
 

THEME ARTICLE: Hot Chips 

Volta: Performance and 
Programmability 

GV100 is NVIDIA’s latest flagship GPU. It has been 

designed with many features to improve performance 

and programmability. It features enhancements to 

NVLink, a redesigned streaming microprocessor (SM), and independent thread 

scheduling enhancements to the single instruction, multiple threads (SIMT) model.  

GV100 also adds new tensor cores for an order of magnitude throughput improvement 

for deep-learning kernels. 

A comparison of NVIDIA's previous-generation GP100 with the new GV100 shows a 1.5x to 2x 
throughput improvement on math, memory, and NVLink interconnect, as well as an order of 
magnitude improvement in deep-learning throughput—meeting a major design goal (see Figure 
1). Designers also had the goal of making the Volta architecture in GV100 performance accessi-
ble to programmers by improving programmability and adding many improvements. This article 
covers a few of those improvements: an enhanced NVLink, a redesigned SM core, independent 
thread scheduling enhancements to the SIMT model, and tensor cores for deep-learning accelera-
tion. 

NVLINK ON VOLTA 
NVLink, as introduced on GP100 in 2016, allowed the Pascal GPU to directly read and write the 
high-bandwidth memory (HBM) attached to other GPUs (graphics memory, or GMEM) or the 
large memory pool attached to the IBM POWER 8+ processor (system memory, or SYSMEM). 
On top of that, Pascal could issue atomic operations to NVLink-connected GPUs where the 
atomics could be completed at the destination. The relationship between the GPU and the CPU 
was asymmetric. The CPU could not initiate commands on the NVLink interface and could not 
access GMEM except over PCI Express (PCIe). If high-bandwidth movement of data between 
GMEM and SYSMEM were required, the processor would program the GPU’s high-speed copy 
engines to move data between the memory pools using NVLink. 

Shared Address Space 
NVLink on Volta and on POWER9 allows both the GPU and the CPU to initiate transactions 
over the link. GMEM for each GPU and SYSMEM for each CPU socket in a node are combined 
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in a single flat address space with equal access and capabilities across each of the processing 
units. Volta can now issue loads, stores, and atomics to SYSMEM, and POWER9 can issue 
loads, stores, and atomics to any GMEM in the node. The value of this to a programmer is that 
all memory is directly accessible. There is still a non-uniform-memory aspect (NUMA) that must 
be considered, but now that becomes a matter of performance, not correctness. GPU access to its 
local GMEM is substantially higher bandwidth than to SYSMEM or to other GPUs. CPU latency 
to GMEM is substantially longer than to SYSMEM. The CUDA runtime driver dynamically de-
termines the best data placement by monitoring CPU and GPU accesses to remote memories (us-
ing performance counters). Programmers are also able to take control and explicitly bind and 
move pages between device memories. 

 
Figure 1: P100 vs. V100 performance. 

Atomics 
GPUs and CPUs support various atomic operations. A GPU can issue any of its atomics to a peer 
GPU where it will be completed at the destination. When a GPU wants to issue an atomic opera-
tion to SYSMEM that is not supported by the CPU, it can issue a read-modify-write operation on 
the link. The CPU provides data to the GPU and defends the block against access by other clients 
until the GPU has completed the atomic operation locally and returns ownership of the block to 
the CPU. 

Hardware Coherence 
Volta NVLink supports a data race free hardware coherence protocol between the GPU and 
CPU. The CPU can cache GMEM data in its local caches, and the GPU will snoop the CPU as 
needed to maintain coherence. The GPU caches SYSMEM data in its L1 cache and is guaranteed 
to be coherent at synchronization points without requiring the CPU to probe the GPU caches. 
The L1 is write-through, and synchronizing events use a hardware mechanism to invalidate 
cache entries. This asymmetric approach is a good tradeoff considering the different natures of 
the CPU and GPU. The CPU is generally running serial workloads that are highly dependent on 
effective use of its cache hierarchy to maintain good performance, and Volta’s NVLink capabil-
ity allows the caching hierarchy to be used even for GMEM data. On the other hand, the GPU is 
a throughput-optimized processor, and coherency at synchronization points is a good match to 
the CUDA programming model. 

The GPU uses a simple checkout scheme to track GMEM blocks in the CPU’s cache hierarchy. 
Blocks can be in one of two states—either the block might be in the CPU caches or it is defi-
nitely not in the CPU cache. The ambiguity around whether the CPU has the block or not exists 
because the CPU can drop cache lines that it no longer requires without notifying the GPU.  
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POWER9’s Level-3 (L3) cache is 120 Mbytes. Tracking the state for all the CPU cache in the 
node would require a very large tag structure. The GPU implements a probe filter that tracks the 
state of a subset of the cache capacity. All requests—whether generated locally, by a peer GPU, 
or by the CPU—are checked against the probe filter. Coherence operations are sent over NVLink 
only for blocks flagged as being potentially in use by the CPU. The probe filter will tend to fill 
up over time as entries get consumed by cache lines that have been dropped silently by the CPU. 
If the probe filter were to fill up entirely, each new access by the CPU would result in a probe to 
the CPU to free up space in the probe filter for the new request. This would add to the latency of 
the CPU request. Instead, a watermark scheme is implemented so that when the probe filter fills 
up beyond a programmable threshold, the GPU proactively pulls cache lines back from the CPU, 
guaranteeing space for new requests by the CPU. 

NVLink Address Translation Services 
Pascal uses a graphics memory management unit (GMMU) for virtual-to-physical address trans-
lation and access controls. The GMMU generates what is referred to as a guest physical address 
(GPA). When this GPA is passed to the CPU, further translation and access control checks are 
performed using the CPU’s translation control entry (TCE). Volta adds address translation ser-
vices (ATSs) on the NVLink path to a CPU, where the GPU can issue a request directly to the 
CPU for a translation using the CPU’s page tables. When the GPU misses in its translation look-
aside buffers (TLBs), it issues an address translation request (ATR) to the NVLink-attached 
CPU. The CPU responds with a translation (and pre-fetches a number of related pages), which 
can then be used by the GPU to generate the appropriate physical address. This system physical 
address (SPA) can be used directly to access system memory without further translation or 
checks by the CPU. When the CPU wants to remap a page in use by the GPU, it issues an ad-
dress translation shoot-down request (ATSD), which is acknowledged by the GPU once all oper-
ations in flight that could have been using the translation have resolved. At that point, the TLB 
entry is invalidated. 

Link Bandwidth 
NVLink on Volta increases the peak signaling rate from 20 Gbytes/s to 25.78125 Gbytes/s. Each 
NVLink has eight lanes in each direction. The number of NVLinks is increased from four on 
GP100 to six on Volta. Consequently, bidirectional bandwidth climbs from 160 Gbytes/s to 309 
Gbytes/s, or greater than 1.9x. POWER9 also increased its link count to six compared to the four 
supported on POWER8+. 

Power 
NVLink is a free-running interface and consumes power even when there is little or no data to be 
moved. A power-saving feature was added to GV100 NVLink, allowing for the link width to be 
reduced from eight lanes in one direction to a single lane. This reduces the power consumed sig-
nificantly (approximately 25 percent of the free-running power) at the cost of reduced NVLink 
bandwidth. This power-saving feature can be applied independently in each direction and per 
gang (the combination of NVLinks connecting two chips) based on programmable activity coun-
ters. 

SM CORE 
Volta’s redesigned SM core has made many improvements over the previous generation’s Pascal 
architecture. Volta’s SM has twice the instruction schedulers and simplified issue rules. This de-
sign makes it easier for a compiler to target and get more utilization and performance from the 
SM’s data paths. Volta’s SM has added a large, fast Level-1 (L1) cache for greater application 
performance, while also allowing the programmer to achieve more performance with less effort. 
The SM has also improved energy efficiency by 50 percent, which translates to more perfor-
mance in power-limited workloads. 
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SM Microarchitecture 
The Volta SM core (see Figure 2) is composed of four independently scheduled sub-cores. As 
with previous generations, the SM performs SIMT scheduling of a Warp (term used in the SM to 
describe a SIMT group of 32 threads). Each sub-core scheduler can schedule one Warp instruc-
tion per clock. Splitting the data path and schedulers into sub-cores maximizes locality and mini-
mizes the power consumption of data paths, register files, and scheduling control. This local 
independent scheduler also enables a compiler to produce more performance-optimized code by 
providing it a simple single issue model that doesn’t require interleave of multiple Warps for 
short latencies. 

Global memory load and store-cached operations, shared memory (SMEM) scratch pad opera-
tions, and Texture (TEX) operations are sent to a shared memory and I/O (MIO) unit. A shared 
MIO unit provides high and uniform inter-thread communication between sub-cores, enabling 
efficient, cooperative thread execution. The four sub-cores share an L1 instruction cache that can 
deliver instructions at four Warp instructions per clock. 

 
Figure 2: Volta SM core. 

SM Sub-Core 
The SM Sub-Core (see Figure 3) can issue one Warp instruction per clock from a dedicated 
Level-0 (L0) instruction cache. Instructions are issued to either the local branch unit (BRU), 
math dispatch unit, tensor cores, or shared MIO unit. 

The math dispatch unit can dispatch instructions at one Warp instruction per clock to four data 
paths. There are separate data paths for integer instructions (INT), 32-bit floating-point instruc-
tions (FP32), 64-bit floating-point instructions (FP64), and miscellaneous transcendental instruc-
tions (MUFU). The math dispatch unit is able to keep two or more data paths fully utilized, 
depending on the mix of instructions in the program being executed. Having different data paths 
for different common instruction types allows for the data paths to be more power-optimized for 
the operations they perform. While having separate data paths increases area, having a scheduler 
design that can keep multiple math data paths busy improves execution efficiency and overall 
performance per mm2.  

Each SM sub-core also contains two 4x4x4 tensor cores. The Warp scheduler issues matrix mul-
tiply operations to the tensor cores for execution. The tensor cores receive input matrices from 
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the register file, perform multiple 4x4x4 matrix multiplies until the full matrix multiply is com-
pleted, and write the resulting matrix back into the register file. 

 
Figure 3: SM sub-core. 

L1 CACHE AND SHARED MEMORY 
The four SM sub-cores send their MIO instructions to the shared MIO unit for scheduling execu-
tion. The MIO scheduler schedules execution on either the texture unit or the unified shared 
memory and L1 data cache. The TEX unit can execute texture instructions at up to one pixel 
quad per clock. Data needed for the texture operations is pulled from the L1 streaming data 
cache. 

The L1 data cache is 128 Kbytes and can execute loads and stores for up to 32 threads per clock 
and provide up to 128 bytes per clock. This is four times the bandwidth and four times the capac-
ity of NVIDIA’s previous-generation GP100. The cache is designed as a streaming cache, which 
enables it to process cache misses and cache hits on outstanding cache misses without stalling, 
regardless of the address request pattern. For example, the number of misses to a single cache set 
is not limited by the number of ways. The cache can support the same number of outstanding re-
quests regardless of whether all of the outstanding cache misses and hits on outstanding cache 
misses are to a single cache set or they are spread across all the sets. 

The L1 cache data storage is unified with SMEM data storage, and up to 96 Kbytes of the 128 
Kbytes of L1 data storage can be dynamically configured to be used as SMEM. The L1 data 
cache load and store take the same execution path as SMEM load and store. This provides L1 
loads and stores cache hits with the same bandwidth and latency as SMEM load and stores. In 
GP100 streaming cache design, all requests were processed in order, which caused cache hits to 
have the same latency as cache misses. This unification with SMEM reduces the latency of cache 
hits by two orders of magnitude. 

In previous generations of GPUs, programs using the SMEM scratchpad provide much better 
latency and throughput performance than using the L1 cache at the cost of increased programmer 
effort. With the unification of L1 cache and SMEM scratch pad, the L1 cache has performance 
characteristics that are much closer to SMEM scratch pad. To estimate the performance benefit 
of SMEM, a set of applications designed to use SMEM was taken and their SMEM loads and 
stores were remapped to L1 cache loads and stores. The change of performance was measured 
(see Figure 4) on both our previous-generation Pascal architecture and on Volta. While the 
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amount of slowdown varied widely by application, Pascal saw an average slowdown of 30 per-
cent. On Volta, with its improved L1 cache design, the application slowdown was dramatically 
reduced to 7 percent, on average. 

 
Figure 4: SMEM vs. L1 cache performance. 

Using SMEM can still be a good option for some programmers. Their application might have 
characteristics where SMEM can still provide them a large performance benefit. Examples in-
clude making use of SMEM’s faster atomics, or SMEM’s much better bank conflict avoidance.  
Programmers might desire the more predictable performance of SMEM’s guaranteed low latency 
and want to avoid the possibility of a cache miss using the L1 cache. 

However, the improved L1 cache in Volta greatly reduces the performance difference between 
using SMEM and the L1 cache, as well as reduces the need to write programs using SMEM for 
high performance. Many programmers will be able to get reasonably high performance without 
the additional effort of programming to shared memory. 

SUPPORT FOR CONCURRENT PROGRAMMING 
The CUDA programming model has its origins in the bulk-synchronous parallel models de-
scribed by Valiant.1,2 In these models, computation and communication are independent within 
each of a series of phases, separated by barrier synchronization. In a practical programming plat-
form with atomic operations, however, this structure defines one part of a larger approach. 

Concurrent programming has been a part of GPU programming ever since CUDA 1.1. The Volta 
architecture advances the practice significantly, by expanding and formalizing the semantics of 
concurrent algorithms on the CUDA platform. 

Independent Thread Scheduling 
In a SIMT processor, 3 program threads execute instructions synchronously in a group called a 
Warp. Execution divergence among the threads of a Warp is handled by executing each path se-
rially, with the observable effect of suspending the execution of some threads, while others exe-
cute. The lack of forward-progress for the suspended threads means that SIMT processors have 
only been able to support lock-free4 concurrent algorithms, up until now. 

The Volta architecture expands the capabilities of SIMT processors to support starvation-free 
algorithms, including for mutual-exclusion. This is achieved with a completely new mechanism 
that ensures each thread eventually makes progress, when the compiler identifies visible ma-
chine steps as specified by the programming language (for example, in C++ 5). 
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Forward-Progress Guarantee Example  
A simple spinlock that guards the entry into a critical section provides a good example of the 
new capabilities of the Volta architecture. Multiple threads can concurrently invoke the function 
demo_A in the following example, if, and only if, the scheduler ensures each thread is guaran-
teed to make independent forward-progress. This spinlock is syntactically legal in CUDA C++ 
1.1, but is not fully supported until CUDA C++ 9.0 on the Volta architecture: 

enum { unlocked = 0, locked = 1 }; 
 
volatile int mutex = unlocked; 
 
void demo_A() { 
  while(atomicCAS(&mutex,unlocked,locked)==locked) 
    ; 
  /* Among throughput processors, only Volta is  
     guaranteed to run this critical section. */ 
  mutex = unlocked; 
} 

In previous designs, execution divergence optimizations could delay the execution of the critical 
section by any thread, until the termination of the loop by all threads, causing the program to en-
ter a live-lock state. The execution divergence optimization in the Volta architecture solves this 
issue by ensuring that no thread is suspended indefinitely. When threads that remain in the loop 
perform a visible machine step, such as an atomic operation, the scheduler gives other threads an 
opportunity to make equivalent forward-progress. 

Although the example spinlock program is not optimized for scalability, it serves as a litmus test 
for robustness of a programming system to naïve or optimistic synchronization in user pro-
grams. Figure 5 shows a typical result for a CPU architecture next to the Volta GPU architec-
ture’s. Notably, in comparison to the CPU, the GPU shows robustness over a wider operational 
range. 

 
Figure 5: Spinlock executed over page-able memory on x86-64 Linux 4.8.0, i7-5820K, and CUDA 
9.0 RC with V100 pre-production hardware. 

Flexible Barrier Usage 
In CUDA, the most common synchronization is a barrier among all the threads in a block. As a 
general rule, this barrier implies that if all of the threads in a block invoke it the same number of 
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times, corresponding invocations in each thread synchronize with each other. This is the original 
idea behind the CUDA C++ 1.0 barrier primitive, dubbed __syncthreads(), as used in the 
demo_B function below: 

extern bool is_odd(int); 
extern bool is_even(int); 
 
volatile bool is_sound = true; 
 
void demo_B() { 
  const int x = threadIdx.x; 
  if(is_odd(x) || is_even(x)) { 
    assert(is_sound); 
  /* The assertion does not fire on Volta, but 
     may fire on other throughput processors. */ 
    __syncthreads(); 
    is_sound = false; 
  } 
} 

The question of this function's soundness relates to an additional restriction placed on synchroni-
zation in CUDA, and similar parallel systems, specifically the prohibition on thread invocations 
of __syncthreads() when Warp execution is diverged. Guidelines on this subject are usually in-
complete and often missing. For example, demo_B is potentially made unsound by the short-cir-
cuit control-flow of the logical operators ||. The introduction of independent thread scheduling in 
Volta allows us to eliminate this prohibition and the need to reason about Warp execution diver-
gence to determine if a program is sound. 

Improved Execution Convergence 
Some programs have the potential for more convergent execution than any implementation is 
able to exploit. Consider this program with statically indeterminate execution divergence: 

extern bool is_equal(int, int); 
 
void demo_C() { 
  for(int i = 0;i < 1024; ++i) 
      if(is_equal(threadIdx.x, i)) { 
  /* Other throughput processors run this block with 
     execution divergence, but Volta may avoid it. */ 
      } 
} 

The function demo_C might execute slowly on a SIMT processor, because threads serialize on 
the execution of the condition's body. A prediction that the innermost block is likely to be exe-
cuted by all threads is not sufficient to avoid this serialization, and in many cases, a proof is re-
quired. The Volta architecture enables convergence optimization to be used speculatively for 
cases like this. 

A final class of programs needs firm guarantees on convergent execution, however. The program 
shown after this paragraph efficiently exchanges values between threads using a shuffle opera-
tion. The function demo_D aggregates data from an entire Warp using the Cooperative Groups6 
facility introduced in CUDA 9.0. The explicit group abstraction conveys the high-level program 
information, which the implementation (hardware and software) needs to provide the guarantees 
the program expects. This eliminates the guesswork required to apply Warp optimizations and 
makes the high-performance programmer more productive. Execution path re-convergence can 

49March/April 2018 www.computer.org/micro



 

 HOT CHIPS 

be a seen as performance optimization, while explicit synchronization within a Warp remains 
both supported and fast. 

#include <cooperative_groups.h> 
 
int demo_D(int *ptr) { 
    cg::coalesced_group g = cg::coalesced_threads(); 
    int prev; 
  /* Elect the first active thread to perform atomic add. */ 
    if(g.thread_rank() == 0) 
        prev = atomicAdd(ptr, g.size()); 
  /* Broadcast previous value within the Warp 
     and add each active thread’s rank to it. */ 
    prev = g.thread_rank() + g.shfl(prev, 0); 
    return prev; 
} 

TENSOR CORES FOR DEEP LEARNING 
The Pascal architecture delivered considerably higher performance for training neural networks 
compared to the prior-generation NVIDIA Maxwell and Kepler architectures, but the complexity 
and size of neural networks have continued to grow. New networks with thousands of layers and 
millions of neurons demand even higher performance and faster training times. New tensor cores 
are a key capability enabling the Volta GV100 GPU architecture to deliver the performance re-
quired to train large neural networks.  

Tensor Cores 
The GV100 GPU contains 640 tensor cores: eight per SM. In Volta GV100, each tensor core 
performs 64 floating-point operations per clock, and eight tensor cores in an SM perform a total 
of 1,024 floating-point operations per clock. GV100’s tensor cores deliver up to 120 tensor 
Tflops for training and inference applications. Tensor cores provide up to 12x higher peak Tflops 
on GV100 that can be applied to deep-learning training compared to using standard FP32 opera-
tions on GP100. For deep-learning inference, Volta’s tensor cores provide up to 6x higher peak 
Tflops compared to standard FP16 operations on Pascal.  

Tensor cores and their associated data paths are custom-designed to dramatically increase float-
ing-point compute throughput with high energy-efficiency. Each tensor core operates on a 4x4 
matrix and performs the following operation: 

D = A × B + C 

where A, B, C, and D are 4x4 matrices. The matrix multiply inputs A and B are FP16 matrices, 
while the accumulation matrices C and D may be FP16 or FP32 matrices. The computational 
density of this operation is very high; with three relatively small 4x4 matrices of multiply and 
accumulator data, 64 multiply-add operations can be performed. This enables the tensor core to 
perform matrix multiplications very efficiently in terms of area and power. Tensor cores operate 
on FP16 input data with FP32 accumulation. The FP16 multiply results in a full precision prod-
uct that is then accumulated using FP32 addition with the other intermediate products for a 
4x4x4 matrix multiply. In practice, tensor cores are used to perform much larger 2D or higher-
dimensional matrix operations, built up from these smaller elements. 

DEEP-LEARNING PERFORMANCE AND 
PROGRAMMABILITY 
General matrix multiplication (GEMM) operations are at the core of neural-network training and 
inferencing, and are used to multiply large matrices of input data and weights in the connected 
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layers of the network. Figure 6 shows that for the case of matrix operations with FP16 inputs and 
FP32 accumulation, Volta’s mixed-precision tensor cores with CUDA 9 help boost V100’s per-
formance by more than 9x over P100. 

CUDA basic linear algebra subroutine (CuBLAS) and CUDA DNN (cuDNN) libraries have 
been updated to provide new library interfaces to make use of tensor cores for deep-learning ap-
plications and frameworks. NVIDIA has worked with many popular deep-learning frameworks 
such as Caffe2 and Apache MXNet to enable use of tensor cores for deep-learning research on 
Volta GPU-based systems. NVIDIA is working to add support for tensor cores in other frame-
works, as well. Integration of tensor-core library routines into the frameworks provides easy out-
of-the-box, high-performance deep learning on Volta. 

 
Figure 6: cuBLAS mixed precision (FP16 input, FP32 compute). 

In addition to libraries and frameworks, the Volta tensor cores are accessible and exposed as 
Warp-level matrix operations in the CUDA 9 C++ API. 7 The API exposes specialized matrix 
load, matrix multiply and accumulate, and matrix store operations to efficiently use tensor cores 
from a CUDA-C++ program. 8 At the CUDA level, the Warp-level interface assumes 16x16 size 
matrices spanning all 32 threads of the Warp. Programmability and discovery of new machine-
learning techniques are critical for pushing the boundaries of what can be learned by neural net-
works. The CUDA C++ interfaces for tensor cores enable researchers and developers to invent 
new high-performance techniques that are not suited for standard matrix library routines. As 
highlighted by Figure 7, the state of the art for deep learning is evolving rapidly, enabled by cus-
tom development in CUDA. 

 
Figure 7: Deep-learning methods developed using CUDA. 
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CONCLUSION 
GV100 is NVIDIA’s highest-performance processor to date. The improved NVLink, the rede-
signed SM core, and independent thread scheduling have dramatically improved the perfor-
mance, efficiency, and programmability for HPC and deep-learning applications. We have 
dramatically expanded the space of concurrent GPU programs and eliminated long-standing con-
fusion between convergence optimizations and synchronization between SIMT threads. The ad-
dition of the tensor core also provides an order of magnitude throughput improvement for deep-
learning kernels. 
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