
Basic Memory Hierarchy Concepts

• The pyramid of memory levels (Ch. 4.2)
• Cache hierarchy (parts of Ch. 4.3)

ü Cache mapping and organization (4.3.1)
ü Replacement policies (4.3.2)
ü Write policies (4.3.3)
ü Cache hierarchy performance (4.3.4)
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The Locality Principle
(Ch 4.2)
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Cache Mapping Policies 
and Organizations

(Ch 4.3.1)
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A Simple Cache Design



0
4
8

12
16
20
24
28
32
36
40
44
48
…
…

124
127

Instruction memory
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Instruction memory
LABEL: LD R2,0(R10)

LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
ADDI R10,R10,#4
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Memory blocks –
16 bytes each 

Question:
How many blocks 
does the memory 
contain?

Answer:
128/16 = 8

Michel Dubois, Murali Annavaram, Per Stenström © 2019



0

16

32

48

64

80

96

112

127

Instruction memory

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenström © 2019



0

16

32

48

63

Instruction cache

Memory Block 0

Memory Block 1

Memory Block 2

Memory Block 3

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Instruction memory

Michel Dubois, Murali Annavaram, Per Stenström © 2019



0

16

32

48

63

Instruction cache

Block Frame 0

Block Frame 1

Block Frame  2

Block Frame 3

Question:
Where do we place 
memory blocks 
4 – 7?

Answer:
Memory block N is 
placed in cache block 
frame N modulo 4. For 
example, memory block 6 
is placed in cache block 
frame 2.
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Question: 
How do we distinguish between 
memory blocks 0 and 4, blocks 1 and 
5, blocks 2 and 6, and blocks 3 and 7?
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Block address: 3 bits

Block 0: 000
Block 1: 001
Block 2: 010
Block 3: 011
Block 4: 100
Block 5: 101
Block 6: 110
Block 7: 111

The Tag is a single bit

!"#$%& '()"
*+,-" '()"

= N => log2N tag bits 

Question: 
How many tag bits are needed 
if the memory is 64 Gbytes and 
the cache  is 1 Mbytes?

Answer: 
Number of  memory blocks that map to 
the same block frame is 
64 Gbytes/1 Mbytes = 64 x 1024. 
log2(64 x 1024) = 16 bits.
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Tag Block 1

Tag Block 0

Tag Block 3

Tag Block 2
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Instruction cache

Block Frame 0

Block Frame 1

Block Frame  2

Block Frame 3

Tag Block Offset
6           6 5           4  3           0

Tag Block 0

= HIT

Block Frame 0
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Tag Block 1

Tag Block 0

Tag Block 3

Tag Block 2
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Instruction cache

Block Frame 0

Block Frame 1

Block Frame  2

Block Frame 3

Tag Block Offset
6           6 5           4  3           0

Tag Block 0

<> MISS



Michel Dubois, Murali Annavaram, Per Stenström © 2019

Memory address (log2128 = 7 bits):

Tag Block Offset

6                6 5                4  3                0

Question:
How many bits would be required for 
Tag, Block and offset for a memory of 
1024 bytes divided into blocks of 32 
bytes and a cache containing 4 blocks?

Answer:
• Tag bits: log2(Memory size/Cache 

size) = log2(1024/(4x32))= 3 bits 
• Block bits: 4 blocks, so 2 bits 
• Offset bits: 32 bytes, so 5 bits
• Memory address: 10 bits
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Set-Associative Caches
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Direct-mapped caches suffer
from mapping conflicts
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Tag Way 1
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Fully associative cache
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Tag Offset
6                          4  3           0
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Tag Way 3
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Tag Way 1

Tag Way  0

Tag Way 1

Tag Way 0

2-WAY ASSOCIATIVE CACHE

Tag Set Offset
6           5 4 4  3           0

= HIT

Block Frame 0

Set 0

Set 1

Tag Way 0
Tag Way 1

Question:
Why is the tag field 2 bits?
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Answer: 

We have to determine how many blocks that 
can map to a given block frame. There are 
eight memory blocks and half of them will be 
mapped to Set 0 and half to Set 1. So there 
are four memory blocks that can be mapped to 
a given block frame.
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Replacement Policies
(Ch 4.3.2) 
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The Cache Replacement Algorithm
determines which block should be
replaced.
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Tag Way 1

Tag Way 0

Tag Way 3

Tag Way 2

Fully associative cache

Mem. Block 0

Least Recently Used (LRU)

0

0

0

0

Mem. Block 1

1

Mem. Block 2
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Mem. Block 3

1

2
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Write Policies
(Ch 4.3.3)
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Processor
(Core)

Memory

Cache1ns

100ns
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Processor
(Core)

Memory

Cache1ns

100ns

Read hits: 1ns
Read miss: 100 ns

Write hits: 100 ns
Write miss: 100 ns

THE WRITE-THROUGH POLICY
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Processor
(Core)

Memory

Cache1ns

100ns

Buffer NOT full
Write hits: 1 ns

FIFO buffer
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Processor
(Core)

Memory

Cache1ns

100ns

Read hits: 1ns
Read miss: 100 ns

Write hits: 1 ns
Write miss: 100 ns

THE WRITE-BACK POLICY

NEED TO KEEP TRACK OF
MODIFIED BLOCKS
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Cache Performance
(Ch 4.3.4)
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LABEL: LD R2,0(R10)
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ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
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ADDI R12,R12,#4
BNEZ R4,LABEL

Direct-mapped Instruction cache

Block frame 0

Block frame 1

Block frame 2

Block frame 3
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Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 1

Block frame 2

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

1 MISS
3 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
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Instruction memory

SUBI R4,R4,#1
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ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 2

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

1 MISS
3 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
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Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL 1 MISS
0 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL
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Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

4 HITSLABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL
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Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL

4 HITS

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL
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Instruction memory

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Direct-mapped Instruction cache

Block frame 3

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

BNEZ R4,LABEL 1 HIT

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL
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Number of instruction fetches: 100 x 9 = 900
Number of MISSES: 3
Number of HITS: 897
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4-Way Set Associative Data cache (4 Blocks)

Question: 
Why is a 4-way associative cache with this 
configuration equivalent with a fully associative 
cache?

Answer: 
Because the cache is configured with four 
blocks only.
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First iteration

Block 0

Block 2

1 MISS

1 MISS

1 MISSBlock 4
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4-Way Set Associative Data cache (4 Blocks)

Second iteration

Block 0

Block 2

Block 4

1 HIT

1 HIT

1 HIT
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4-Way Set Associative Data cache (4 Blocks)

Third iteration

Block 0

Block 2

Block 4

1 HIT

1 HIT

1 HIT
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4-Way Set Associative Data cache (4 Blocks)

Fourth iteration

Block 0

Block 2

Block 4

1 HIT

1 HIT

1 HIT
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Block 0
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Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4-Way Set Associative Data cache (4 Blocks)

Fifth iteration

Block 1

Block 3

Block 5

1 MISS

1 MISS

1 MISS
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Number of data accesses: 100 x 3 = 300
Number of MISSES: 75
Number of HITS: 225
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Processor
(Core)

Multi-level 
cache

Cache1ns

20ns

Read hits: 1ns
Read miss: 50 ns

Write hits: 1 ns
Write miss: 50 ns
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T  = IC x (CPI0+MPI x MP) x TPC
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Total number of misses: 3+75 = 78
Total number of instructions: 900
Miss rate Per Instruction (MPI): 78/900 = 0.087
CPI =1 + 0.087 x 20 =2,74
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LABEL: LD R2, 0(R10)

LD R3, 0(R11)

UNUSED

ADD R1,R2,R3

SD 0(R12), R1

SUBI R4,R4,#1

ADDI R10,R10,#4

ADDI R11,R11,#4

ADDI R12,R12,#4

BNEZ R4, LABEL

UNUSED

UNUSED

Type Instruction
Count (IC)

CPI CPI x 
TPC [ns]

ALU 100 x 5 = 500 2.74 2.74

Load 100 x 2 = 200 3.74 3.74

Store 100 x 1 = 100 2.74 2.74

Control 100 x 1 = 100 4.74 4.74

T =  500 x 2.74 + 200 x 3.74 + 100 x 2.74 + 100 x 4.74  = 2.9 us 
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Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns
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Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns

READ A

MISS

MISS

A

A
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Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns
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100ns

READ B

MISS

MISS

A,B

B
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Processor
(Core)

Memory

Processor
(Core)

Processor
(Core)

L2 Cache

L1 Cache L1 Cache L1 Cache1ns

10ns

100ns

READ A

MISS

HITA,B

A
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You should know by now

• The locality principle
• Cache mapping principles and cache organizations
• Replacement policies
• Write policies
• Cache hierarchy performance models


