem. Block 2

Mem. Block 4

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Data cache
0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Mem. Block 2

Mem. Block 4

Mem. Block 0

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Data cache
0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Mem. Block 2

Mem. Block 0

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Data cache
0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Mem. Block 2

Mem. Block 0
Mem. Block 4

Direct-mapped caches suffer
from mapping conflicts

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Way 1

Tag Way 0

Tag Way 3

Tag Way 2

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Fully associative cache

Tag Way 1

Tag Way 0

Tag Way 3

Tag Way 2

FULLY ASSOCIATIVE CACHE

Tag Offset
6 4 3 0

= HIT

Block Frame 0

Tag Way 0

Tag Way 1
Tag Way 2

Tag Way 3

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Way 1

Tag Way 0

Tag Way 1

Tag Way 0

2-WAY ASSOCIATIVE CACHE

Set 0

Set 1

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Way 1

Tag Way 0

Tag Way 1

Tag Way 0

2-WAY ASSOCIATIVE CACHE

Tag Set Offset
6 5 4 4 3 0

= HIT

Block Frame 0

Set 0

Set 1

Tag Way 0
Tag Way 1

Question:
Why is the tag field 2 bits?

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Answer:

We have to determine how many blocks that
can map to a given block frame. There are
eight memory blocks and half of them will be
mapped to Set 0 and half to Set 1. So there
are four memory blocks that can be mapped to
a given block frame.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Replacement Policies
(Ch 4.3.2)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Way 1

Tag Way 0

Tag Way 3

Tag Way 2

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

Mem. Block 4

Mem. Block 5

Mem. Block 6

Mem. Block 7

Fully associative cache

Mem. Block 0

Mem. Block 1

Mem. Block 2

Mem. Block 3

The Cache Replacement Algorithm
determines which block should be
replaced.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Tag Way 1

Tag Way 0

Tag Way 3

Tag Way 2

Fully associative cache

Mem. Block 0

Least Recently Used (LRU)

0

0

0

0

Mem. Block 1

1

Mem. Block 2

2

1

Mem. Block 3

1

2

3

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Write Policies
(Ch 4.3.3)

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Cache1ns

100ns

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Cache1ns

100ns

Read hits: 1ns
Read miss: 100 ns

Write hits: 100 ns
Write miss: 100 ns

THE WRITE-THROUGH POLICY

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Cache1ns

100ns

Buffer NOT full
Write hits: 1 ns

FIFO buffer

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Cache1ns

100ns

Read hits: 1ns
Read miss: 100 ns

Write hits: 1 ns
Write miss: 100 ns

THE WRITE-BACK POLICY

NEED TO KEEP TRACK OF
MODIFIED BLOCKS

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Cache Performance
(Ch 4.3.4)

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory
LABEL: LD R2,0(R10)

LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL

Direct-mapped Instruction cache

Block frame 0

Block frame 1

Block frame 2

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 1

Block frame 2

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

1 MISS
3 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 2

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

1 MISS
3 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL 1 MISS
0 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

4 HITSLABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

4 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL 1 HIT

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Number of instruction fetches: 100 x 9 = 900
Number of MISSES: 3
Number of HITS: 897

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

Question:
Why is a 4-way associative cache with this
configuration equivalent with a fully associative
cache?

Answer:
Because the cache is configured with four
blocks only.

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

First iteration

Block 0

Block 2

1 MISS

1 MISS

1 MISSBlock 4

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

Second iteration

Block 0

Block 2

Block 4

1 HIT

1 HIT

1 HIT

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

Third iteration

Block 0

Block 2

Block 4

1 HIT

1 HIT

1 HIT

Michel Dubois, Murali Annavaram, Per Stenström © 2019

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

Fourth iteration

Block 0

Block 2

Block 4

1 HIT

1 HIT

1 HIT

0

16

32

48

64

80

96

112

127

Data memory
A:

B:

C:

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

Fifth iteration

Block 1

Block 3

Block 5

1 MISS

1 MISS

1 MISS

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Number of data accesses: 100 x 3 = 300
Number of MISSES: 75
Number of HITS: 225

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Multi-level
cache

Cache1ns

20ns

Read hits: 1ns
Read miss: 50 ns

Write hits: 1 ns
Write miss: 50 ns

Michel Dubois, Murali Annavaram, Per Stenström © 2019

T = IC x (CPI0+MPI x MP) x TPC

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Total number of misses: 3+75 = 78
Total number of instructions: 900
Miss rate Per Instruction (MPI): 78/900 = 0.087
CPI =1 + 0.087 x 20 =2,74

Michel Dubois, Murali Annavaram, Per Stenström © 2019

LABEL: LD R2, 0(R10)

LD R3, 0(R11)

UNUSED

ADD R1,R2,R3

SD 0(R12), R1

SUBI R4,R4,#1

ADDI R10,R10,#4

ADDI R11,R11,#4

ADDI R12,R12,#4

BNEZ R4, LABEL

UNUSED

UNUSED

Type Instruction
Count (IC)

CPI CPI x
TPC [ns]

ALU 100 x 5 = 500 2.74 2.74

Load 100 x 2 = 200 3.74 3.74

Store 100 x 1 = 100 2.74 2.74

Control 100 x 1 = 100 4.74 4.74

T = 500 x 2.74 + 200 x 3.74 + 100 x 2.74 + 100 x 4.74 = 2.9 us

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns

READ A

MISS

MISS

A

A

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns

READ B

MISS

MISS

A,B

B

Michel Dubois, Murali Annavaram, Per Stenström © 2019

Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns

READ A

MISS

HITA,B

A

Michel Dubois, Murali Annavaram, Per Stenström © 2019

You should know by now

• The locality principle
• Cache mapping principles and cache organizations
• Replacement policies
• Write policies
• Cache hierarchy performance models

