Optional Lecture 2

Basic Memory Hierarchy Concepts

» The pyramid of memory levels (Ch. 4.2)
« Cache hierarchy (parts of Ch. 4.3)
v' Cache mapping and organization (4.3.1)
v' Replacement policies (4.3.2)
v" Write policies (4.3.3)
v' Cache hierarchy performance (4.3.4)
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The Locality Principle
(Ch 4.2)
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Processor
(Core)

Memory

Memory

o ...
A: aN
B: bN
C:cN
100 LABEL: LD R2, 0(R10)
101 LD R3, 0(R11)
102 ADD R1,R2,R3
103 SD 0(R12), R1
104 SUBI R4,R4,#1
105 ADDI R10,R10,#4
106 ADDI R11,R11,#4
107 ADDI R12,R12,#4
108 BNEZ R4, LABEL
M
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Cache Mapping Policies
and Organizations
(Ch 4.3.1)
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A Simple Cache Design
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Instruction memory

0

4

8
12
16
20
24
28
32
36
40
44
48

124
127

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1
SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4
BNEZ R4,LABEL
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Instruction memory

127

&

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBTRAREFT |
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4 Memory blocks —
— BNEZ R4,LABEL | 16 bytes each
36
40 4 N
44 Question: Answer:
48 How many blocks 128/16 = 8
does the memory
contain?
124

J
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Instruction memory

0

Memory Block 0

16

Memory Block 1

32

Memory Block 2

48

Memory Block 3

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

127

Memory Block 7
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Instruction memory Instruction cache

Memory Block 0 ’

Memory Block 1 10

32
Memory Block 2

Memory Block 3 *

63

Memory Block 4

Memory Block 5

Memory Block 6

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



Instruction memory

0

Memory Block 0

16

Memory Block 1

Instruction cache

0

Block Frame 0

32

Memory Block 2

16

Block Frame 1

48

Memory Block 3

32

Block Frame 2

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

48

63

Block Frame 3

'Question:
Where do we place
memory blocks

Memory Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

4 =77

~
Answer:
Memory block N 1s
placed 1n cache block
frame N modulo 4. For
example, memory block 6
1s placed in cache block
frame 2. |

\




Instruction memory

0

Memory Block 0

16

Memory Block 1

32

Memory Block 2

48

Memory Block 3

AN

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

Memory Block 7
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Instruction cache

0

Block Frame 0

16

Block Frame 1

32

Block Frame 2

48

63

Block Frame 3




Instruction memory

0

Memory Block 0

16

Memory Block 1

32

Memory Block 2

48

Memory Block 3

64

Memory Block 4

ol

Memory Block 5

Memory Block 6

Memory Block 7

Instruction cache

0 Block Frame 0

10 Block Frame 1

32
Block Frame 2

48
Block Frame 3

63

/ ]
Question:

How do we distinguish between
memory blocks 0 and 4, blocks 1 and

5, blocks 2 and 6, and blocks 3 and 7?

.

o A
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Instruction memory

0

0

Instruction cache

Block 7

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Block 0 Tag Block 0 Block Frame 0

10 Block 1 TagBlock 1[|[| "® Block Frame 1
32 32

Block 2 Tag Block 2 Block Frame 2
48 Il 4s

Block 3 Tag Block 3 Block Frame 3
o Block 4 e
ol

Block 5
% Block 6




Block address: 3 bits

g:ggt ? 88? The Tag is a single bit

Block 2: 010

Block 3: 011 Memory Size _ ., _ :

Blggk 21100 Cache};ize = N => log,N tag bits

Block 5: 101

Block 6: 110

Block 7: 111

4 ) e N

Question: Answer:

How many tag bits are needed Number of memory blocks that map to

if the memory is 64 Gbytes and the same block frame is

the cache is 1 Mbytes? 64 Gbytes/1 Mbytes = 64 x 1024. mh |

. ) |log,(64 x 1024) = 16 bits. WW
Michel Dubois, Murali A\ _




6 65 4 3 0
Tag Block Offset Block Frame 0
]
HIT

Instruction cache
Tag Block 0 Tag Block 0 0 Block Frame 0
Tag Block 1 10 Block Frame 1

S

Tag Block 2

32

Block Frame 2

Tag Block 3

48

63

Block Frame 3
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6 65 4 3 0
Tag Block Offset
MISS
Instruction cache
Tag Block 0 Tag Block 0 0 Block Frame 0
Tag Block 1 10 Block Frame 1
S

Tag Block 2

32

Block Frame 2

Tag Block 3

48

63

Block Frame 3
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Memory address (log,128 = 7 bits):

6 65

4 3 0

Tag

Block

Offset

‘Question:

How many bits would be required for
Tag, Block and offset for a memory of
1024 bytes divided into blocks of 32
bytes and a cache containing 4 blocks?

&

J

/Answer:

» Tag bits: log,(Memory size/Cache
size) = log,(1024/(4x32))= 3 bits

« Block bits: 4 blocks, so 2 bits

» Offset bits: 32 bytes, so 5 bits

 Memory address: 10 bits

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



Set-Associative Caches
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Data memory

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Data cache

A
NN
NN

Mem. Block 3

64

C:

Mem. Block 4 /

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7
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Data memory Data cache

© A Mem. Block 0

16

Mem. Block 1

32

® Mem. Block 2 Mem. Block 2

A
NN
NN

48 Mem. Block 3

64 C:

Mem. Block 4 /

%0 Mem. Block 5

% Mem. Block 6

112
Mem. Block 7

127
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Data memory

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Mem. Block 3

A
NN
NN

64

“Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

Data cache

Mem. Block 4

Mem. Block 2
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Data memory

Mem. Block 0

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Mem. Block 3

64

“Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

7
77

%

Data cache

Mem. Block 4

Mem. Block 2
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Data memory

0

A" Mem. Block 0

16

Mem. Block 1

32

5 Mem. Block 2

48

Mem. Block 3

A
NN
NN

64

“Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

Data cache

Mem. Block 0

Mem. Block 2
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Data memory Data cache

Mem. Block 4

° * Mem. Block 0 /’ Mem. Block 0

16 Mem. Block 1
_ //

B: Mem. Block 2 /// Mem. Block 2
48 Mem. Block 3

64 C:

Mem. Block 4 /

80

Mem. Block 5
% Mem. Block 6 Direct-mapped caches suffer
112 from mapping conflicts

Mem. Block 7

127
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Data memory

Fully associative cache

0

A:

Mem. Block 0

16

Mem. Block 1

32

B:

Mem. Block 2

48

Mem. Block 3

64

C:

Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7

.| Tag Way 0

Tag Way 1

Tag Way 2

Tag Way 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



FULLY ASSOCIATIVE CACHE

Block Frame 0

J

6 4 3 0
Tag Offset
HIT
tl'ag Way 0
Tag Way 1
Tag Way 2

Tag Way 3
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Data memory

2-WAY ASSOCIATIVE CACHE

0

A:

Mem. Block 0

16

Mem. Block 1

32

B:

Mem. Block 2

48

Mem. Block 3

64

C:

Mem. Block 4

80

Mem. Block 5

96

Mem. Block 6

112

127

Mem. Block 7
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2-WAY ASSOCIATIVE CACHE

Block Frame 0

J

6 54 4 3 0
Tag Set Offset
HIT
Tag Way 0 Set 0 —
Tag Way 1
> i
Set1 —
Question: —

Why is the tag field 2 bits?

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019




/
Answer:

We have to determine how many blocks that
can map to a given block frame. There are
eight memory blocks and half of them will be
mapped to Set 0 and half to Set 1. So there
are four memory blocks that can be mapped to

a given block frame.
N y
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Replacement Policies
(Ch 4.3.2)
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Data memory Fully associative cache

0 A Mem. Block 0 Tag Way 0 Mem. Block 0
16
Mem. Block 1 Tag Way 1 Mem. Block 1
21 B Mem. Block 2 Tag Way 2 Mem. Block 2
48 Mem. Block 3 Tag Way 3 Mem. Block 3
*  %Mem. Block 4
®  Mem. Block 5
' The Cache Replacement Algorithm
96 Mem. Block 6 determines which block should be
replaced.
112
Mem. Block 7
127
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Least Recently Used (LRU)

Fully associative cache

Tag Way 0 Mem. Block 0
Tag Way 1 Mem. Block 1
Tag Way 2 Mem. Block 2
Tag Way 3 \ Mem. Block 3
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Write Policies
(Ch 4.3.3)
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Processor
(Core)

1ns Cache

100ns Memory
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1ns

100ns

Processor
(Core)

Memory

Read hits: 1ns
Read miss: 100 ns

Write hits: 100 ns
Write miss: 100 ns

THE WRITE-THROUGH POLICY

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



Processor
(Core)

1ns Cache

FIFO buffer : Buffer NOT full
Write hits: 1 ns

100ns Memory
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1ns

100ns

Processor
(Core)

Memory

Read hits: 1ns
Read miss: 100 ns

Write hits: 1 ns
Write miss: 100 ns

THE WRITE-BACK POLICY

NEED TO KEEP TRACK OF
MODIFIED BLOCKS

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



Cache Performance
(Ch 4.3.4)
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Instruction memory

0 LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,H1T |
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL |
36
40
44
48
124
127

Direct-mapped Instruction cache

Block frame 0

Block frame 1

Block frame 2

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



Instruction memory

0 LABEL: LD R2,0(R10)

4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

Block frame 1

Block frame 2

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1 MISS
3 HITS



Instruction memory

0  LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

Block frame 2

Block frame 3
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Instruction memory

0  LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Block frame 3
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Instruction memory

0 LABEL: LD R2,0(R10)

4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1
ADDI R10,R10,#4
ADDI R11,R11,#4

ADDIRI2.R12.7#4
BNEZ R4,LABEL

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

4 HITS



Instruction memory

LABEL: LD R2,0(R10)

LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

0  LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

BNEZ R4,LABEL

Block 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

Direct-mapped Instruction cache

4 HITS



Instruction memory

0  LABEL: LD R2,0(R10)
4 LD R3,0(R11)
8 ADD R1,R2,R3
12 SD 0(R12),R1
~ 16 SUBI R4,R4,#1
20 ADDI R10,R10,#4
24 ADDI R11,R11,#4
28 ADDI R12,R12,#4
32 BNEZ R4,LABEL
36
40
44
48
124
127

Direct-mapped Instruction cache

LABEL: LD R2,0(R10)
LD R3,0(R11)
ADD R1,R2,R3
SD 0(R12),R1

SUBI R4,R4,#1

ADDI R10,R10,#4
ADDI R11,R11,#4
ADDI R12,R12,#4

BNEZ R4,LABEL

Block frame 3

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019

1 HIT



Number of instruction fetches: 100 x 9 =900
Number of MISSES: 3
Number of HITS: 897

Michel Dubois, Murali Annavaram, Per Stenstrom © 2019



Data memory

O A Block0
16 Block 1
2. B Block 2
48 Block 3
% % Block 4
%0 Block 5
% Block 6

112
Block 7
127

Michel Dubois, R/Iurah Annavaram, Per Stenstrom © 2019

4-Way Set Associative Data cache (4 Blocks)

'Question:

Why is a 4-way associative cache with this
configuration equivalent with a fully associative
cache?

J

'Answer:
Because the cache is configured with four
blocks only.

~




Data memory 4-Way Set Associative Data cache (4 Blocks)
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Data memory 4-Way Set Associative Data cache (4 Blocks)
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Data memory 4-Way Set Associative Data cache (4 Blocks)
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Number of data accesses: 100 x 3 = 300
Number of MISSES: 75
Number of HITS: 225
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Processor
(Core)

1ns
\ 4
20ns Multi-level
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Read hits: 1ns
Read miss: 50 ns

Write hits: 1 ns
Write miss: 50 ns
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T =IC x (CPI,+MPI x MP) x TPC
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Total number of misses: 3+75 =78
Total number of instructions: 900

Miss rate Per Instruction (MPI): 78/900 = 0.087
CPI=1 + 0.087 x 20 =2,74
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LABEL: LD R2, 0(R10)
LD R3, 0(R11)
UNUSED
ADD R1,R2,R3
SD 0(R12), R1
SUBI R4,R4,#1
ADDI R10,R10,4#4

Type Instruction CPI x NS
Count (IC) TPC [nS] BNEZ R4, LABEL

100 x 5=500 2.74 2.74 nuseo
Load 100 x 2 =200 3.74 3.74
Store 100 x 1 =100 2.74 2.74
Control 100 x 1 =100 4.74 4.74

T=500x274+200x3.74+100x2.74 + 100 x4.74 =29 us
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You should know by now

* The locality principle

« Cache mapping principles and cache organizations
* Replacement policies

* Write policies

» Cache hierarchy performance models
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