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Google times faster with 30-80 times better energy efficiency

runs deep neural network (DNN) inference 15-30

than contemporary CPUs and GPUs in similar
semiconductor technologies. This domain-specific architecture (DSA) is a custom chip
that has been deployed in Google datacenters since 2015, where it serves billions of

people.

DNNs have led to breakthroughs such as cutting the error rate in an image recognition competi-
tion from 26 to 3.5 percent since 2011 and beating a human champion at Go. Ironically, the suc-
cess of DNNs led to a potential crisis in 2013. If users searched by voice for three minutes a day
using speech recognition DNNs, computation demands on Google’s datacenters would double.
This increase would be unaffordable using conventional CPUs. Indeed, matrix multiply, which is
at the heart of DNN computations, rose significantly in popularity in our datacenter workload.

In response, Google started a high-priority project to produce a custom chip for DNNs. The goal
was to improve cost-performance by 10X over CPUs in just 15 months, including design, fabri-
cation, testing, and deployment. This article gives an overview of the motivation, architecture,
power, and performance of the resulting TPU. Our original article goes into greater depth.!

DNN

The two phases of DNN are called training (or learning) and inference (or prediction), and they
refer to development versus production. The goal for the first-generation TPU was to accelerate
inference by 10X. (The second-generation TPU tackles training.?)

Training computes the weights (parameters) of a DNN, adjusting them repeatedly until the DNN
produces the desired results. Virtually all training is in floating point. Quantization transforms
floating-point numbers into narrow integers—often only 8 bits—which are usually good enough
for inference. Eight-bit integer multiplies can be 6X less energy and 6X less area than IEEE 754
16-bit floating-point multiplies, and the edge for integer addition is 13X and 38X, respectively.
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MOORE'S LAW AND CPU VERSUS DSA DESIGN

CPU architects historically used the O(n?) more transistors per chip provided by a Moore’s-law
scaling by a factor of » to build single-core computers with increasingly aggressive implementa-
tions and bigger cache memories, up to the limits of single-core design. After this limit was
reached (circa 2003 with Intel Core Duo), they used transistors to increase throughput, so the
number of cores essentially grows with O(n?).

Alas, the peak power per mm? of chip was increasing (due to the end of Dennard scaling), but
the power budget per chip was limited (due to electromigration, mechanical, and thermal limits),
and we already tried switching to multiple cores (limited by Amdahl’s law). Given these con-
straints, the architects needed to take a radically different approach to deliver the next 10X.

They decided to build a DSA, which allowed either omitting or reallocating conventional CPU
resources that DNNs do not need. Unlike some DSA targets, DNNs cover numerous problems,
allowing reuse of a DNN-specific ASIC for speech, vision, language, translation, and search
ranking. Ideas in Mark Horowitz’s keynote speech inspired the design.? Figure 1 shows the ener-
gy overhead to perform a single addition on the traditional CPU: An 8-bit add that uses only 0.03
picoJoules (pJ) has an overhead of 70 pJ. If a single instruction did hundreds or thousands of 8-
bit additions or multiplies, it could perform 10X more operations per second and live within the
power constraints of the chip.
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Figure 1. Energy breakdown (not to scale) of instruction fetch and execute of a traditional CPU on
the left versus a TPU on the right.

The good news is that DNNs are dominated by tensors, so the architects created instructions that
operate on tensors of data rather than one data element per instruction. As vectors are tensors of
Order 1 (O(n)) and 2D matrices are tensors of Order 2 (O(n?)), they could use the O(n?) transis-
tors from Moore’s law to support multiplication of 2D matrices natively. While a straightforward
matrix multiply requires O(n®) operations, a chip could compute it in O(n) time given a large 2D
array in the matrix multiply unit.

From a historical perspective, 1D vectors have been in Cray supercomputers since the Cray-1 in
1976 and in desktop computers since the x86 MMX extension in 1997. The TPU generalizes
such hardware structures to 2D, which greatly expands the operations per instruction. The matrix
operations use a 256x256 array for 8-bit data. This approach reduced the energy overhead per
computation by more than 10X by increasing the reuse of fetched memory and register values by
more than 100X. Figure 1 illustrates the slim energy overhead per operation for the TPU.

TPU HARDWARE

Figure 2 shows the block diagram of the TPU. The internal blocks are connected by 256-byte-
wide paths. The matrix multiply unit is the heart of the TPU. It contains 256x256 multiply-
accumulators (MACs) that can perform 8-bit multiplies on integers. The 16-bit products are
summed in the 4 mebibytes (MiB) of 32-bit accumulators below the matrix unit. It holds 4,096
256-element, 32-bit accumulators. The matrix unit produces one 256-element partial sum per
cycle.

The weights that the DNN needs for the matrix unit are staged through an on-chip weight FIFO
that reads from an off-chip 8- gibibyte (GiB) DRAM called weight memory. The intermediate
results are held in the 24-MiB on-chip unified buffer, which can serve as input to the matrix unit.
A programmable DMA controller transfers data to or from CPU host memory and the unified
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buffer. To deploy dependably at Google scale, internal and external memory have error detection
and correction hardware.
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Figure 2. TPU block diagram. The main computation is the yellow matrix multiply unit. Its inputs are
the blue weight FIFO and the blue unified buffer, and its output is the blue accumulators. The
yellow activation unit operates on the accumulators, whose results go to the unified buffer.

The philosophy of the TPU microarchitecture is to keep the large matrix unit busy. Toward that
end, the instruction that reads the weights follows the decoupled-access/execute philosophy,* in
that it can complete after sending its address, but before the weight is fetched from weight
memory. The matrix unit will stall if the input activation or weight data is not ready.

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic
execution to save energy by reducing reads and writes of the unified buffer.® It relies on data
from different directions arriving at cells in an array regularly where they are combined. A given
256-element matrix-vector multiplication moves through the matrix as a diagonal wavefront. The
weights are preloaded and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give software the illusion that the matrix unit reads 256
inputs simultaneously, and that they instantly update one location of each of the 256 accumula-
tors.

To reduce time of deployment, the TPU was designed to be a coprocessor on the PCI Express
(PCle) I/O bus rather than be tightly integrated with a CPU, allowing it to plug into existing
servers just as a GPU does. The goal was to run whole inference models in the TPU to reduce
/O between the TPU and the host CPU.

Moreover, to simplify hardware design and debugging, the host server sends TPU instructions
over the PCle bus for it to execute rather than having the TPU sequence itself. Hence, the TPU is
closer in spirit to a floating-point coprocessor than it is to a GPU. As instructions travel over this
relatively slow bus, the TPU follows the CISC tradition. It has about a dozen instructions, such
as Read Host Memory, Read Weights, Matrix Multiply, and Write Host Memory. The aver-
age clock cycles per instruction of these CISC instructions is typically 10 to 20.

Figure 3 shows the floor plan of the TPU die. The 24-MiB unified buffer is almost a third of the
die and the matrix multiply unit is a quarter, so the data path is nearly two-thirds of the die. Con-
trol is just 2 percent. Control is much larger (and harder to design) in a CPU or GPU. Figure 4
shows the TPU on its printed circuit card, which inserts into existing servers such as a serial
advanced technology attachment (SATA) disk.
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Figure 3. Floorplan of TPU die. The shading follows Figure 2. The blue data path is 67 percent, the

green 1/O is 10 percent, and the red control is only 2 percent of the die.

Figure 4. TPU printed circuit board, which can be inserted into the slot for a disk in a server.

TPU BENCHMARKS

Most architecture articles rely on simulations running small, easily portable benchmarks that
project potential performance if the hardware is ever implemented. This article is not one of

those. It is a retrospective evaluation of real machines running large production workloads in
datacenters since 2015, some of which more than 1 billion people use routinely.

Table 1 shows the six production DNN applications that we used to evaluate the TPU, which
represented 95 percent of inference workload in our datacenters in 2016. As most research arti-
cles in computer architecture concentrated on convolutional neural networks (CNNs), we were
surprised that they were only 5 percent of Google’s production inference workload. The portion
of the production applications running on the TPU is surprisingly small, only 100 to 1,500 lines
of TensorFlow.® Our benchmarks are small pieces of larger applications that run on the host
server, which can be thousands to millions of lines of C++ code. The applications are often user-
facing, which leads to rigid response-time limits.

Each model needs between 5 and 100 million weights (see Table 1), which can take a lot of time
and energy to access. To amortize the access costs from the off-chip DRAM, the same weights
are reused across a batch of independent examples, which improves performance. Table 2 com-
pares the TPU to two large chips contemporary to the TPU: an 18-core Intel Haswell CPU and
the Nvidia Kepler K80 GPU. The TPU is about half the area of Haswell and Kepler, and half the
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power, yet packs 25 times the MACs (65,536 8-bit versus 2,496 32-bit) and 3.5 times the on-chip
memory (28 MiB versus 8 MiB) as the GPU.

Table 1. Six DNN applications (two per DNN type). MLP stands for multi-layer perceptron, and
LSTM stands for long short-term memory.

Lines . TPU Ops / Weight | Percent of Deployed TPUs in

Name of Code Weights Byte July 2016
MLPO 100 20M 200

61%
MLP1 1,000 5M 168
LSTMO 1,000 52 M 64

29%
LSTM1 1,500 34 M 96
CNNO 1,000 8M 2,888

5%
CNN1 1,000 100 M 1,750

Table 2. Benchmarked servers use Haswell CPUs, K80 GPUs, and TPUs. The GPU and TPU use
the Haswell server as host. The TPU die is less than half the Haswell die size.

Thermal Design TeraOpsl/s .
Model | mm? [nm| MHz | Power (TDP) per | Cores Igﬁ"}gg g::s:{' TsDe Prvpe?r
Chip 8 bit | FP32 | %Y
Haswell| 662 [22]2,300 145 W 18 | 26 | 1.3 51 2 | 504w
N&’gd(;a 561 28| 560 150 W 13 | - | 28| 160 | 8 |1,838W
TPU |<331[28| 700 75 W 1 92 | -- 34 4 |861W

To illustrate the performance of the six applications, we adapt the Roofline Performance model
from high-performance computing.” This simple visual model offers insights into the causes of
performance bottlenecks. The assumption behind the model is that applications don’t fit in on-
chip memory, so they are either computation-limited or memory bandwidth-limited. The y-axis
is performance in operations per second, thus the peak computation rate forms the “flat” part of
the roofline. The x-axis is operational intensity, measured as operations per DRAM byte ac-
cessed. Memory bandwidth is bytes per second, which turns into the “slanted” part of the roof-
line because (flops/s) / (flops/byte) = bytes/s. Without sufficient operational intensity, a program
is memory bandwidth-bound and lives under the slanted part of the roofline. Figure 5 shows the
rooflines and the performance of the six programs on our platforms. The TPU’s roofline is most
slanted because it has very high peak performance comparatively, but relatively slow memory
bandwidth.

The six DNN applications are close to the TPU ceiling but generally further below their ceilings
for Haswell and K80. Response time is the surprising reason. For example, the application de-
veloper of MLPO required a 99"-percentile response-time limit of 7 ms. The reason for tight
response-time limit is that inference applications like MPLO are part of end-user-facing services,
which have notoriously rigid limits to maintain user satisfaction.

At that limit, Table 3 shows that Haswell and the K80 run at just 42 and 37 percent, respectively,
of the highest throughput achievable for MLPO. If the response-time limit was relaxed, these
applications would run much closer to the CPU and GPU rooflines. These bounds affect the
TPU, as well. But at 80 percent, it is operating much closer to its highest MLPO throughput, so
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the applications are closer to the TPU roofline. Compared to CPUs and GPUs, the single-

threaded TPU has no sophisticated microarchitectural features that consume transistors and ener-

gy to improve the average case but not the 99"-percentile case: no caches, branch prediction,
out-of-order execution, multiprocessing, speculative prefetching, address coalescing, multi-
threading, context switching, and so on. Minimalism is a virtue of domain-specific processors.
Table 4 shows that the TPU is, on average, 29 and 15 times faster than the CPU and GPU.
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Figure 5. Roofline performance model of the TPU (stars), K80 (triangles), and Haswell (circles). All

TPU stars are at or above the other two rooflines.

Table 3. 99"-percentile response time versus throughput (inferences per second) for MLPO.

Type | Batch Size 99t% Response Inferences/s (IPS) % Max IPS
16 7.2ms 5,482 42%
CPU
64 21.3 ms 13,194 100%
16 6.7 ms 13,461 37%
GPU
64 8.3 ms 36,465 100%
200 7.0 ms 225,000 80%
TPU
250 10.0 ms 280,000 100%

In datacenters, cost-performance trumps performance. We can’t disclose our costs, but power is
correlated with total cost of ownership, and we can report performance/Watt. Figure 6 shows the
relative performance/Watt of GPU versus CPU (blue bar), TPU versus CPU (red), and TPU ver-

sus GPU (orange). The relative performance/Watt (ignoring host power) is 83 for TPU versus

CPU and 29 for TPU versus GPU. We also evaluated a hypothetical TPU (TPU”) using the same
much-faster GDDRS memory as used in the GPU. As two-thirds of the benchmarks are memory-
bound, Figure 6 shows that the relative performance/Watt (ignoring host power) of TPU’ leapt to
an amazing 196X over Haswell (green bar) and 68X over the K80 (purple).
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Table 4. K80 GPU die and TPU die performance relative to CPU for the DNN workload. The mean
uses the actual mix of the six apps in Table 1.

DNN LSTM CNN
Type Weighted Mean
0 1 0 1 0 1
GPU 2.5 0.3 04 1.2 1.6 2.7 1.9
TPU 41.0 18.5 3.5 1.2 40.3 71.0 29.2

@ GPU/CPU W TPU/CPU B TPU/GPU IR TPU/CPU TPU'/GPU

Total Performance/Watt Incremental Performance/Watt
(including host CPU) (no host CPU)

Figure 6. Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to
CPU server, and TPU server to GPU server (orange bar). TPU’ is an improved TPU using the
K80’s GDDR5 memory. The green bar shows its ratio to the CPU server, and the lavender bar
shows its relation to the GPU server. Total includes host server power, but incremental doesn’t.

DISCUSSION

This section presents fallacies and a pitfall in the rebuttal style popular in architecture textbooks.

Fallacy: DNN Inference Applications in Datacenters Value
Throughput as much as Response Time.

We were surprised that our developers had strong response-time demands, as some suggested in
2014 that batch sizes would be large enough for the TPU to reach peak performance or that la-
tency requirements wouldn’t be as tight. One driving application was off-line image processing,
and the intuition was that if interactive services also wanted TPUs, most would just accumulate
larger batches. Even the developers of one application in 2014 that cared about response time
(LSTM1) said the limit was 10 ms in 2014, but shrank it to 7 ms when they ported it to the TPU.
The unexpected desire for TPUs by many such services combined with the impact on and prefer-
ence for low response time changed the equation, with application writers often opting for re-
duced latency over waiting for bigger batches to accumulate. Fortunately, the TPU has a simple
and repeatable execution model to help meet the response-time targets of interactive services and
such high peak throughput that even relatively small batch sizes result in higher performance
than contemporary CPUs and GPUs.

Fallacy: The K80 GPU Architecture Is a Good Match to DNN
Inference.

GPUs have traditionally been seen as high-throughput architectures that rely on high-bandwidth
DRAM and thousands of threads to achieve their goals. This perspective helps explain why the
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K80 is only a little faster at latency-bound inference than Haswell and much slower than the
TPU. (The K80 was designed long before the recent popularity of DNNSs, so it provides no spe-
cific support for them.) Successors to the K80 will surely include optimizations to improve peak
inference performance, but given their throughput-oriented architectural approach, it might be
challenging to do so while meeting strict latency limits. Figure 6 illustrates that there is also
plenty of headroom to improve the TPU, so it’s not an easy target.

Pitfall: Being Ignorant of Architecture History when
Designing a DSA.

Ideas that didn’t fly for general-purpose computing might be ideal for DSAs. For the TPU, three
important architectural ideas date from the early 1980s: systolic arrays,> decoupled-
access/execute,* and CISC instructions. The first reduced the area and power of the large matrix
multiply unit, the second fetches weights concurrently during operation of the matrix multiply
unit, and the third better utilizes the limited bandwidth of the PCle bus for delivering instruc-
tions. History-aware architects could have a competitive edge in this DSA era.

RELATED WORK

While hardware for neural networks goes back at least 20 years,® there has been recent enthusi-
asm both in academia’ and industry.'® Indeed, 15 percent of articles at a 2016 computer architec-
ture conference were on DNNs, and it was recently reported that there are at least 45 hardware
startups working on chips for DNNs.!! (Space and reference limits constrain this related-work
section; see our original article for more.!)

CONCLUSION

Despite having designed and deployed the TPU in only 15 months and having relatively low
memory bandwidth—four of the six applications are memory-bound—a small fraction of a big
number can nonetheless be relatively large. This result suggests a “cornucopia corollary” to
Amdahl’s law: Low utilization of a huge, cheap resource can still deliver a high-performing,
cost-effective, and power-efficient solution.

The TPU leverages the order-of-magnitude reduction in energy and area of 8-bit integer systolic
matrix multipliers over 32-bit floating-point data paths of a K80 GPU to pack 25 times as many
MAC:s (65,536 8-bit versus 2,496 32-bit) and 3.5 times the on-chip memory (28 MiB versus 8
MiB), while using less than half the power of the K80 in a relatively small die. This larger
memory helps increase the operational intensity of applications to let them utilize the abundant
MACs more fully. The single-threaded TPU is also a better match to the 99"-percentile re-
sponse-time bounds of user-facing inference applications than the highly threaded CPU and
GPU. The TPU leverages its advantages to run 15 times as fast as the K80 GPU, resulting in a
performance/Watt advantage of 29 times. Compared to the Haswell CPU, the corresponding
ratios are 29 and 83. While future CPUs and GPUs will surely run inference faster, a redesigned
TPU using circa-2015 GPU memory would go three times faster and boost the performance/Watt
advantage to nearly 70 over the K80 and 200 over Haswell.

Order-of-magnitude differences between commercial products are rare in computer architecture.
Seven factors explain this energy-performance gain, listed roughly in order of importance:

1. The TPU has one very large 2D multiply unit, while the CPU and GPU have many
smaller, 1D multiply units (one each in the 18 cores or 13 symmetric multiprocessors).
The matrix multiplies inherent to DNNs benefit from 2D hardware.

2. The TPU’s DNN applications use 8-bit integers rather than 32-bit floating point to im-
prove efficiency of computation, memory bandwidth, and memory capacity.

3. The 2D organization enables systolic arrays,’ which reduce register accesses and ener-

gy.
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4. Because the TPU is a DSA, it can drop features required by CPUs and GPUs that
DNNs don’t use. Such omissions make the TPU cheaper, save energy, and allow tran-
sistors to be repurposed for domain-specific optimizations.

5. The TPU has one thread, while the K80 has 13 and the CPU has 18. A single thread
makes it easier to stay within a fixed latency limit of our inference applications, as well
as save energy.

6. The TPU has enough flexibility to implement the DNNs of 2018, as well as of 2013.

7. The production applications were written using TensorFlow, which made it easier to
port them to the TPU at high performance rather than them having to be rewritten to
run well on this very different DSA.

We observe that, despite what hardware is available, machine learning (ML) researchers have a
“patience threshold” that limits how long they are willing to wait for the results of an experi-
ment.'? This impatience is especially true for training, although fast inference helps some appli-
cations. For example, AlphaGo trains itself through self-play, with inference accounting for 98
percent of training ML cycles. TPUs accelerated both training and inference in AlphaGo.

Faster hardware enables larger, more-ambitious experiments within the confines of this patience
threshold; smaller experiments run the risk that they won’t explore a large-enough space to im-
prove ML accuracy. Thus, the demand for ML cycles is effectively unbounded. Speeding up
model evaluation by any amount is valuable; factors of 10 or 100 would likely increase the rate
of recent breakthroughs such as those mentioned in the introduction.

Alas, just when ML offers a burst of seemingly inexhaustible demand for computing cycles,
computer architecture is nearing the end of Moore’s law and Dennard scaling. Their death raises
the stakes even higher for system designers: We need to solve exponentially harder problems
without the exponential increase in resources that Moore’s law used to deliver. Architects need
to innovate to empower their ML colleagues to help them deliver on the promise of ML.!2

Encouraging results such as the TPU and the growing appetite for faster ML hardware suggest
that the next decade promises to be an exciting one for computer architecture. We project anoth-
er Renaissance in computer architecture, much like the early 1980s, where the chance to have
high impact draws many brilliant young people to the field.
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