MiBench: A free, commercially representative embedded benchmark suite

Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst,
Todd M. Austin, Trevor Mudge, Richard B. Brown
{mguthaus,jringenb,ernstd,taustin,tnm,brown } @eecs.umich.edu
The University of Michigan
Electrical Engineering and Computer Science
1301 Beal Ave., Ann Arbor, MI 48109-2122

Abstract

This paper examines a set of commercially
representative embedded programs and compares them
to an existing benchmark suite, SPEC2000. A new
version of SimpleScalar that has been adapted to the
ARM instruction set is used to characterize the
performance of the benchmarks using configurations
similar to current and next generation embedded
processors. Several characteristics distinguish the
representative embedded programs from the existing
SPEC benchmarks including instruction distribution,
memory behavior, and available parallelism. The
embedded benchmarks, called MiBench, are freely
available to all researchers.

1. Introduction

Performance based design has made benchmarking
a critical part of the design process [1]. A wide variety
of benchmarks have been proposed including
Dhrystone [2], LINPACK [3], Whetstone [4], CPU2
[5], MediaBench [6] and many others. Most of these
benchmarks are targeted towards specific areas of
computation. Dhrystone, for example, is for system
(integer) performance; LINPACK is for vectorizable
computations; Whetstone and CPU2 are for numerical
(floating point) intensive applications; and
MediaBench is for multimedia applications. Other
benchmarks are available to stress network TCP/IP
stacks, data input/output and other specific tasks.

The most widely used benchmarks are the Standard
Performance Evaluation Corporation (SPEC) CPU
benchmarks [7]. They are now in their third revision
(SPEC2000). They characterize a workload for
general-purpose computers by providing a self-
contained set of programs and data divided into
separate integer and floating-point categories. The
popularity of the SPEC benchmarks as a measure of
performance has heavily influenced the design of
general-purpose microprocessors, particularly those
employed in servers and high-end desktop systems.

0-7803-7315-4/01/$17.00©2001 IEEE

common features of these
microarchitectures are deep pipelines, significant
instruction level parallelism, sophisticated branch
prediction schemes, and large caches.

Although this class of machines has been the chief
focus of the computer architecture community,
relatively few microprocessors are employed in this
market segment. The vast majority of microprocessors
are employed in embedded applications [8]. Although
many are just inexpensive microcontrollers, their
combined sales account for nearly half of all
microprocessor revenue. Furthermore, the embedded
application domain is the fastest growing market
segment in the microprocessor industry.

The wide range of applications makes it difficult to
characterize the embedded domain. In fact, an
embedded benchmark suite should reflect this by
emphasizing diversity. The applications range from
sensor systems on simple microcontrollers [9] to smart
cellular phones that have the functionality of a desktop
machine combined with support for wireless
communications. Perhaps the only common
denominators are: 1) that embedded processors often
require power to be considered at the same time in the
design process as performance [11]; and 2) that there is
not a significant legacy code base that would favor a
standard instruction set architecture (ISA) and
operating system, as has happened in the desktop
world. This has led to a remarkable increase in the
number of ISAs for embedded applications and this
number continues to grow.

There have been some efforts to characterize
embedded workloads, most notably the suite developed
by the EDN Embedded Microprocessor Benchmark
Consortium (EEMBC) [10]. They have recognized the
difficulty of using just one suite to characterize such a
diverse application domain and have instead produced
a set of suites that typify workloads in five embedded
markets. Unfortunately, the EEMBC benchmarks,
unlike SPEC, are not readily accessible to academic

Among the

mailto:eecs.umich.edu

researchers because of the high cost of joining the
consortium.

In this paper, we present a set of 35 embedded
applications for benchmarking purposes called
MiBench (pronounced “My Bench”). Following
EEMBC’s model, these benchmarks are divided into
six suites with each suite targeting a specific area of the
embedded market. The six categories are Automotive
and Industrial Control, Consumer Devices, Office
Automation, Networking, Security, and
Telecommunications. All the programs are available as
standard C source code. Since many past embedded
applications'have been written directly in assembly
language, it has been difficult to collect a portable set
of benchmarks for the embedded domain. However,
the current trend in the embedded domain shows
compilers being used for even the simplest
microcontrollers and the highest performance DSPs.
MiBench is thus portable to any platform that has
compiler support.

The rest of this paper is organized as follows.
Section 2 describes the benchmarks and data sets in
MiBench. Section 3 validates the microarchitecture
model of the ARM SA-1 core; an important step that is
often omitted from the discussion of benchmark
performance on benchmarks. Section 4 provides an
analysis of the MiBench benchmarks and compares
them to the SPEC2000 benchmarks. As one would
expect from the way they were selected, the MiBench
programs exhibit a much wider variance in behavior
across the set of suites as well as within individual
domains. This suggests that SPEC is not the
appropriate workload to drive the design of future
microprocessors intended for many of the embedded
application ‘categories found in MiBench. Instruction
distribution, branch predictability,
accesses are all examined. Section 5 provides a
summary of the characteristics of embedded workloads
found in our experiments.

2. Benchmark Descriptions

MiBench has many similarities to the EEMBC

benchmark suite as described on their web site (http://
www.eembc.com). However, MiBench is composed of
freely available source code. All web sites and authors
are maintained with each package, but slight
modifications may have been made to the source code
to promote the portability of the benchmark and the
extensibility of the data set. Where appropriate, we
provide a small and large data set. The small data set
represents a light-weight, useful embedded application
of the benchmark, while the large data set provides a
more stressful, real-world application. MiBench

and memory

consists of six categories including: Automotive and
Industrial Control, Network, Security, Consumer
Devices, Office Automation, and Telecommunications.
These categories offer different program characteristics
that enable researchers in architecture and compilers to
examine their designs more effectively for a particular
market segment.

2.1. Automotive and Industrial Control

The Automotive and Industrial Control category is
intended to demonstrate use of embedded processors in
embedded control systems. These processors require
performance in basic math abilities, bit manipulation,
data input/output and simple data organization. Typical
applications are air bag controllers, engine
performance monitors and sensor systems. The tests
used to characterize these situations are a basic math
test, a bit counting test, a sorting algorithm and a shape
recognition program.

basicmath: The basic math test performs simple
mathematical calculations that often don’t have
dedicated hardware support in embedded processors.
For example, cubic function solving, integer square
root and angle conversions from degrees to radians are
all necessary calculations for calculating road speed or
other vector values. The input data is a fixed set of
constants.

bitcount: The bit count algorithm tests the bit
manipulation abilities of a processor by counting the
number of bits in an array of integers. It does this using
five methods including an optimized 1-bit per loop
counter, recursive bit count by nibbles, non-recursive
bit count by nibbles using a table look-up, non-
recursive bit count by bytes using a table look-up and
shift and count bits. The input data is an array of
integers with equal numbers of 1’s and 0’s.

gsort: The gsort test sorts a large array of strings
into ascending order using the well known quick sort
algorithm. Sorting of information is important for
systems so that priorities can be made, output can be
better interpreted, data can be organized and the over-
all run-time of programs reduced. The small data set is
a list of words; the large data set is a set of three-tuples
representing points of data.

susan: Susan is an image recognition package. It
was developed for recognizing corners and edges in
Magnetic Resonance Images of the brain. It is typical
of a real world program that would be employed for a
vision based quality assurance application. It can
smooth an image and has adjustments for threshold,
brightness, and spatial control. The small input data is
a black and white image of a rectangle while the large
input data is a complex picture.

Table 1: MiBench Benchmarks

Auto./Industrial Consumer Office Network Security Telecomm.
basicmath jpeg ghostscript dijkstra blowfish enc. CRC32
bitcount lame ispell patricia blowfish dec. FFT
gsort mad rsynth (CRC32) pgp sign IFFT
susan (edges) tiff2bw sphinx (sha) pgp verify ADPCM enc.
susan (corners) tiff2rgba stringsearch (blowfish) rijndael enc. ADPCM dec.
susan (smoothing) | tiffdither rijndael dec. GSM enc.
tiffmedian sha GSM dec.
typeset
2.2. Network (AES) [12]. The other representative security
The Network category represents embedded algorithms are Blowfish [13], PGP [15] and SHA [14].

processors in network devices like switches and
routers. The work done by these embedded processors
involves shortest path calculations, tree and table
lookups and data input/output. The algorithms used to
demonstrate the networking category are finding a
shortest path in a graph and creating and searching a
Patricia trie data structure. Some of the benchmarks in
the Security and Telecommunications category are also
relevant to the Network category: CRC32, sha, and
blowfish. However, they are separated for organization.

dijkstra: The Dijkstra benchmark constructs a large
graph in an adjacency matrix representation and then
calculates the shortest path between every pair of nodes
using repeated applications of Dijkstra’s algorithm.
Dijkstra’s algorithm is a well known solution to the

shortest path problem and completes in O(n2) time.

patricia: A Patricia trie is a data structure used in
place of full trees with very sparse leaf nodes.
Branches with only a single leaf are collapsed upwards
in the trie to reduce traversal time at the expense of
code complexity. Often, Patricia tries are used to
represent routing tables in network applications. The
input data for this benchmark is a list of IP traffic from
a highly active web server for a 2 hour period. The IP
numbers are disguised.

2.3. Security

Data Security is going to have increased importance
as the Internet continues to gain popularity in e-
commerce activities. Therefore, Security is given its
own category in MiBench. The Security category
includes several common algorithms for data
encryption, decryption and hashing. One algorithm,
rijndael, is the new Advanced Encryption Standard

”

blowfish encrypt/decrypt: Blowfish is a symmetric
block cipher with a variable length key. It was
developed in 1993 by Bruce Schneider. Since its key
length can range from 32 to 448 bits, it is ideal for
domestic and exportable encryption. The input data
sets are a large and small ASCII text file of an article
found online.

sha: SHA is the secure hash algorithm that produces
a 160-bit message digest for a given input. It is often
used in the secure exchange of cryptographic keys and
for generating digital signatures. It is also used in the
well-known MD4 and MDS5 hashing functions. The
input data sets are the same as the ones used by
blowfish.

rijndael encrypt/decrypt: Rijndael was selected as
the National Institute of Standards and Technologies
Advanced Encryption Standard (AES). It is a block
cipher with the option of 128-, 192-, and 256-bit keys
and blocks. The input data sets are the same as the ones
used by blowfish.

pgp sign/verify: Pretty Good Privacy (PGP) is a
public key encryption algorithm developed by Phil
Zimmerman. It allows you to communicate securely
with people you’ve never met using digital signatures
and the RSA public key cryptosystem. The input data
for both the large and small tests is a small text file.
This is because PGP is usually only used to securely
exchange a key for a block cipher which can then
encrypt/decrypt data at a much faster rate.

2.4. Consumer Devices

The Consumer Devices benchmarks are intended to
represent the many consumer devices that have grown
in popularity during recent years like scanners, digital
cameras and Personal Digital Assistants (PDAs). The

category focuses primarily on multimedia applications
with the representative algorithms being jpeg encoding/
decoding, image color format conversion, image
dithering, color palette reduction, MP3 encode/
decoding, and HTML typesetting. Several of the
algorithms are from the SGI TIFF utilities [16]. All of
the image benchmarks use small and large images as
data input.

Jpeg encode/decode: JPEG is a standard, lossy
compression image format. It is included in MiBench
because it is a representative algorithm for image
compression and decompression and is commonly used
to view images embedded in documents. The input
data are a large and small color image.

tiff2bw: Tiff2bw converts a color TIFF image to
black and white image.

tiff2rgba: Tiff2rgba converts a color image in the
TIFF format into a RGB color formatted TIFF image.

tiffdither: Tiffdither dithers a black and white TIFF
bitmap to reduces the resolution and size of the image
at the expense of clarity.

tiffmedian: Tiffmedian converts an image to a
reduced color palette by taking several medians of the
current color palette.

lame: Lame is a GPL’ed MP3 encoder that supports
constant, average and variable bit-rate encoding. It uses
small and large wave files for its data inputs.

mad: Mad is a high-quality MPEG audio decoder. It
currently supports MPEG-1 and the MPEG-2 extension
to Lower Sampling Frequencies, as well as the so-
called MPEG 2.5 format. All three audio layers (Layer
I, Layer II, and Layer III ak.a. MP3) are fully
implemented. It uses small and large MP3s for its data
inputs.

typeset: Typeset is a general typesetting tool, that
has a front-end processor for HTML. The benchmark
captures the processing required to typeset an HTML
document, without any rendering overheads. This
benchmark is representative of a core component of a
web browser that might be used in a consumer device.
The small and large inputs are a GCC release
announcement and the SimpleScalar main web page.

2.5. Office Automation

The Office applications are primarily text
manipulation algorithms to represent office machinery
like printers, fax machines and word processors. The
PDA market mentioned in the Consumer category also
relies heavily on the manipulation of text for data
organization.

ghostscript: Ghostscript [17] is a postscript
language interpreter without its graphical interface.
This benchmark is included to represent the growing

importance of postscript capable embedded devices
like printers. .

stringsearch: This benchmark searches for given
words in phrases using a case insensitive comparison
algorithm.,

ispell: Ispell is a fast spelling checker that is similar
to the Unix spell, but faster. It supports contextual spell
checking, correction suggestions, and languages other
than English. The input consists of a small and large
document from web pages.

rsynth: Rsynth is a text to speech synthesis program
that integrates several pieces of public domain code
into a single program. The small and large input are
excerpts from an online news article,

sphinx: Sphinx is a speech decoder that operates on
finite-length segments of speech or utterances, one
utterance at a time. An utterance can be up to some
tens of seconds long. The small and large inputs are a
simple command and a long sequence of speech.

2.6. Telecommunications

Close beside the Consumer category for importance
in modern embedded processors is the
Telecommunications category. With the explosive
growth of the Internet, many portable consumer
devices are integrating wireless communication. The
Telecommunication benchmarks are given a separate
category to stress the importance of this step. These
benchmarks consist of voice encoding and decoding
algorithms, frequency analysis and a checksum
algorithm.

FFT/IFFT: This benchmark performs a Fast Fourier
Transform and its inverse transform on an array of
data. Fourier transforms are used in digital signal
processing to find the frequencies contained in a given
input signal. The input data is a polynomial function
with pseudorandom amplitude and frequency
sinusoidal components.

GSM encode/decode: The Global Standard for
Mobile (GSM) communications [18] is the standard for
voice encoding/decoding in Europe and many
countries. It uses a combination of Time- and
Frequency-Division Multiple Access (TDMA/FDMA)
to encode/decode data streams. The input data is small
and large speech samples.

ADPCM encode/decode: Adaptive Differential
Pulse Code Modulation (ADPCM) [19] is a variation
of the well-known standard Pulse Code Modulation
(PCM). A common implementation takes 16-bit linear
PCM samples and converts them to 4-bit samples,
yielding a compression rate of 4:1. The input data are
small and large speech samples.

100% -

80%

40% -

Percentage of Total Instructions

20%

0% +5

Network

Consumer

Telecomm.

Figure 1: Dynamic Instruction Distribution for large data set.

CRC32: This benchmark performs a 32-bit Cyclic
Redundancy Check (CRC) on a file. CRC checks are
often used to detect errors in data transmission. The
data input is the sound files from the ADPCM
benchmark.

3. Microarchitecture Model Validation

The Current configuration in Table 3 is modeled
after Intel's SA-1 StrongARM pipeline [22], found in
the SA-11xx series of embedded microprocessors. Intel
has released few details of the SA-1 pipeline; our
model was constructed using pipeline timing
characteristics given in the SA-110 compiler writers'
guide [24]. In addition, we used microbenchmarks to
accurately measure fully exposed pipeline latencies
such as branch mispredictions and cache misses. We
validated our model against a Rebel NetWinder
Developer workstation [25]. The NetWinder contains a
275 MHz StrongARM SA-110 microprocessor, 128
MB of DRAM, and an Ethernet interface. It runs the
Linux operating system (version 2.2.13) with a
standard GNU tool chain including GCC (version
2.95.1). The run times of integer microbenchmarks,
kernels (e.g., FFT), and large benchmarks (e.g., bzip
and GCC) were measured on the NetWinder and
compared to their simulated performance on the SA-1
ARM model. The simplicity of the SA-1 pipeline and
memory system permitted us to construct an extremely
accurate timing model with only a few modifications to
the SimpleScalar/ARM performance simulator. The

»

largest measured error in performance (CPI) was only
3.2%. We were unable to fully validate our floating
point co-processor model because the NetWinder does
not include floating point support in hardware. We will
address this validation effort when reference platforms
and suitable floating point benchmarks become
available.

4. Benchmark Analysis

All benchmarks in SPEC2000 and MiBench were
compiled using GCC version 2.95.2 on a Debian Linux
2.2.18 workstation with optimizations enabled. All the
benchmarks were simulated using the SimpleScalar/
ARM [20] performance simulator with a configuration
similar to the Intel XScale microcontroiler. Only the
integer SPEC2000 benchmarks were used for
comparison, because most embedded processors do not
have significant floating point capabilities. A limited
set of the integer SPEC benchmarks ran correctly on
ARM, so these were used as data points. Up to 1
billion dynamic instructions were simulated for all
benchmarks. The reference data set was used for the
SPEC input. The small data sets for MiBench are
approximately 50 million dynamic instructions while
the large data set has more than 750 million dynamic
instructions as shown in Table 2. Cache performance
data was gathered by simulating the memory
references of all the benchmarks using Cheetah [21].
Cheetah is able to simulate multiple cache

Table 2: Benchmark Sizes

Benchmark Small Instruction | Large Instruction Benchmark Small Instruction | Large Instruction
Count Count Count Count

basicmath 65,459,080 1,000,000,000 || ispell 8,378,832 640,420,106
bitcount 49,671,043 384,803,644 || rsynth 57,872,434 85,005,687
gsort 43,604,903 595,400,120 || stringsearch 158,646 38,960,051
susan.corners 1,062,891 586,076,156 || blowfish.decode 52,400,008 737,920,623
susan.edges 1,836,965 732,517,639 || blowfish.encode 42,407,674 246,770,499
susan.smoothing 24,897,492 1,000,000,000 || pgp.decode 85,006,293 259,293,845
jpeg.decode 6,677,595 990,912,065 || pgp.encode 38,960,650 824,946,344
jpeg.encode 28,108,471 543,976,667 || rijndael.decode 23,706,832 140,889,705
lame 175,190,457 544,057,733 || rijndael.encode 3,679,378 24,910,267
mad 25,501,771 272,657,564 || sha 13,541,298 20,652,916
tiff2bw 34,003,565 697,493,266 || CRC32 52,839,894 61,659,073
tiff2rgba 36,948,939 1,000,000,000 || FFT.inverse 65,667,015 377,253,252
tiffdither 273,926,642 1,000,000,000 (| FFT 52,625,918 143,263,412
tiffmedian 141,333,005 817,729,663 || adpcm.decode 30,159,188 151,699,690
typeset 23,395,912 84,170,256 || adpcm.encode 37,692,050 832,956,169
dijkstra 64,927,863 272,657,564 || gsm.decode 23,868,371 548,023,092
patricia 103,923,656 1,000,000,000 || gsm.encode 55,361,308 472,171,446
ghostscript 286,770,117 673,391,179

configurations in a single pass. Branch prediction was
simulated using sim-bpred.

4.1. Instruction Distribution

There are four main classes of instructions: control

(unconditional and conditional branches), integer,
floating point and memory (load and store). In
embedded applications, there are computation
intensive, control intensive and I/O intensive
applications. Control intensive programs will have a
much larger percentage of branch instructions.
Computation intensive applications will have a larger
percentage of integer or floating point ALU operations.
1/0 applications depend on how the data is manipulated
during its transfer. Figure 1 shows the distribution of
all the MiBench programs and SPEC2000.

From the figure, the benchmark categories
demonstrate some of these distinctive characteristics.
The Telecommunication and Security benchmarks all
have more than 50% integer ALU operations. These

applications tend to find or generate entropy in a set of
data and is done by repeated operations on a datum.
Benchmarks like ADPCM encode/decode have
approximately 80% integer ALU operations compared
to a maximum of 57% for any of the SPEC
benchmarks. The Consumer category has relatively
few integer ALU operations, but performs many
memory operations. This is because of the large image
data that must be processed. The actual operation on
each part of the image is relatively straightforward and
few control instructions are needed. The Office
Automation benchmarks have many control and
memory operations. These programs use function calls
to string libraries to manipulate ASCII data. Because
the data is text, it occupies quite a bit of memory and
many memory operations are needed to reference it.
The SPEC benchmarks have approximately the same
distribution for all the benchmarks.

As shown previously, the MiBench categories are
representative of different embedded applications. The

Instruction Count

% 3
é"

er Network

£
=
I

sphing

sringsearch [FTERE

=
g8
it
S

ecurity

Figure 2: Static basic block length of benchmarks.

entire benchmark suite shows even more variation
when considered as a whole. For example, the number
of branches varies quite a bit in MiBench. Bitcount,
ADPCM encode and several others also have fewer
than 10% branch operations for a very computation
intensive operation. Benchmarks like Blowfish,
tiff2rgba and tiffmedian have less than 6% branches.
The largest number of branches come from the text
benchmarks, stringsearch and ispell, and the
telecommunication benchmark, CRC32, which have
branches ranging from 18 to 20%. SPEC typically has
greater than 15% branches except gzip0O which has
only 9%. MiBench also has more variation in the
memory operations. Some MiBench benchmarks, like
GSM encode, tiff2rgba and typset, contain more than
50% memory operations, while others, like Bitcount
and ADPCM encode, contain very few. Most of the
SPEC benchmarks have about 40% memory
operations.

The distribution graph also shows that MiBench has
a few floating point instructions in lame, rsynth and the
FFT benchmarks. These are not intended to stress
floating point operations, but they demonstrate typical
situations in which some floating point calculations
might be used to control road speed, a vector direction
or other data needed to determine a control action. DSP
and numerical intensive processors should use a

specific floating point benchmark to analyze the
performance in detail.

4.2. Branches

MiBench has quite a variation in the number of
branches. The number of branches is small for a
number of benchmarks which leads us to Figure 2. This
figure shows that the static basic block size in the
MiBench programs is approximately 1 instruction
longer than SPEC. SPEC’s basic block length is
normally around 4.5 with twolf00 being the exception
at over 5.5. MiBench, however, has several programs
above 6 and almost all are above 5.5. There are a few
of the Consumer benchmarks that are below 5 like
SPEC.

Now that we have seen that MiBench has more
variation than SPEC2000 in the frequency of branches,
we can determine how well these branches can be
predicted. Simulations were run using a not-taken
prediction scheme, an 8k gshare predictor, an 8k
bimodal predictor and an 8k combined bimodal/2-level
predictor. The direction prediction rates are given in
Figure 3. All predictors used a 2k BTB except the not-
taken strategy. There was no appreciable increase in
prediction misses due to address mispredictions by the
BTB so this data is not shown.

Like SPEC2000, MiBench has many correct
prediction rates well over 90%. The branch predictors

1000 [@bimodal ® comb O gshare Onottaken
100 1 7 n B
g
g !
:
£ i
E oo
g
=
0.01
PR bd qii1p83i1 3% Fii i te stEiilY 3%55385
PRRREE TEOVEEIIL 3F JRED ODPRLOGT OBEELGIG RRELGY
£ og1E e i 0§ firEil E EEEE g
Auto 2 Consumer Network Office 2 %Sccuri(y = E Telecomm, SPEC2000

Figure 3: Branch prediction rates for several schemes.

are very large and, therefore, this shows that most
branches in both benchmark suites are predictable.
MiBench does have a few benchmarks with interesting
branch characteristics though. The
Telecommunications and Security benchmarks have
fairly high miss rates due to randomness of data, but
very few misses per thousand instructions due to the
large number of integer ALU operations. The
infrequency of branches dilutes the penalty due to
mispredicted branches. The other categories like
Automotive/Industrial look very similar to SPEC.

4.3. Memory

Besides instruction distribution and branch
predictability, memory behavior is another important
consideration when evaluating an embedded workload.
Static memory size and memory cachability were
compared with SPEC. In Figure 4, the text and data
segment sizes of MiBench and SPEC2000 are shown.
The two benchmark suites are similarly sized, but
SPEC2000 has slightly larger segments in most cases.
Again, though, MiBench contains more variation. It
has a benchmark with a large 1 Mb text segment
(Ghostscript) like the large 2 Mb text segment of
gcc00. 1t also has several benchmarks with several
megabyte data segments (typeset, sphinx, PGP). The
largest SPEC data segment in these benchmarks is
around 0.5 Mb (gzip00). It is not known why the lame
segments are so large, but it may be that large tables
are stored rather than recomputed during compression.

10

The large variations in MiBench’s data segment is
due to the large number of immediate values
(constants) embedded in the source code. Embedded
applications will sometimes have large data tables for
lookups or interpolation. Generally though, embedded
applications have small memory for both data and
instruction segments which can be seen in the common
case text and data segment sizes. Text sizes around
175-200 kilobytes are very normal and mostly due to
inclusion of C standard libraries. Data segments are
generally even smaller at several kilobytes.

As shown above, the benchmarks in MiBench have
a variety of data set sizes. Because of this, MiBench
will have similar cache miss rates on some benchmarks
and much less cache miss rates on other benchmarks.
Figure 5 and Figure 6 show the cache miss rates with
varied associativity and number of sets for some
benchmarks in MiBench. gzip00’s miss rate (not
shown) levels off at just over 0.11 while tiff2rgha
levels off around 0.05. As mentioned previously, these
are the maximum miss rates for any program simulated
in the benchmark sets. Other benchmarks have fewer
misses and look more like Figure 5. The most frequent
miss rate plots have negligible miss rates with
associativity greater than 4-way or size greater than 8
kilobyte.

Also from Figure 5, the miss rates drop drastically
to less than 2% around 4 to 8 kilobytes for most of
MiBench. Some SPEC2000 benchmarks have more of
a capacity issue and don’t reduce miss rates to below

2% until around 16 to 32 kilobytes which is slightly
larger. Some benchmarks like geccO0 and patricia
require more associativity due to random access
patterns. These working sets require more associativity,
but 8-way is sufficient to lower the miss rate

~ substantially.
Embedded processor caches are typically small
except in multimedia applications. Embedded

applications reuse data so that cache performance is
good. Data sets are also typically either fixed or stream
based. The 32-way cache used in the Current and Next
Generation configurations is unnecessary for the
benchmarks simulated. All the benchmarks in
MiBench have very few misses with more than 4- or 8-
way caches and the number of sets is sufficient at 256-
512 as described previously.

4.4. Benchmark Performance

To do an analysis of IPC in MiBench, three
different microarchitectures were simulated with
SimpleScalat/ARM. The configurations of these
machines are all shown in Table 3. The “Current”
configuration is modeled after published information
on the Intel ARM SA-1 microarchitecture [22].
Similarly, the “Next Generation” configuration is
modeled after published information on the next
generation Intel ARM Xscale microarchitecture [23]
and the “High-end” configuration is modeled after the
Compaq Alpha 21264 microarchitecture.

The results of the simulations with each different
configuration is shown in Figure 7. The greatest IPC
values come from the image manipulation and
multimedia related applications like tiff2rgba, JPEG
decode, tiffmedian, gzip00 and mcf00. The lowest IPC
values are Blowfish, typeset and CRC32, which have
many data dependencies due to the nature of the
encryption, encoding and hashing algorithms.
Surprisingly, ADPCM and Sphinx do relatively well
even though they should have similar dependencies.
The High-end architecture does considerably better
than the Current or Next Generation embedded
architectures. It normally achieves 2 to 3 times the IPC
of the Current and Next Generation configurations.

The Current and Next Generation configurations
have very similar performance on most of the
benchmarks. The Next Generation architecture has a
deeper pipeline, a Bimodal branch predictor and double
the cache of the Current architecture. Since most of the
branches in MiBench and SPEC are easily predictable,
the Current configuration suffers a loss of parallelism
by predicting not taken. This can be seen slightly in
Figure 7, but it doesn’t account for the poor
performance of the Next Generation system. As shown
earlier, most of the benchmarks are easily cachable,
therefore, the performance loss cannot be due to cache
problems. The loss in performance must be due to the
in-order execution and lack of functional units. Since
most benchmarks in MiBench have large basic blocks

Data @ Text

Bytes

, Ty oy T, T Y, T, Y, e, T,

'y
] : W: B: N W, [;’ggi 1 1
E- [3 g s =
PERRLT (R REHL 3L]
ga. ® 35
Auto g Consumer Network

Office

i I i H
\i., 3 i A A A
14444 £ 8 EE - g & g
§§§sé§ %E*éggé Es.a%g
£ %EEEEE EEEE
= ESecumy e Telecomm. b SPEC2000

Figure 4: Text and data segment sizes. prediction rates for several schemes.

11

-1

r e 4
\ i
35

SN
LN

Misses per 1000 Instructions
[y

AN
5 N

N
= ‘_.

0 T T T T T T T T T T T T L i L—

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 262144 524288 262144
Cache Size in Bytes

——1

W\
L
L\

, '\\

5 AN

0 ——. - - N
T T T T T T T T T

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 262144 524288 262144
Cache Size in Bytes

Misses per 1000 Instructions
&

Figure 5: Cache miss rates for Rijndael (top) and ispell (bottom) with 16 byte lines.

and -easily predictable branches, there is likely just not 5. Conclusions
enough resources to execute all the parallel

) . Embedded processor design requires knowledge of
instructions.

the embedded task to develop an efficient
microarchitecture. MiBench shows considerably

—1
—t
a8

Misses per 1000 Instructions
H

0 T T - T T T T T T T T
256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288

Cache Size in Bytes

Figure 6: Cache miss rates for tiff2rgba with 16 byte lines.
Table 3: ARM Configurations

262144 524288 262144

Current

Next Generation

High-end

Fetch queue (instructions)

2

4

32

Branch Predictor

Not-taken

8k Bimodal, 2k 4-way BTB

Combining: 4k Bimodal, 4k
Gshare, 1k 4-way BTB

Fetch & Decode width

1

|

4

Issue width

1 (In-order)

1 (In-order)

4 (Out-of-order)

Functional units

lint ALU, 1 FP mult, 1 FP
ALU

1int ALU, 1 FP mult, 1 FP
ALU

1int ALU, 1 FP mult, 4 FP
ALU

Instruction L1 Cache 16 k, 32-way 32k, 32-way 64 k, 2-way
Data L1 Cache 16 k, 32-way 32k, 32-way 64 k, 2-way
L2 Cache None None 512k, 4-way, unified

Memory (bus width, first
block latency)

4-byte, 12 cycle

4-byte, 12 cycle

8-byte, 18 cycle

different characteristics

than the

SPEC2000

benchmarks when analyzing the static and dynamic
characteristics of embedded processor performance.
The dynamic instruction profile has more variation in
the number of branch, memory, and integer ALU
operations. It also has more variable text and data
memory segment sizes, but the data tends to be more
cachable. MiBench and SPEC2000 both have very
predictable branches. The variation in the number of
instructions per cycle also shows that the benchmarks

13

fall into the expected control and data intensive
categories.

In the future, more benchmarks will be added to the
MiBench benchmark suite. Future Automotive and
Industrial benchmarks will include software pulse
width modulation (PWM), virtual environment
simulation and a real-time operating system scheduler.
New Network benchmarks will include defragmenting
TCP/IP packet streams and other packet manipulations.

33 Imccre B xscale Dhighch!l
3
I
25 - } —1[
24— - - -
g I
15 HHHH L I -
1 e -+ — b — — — —
] gg
9775 BEEEEE §u F3ig IRR R R R R i
gg i3 Eééai g i é‘%ii §§s§§ 8 £ éggs
Pr 5 g 1 §§§_§§§ E §EEE
Consumer Network Office £ ZSSecurity & € Telecomm?® 3

Figure 7: Instructions per Cycle (IPC).

6. References

[1] JL. Hennessy and D.A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan Kaufmann, San
Francisco, CA, 1996.

2] R. Weicker and S. Nixdorf. Dhrystone, CACM, vol. 27,
num. 10, October 1984,

3] 1.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart.
LINPACK Users Guide, SIAM Pub, Philadelphia, PA, 1979.

[4] HJ. Curnow and B.A. Wichmann. A Synthetic
Benchmark, The Computer Journal, vol. 19, num. 1, 1976.

[5] Digital Review. CPU2, ftp:/swedishchef.lerc.nasa.gov/
drlabs/cpu.

[6] C. Lee, M. Potkonjak and H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems, Micro-30, November
1997.

[71 B. Case. SPEC2000
Microprocessor Report, vol. 9, 1995.
(8] J. Turley, Embedded Processors by the Numbers,
Embedded Systems Programming, http://www.embed-ded.com/
1999/9905/9905turley htm, May 1999.

91 K.L. Kraver, M.R. Guthaus, T.D. Strong, P.L. Bird, G.S.
Cha, W. Hold, R.B. Brown. “A mixed-signal sensor interface
microinstrument,” Sensors and Actuators A, vol. 91, pp. 266-
277, 2001.

{101 EDN Embedded Microprocessor
Consortium, http://www.eembc.org.

{11] T. Mudge, Power: A First Class Design Constraint for
Future Architectures, IEEE Computer, April 2001, to appear.

Retires SPEC92, The

Benchmark

{12] Advanced Encryption Standard, http://www.nist.gov/aes.
[13] Counterpane Internet Security, Inc. The Blowfish
Encryption Algorithm, http://www.counterpane.com/

biowfish.html, 1993.

14

[14] National Institute of Standards and Technology. Secure
Hash Standard, http://www.itl.nist.gov/fipspubs/fip180-1.htm,
April 1995.

[15] P.R.Zimmermann, The Official PGP User’s Guide. MIT
Press, 1995.

[16] Silicon Graphics. Tiff Utilities, ftp:/ftp.sgi.com/
graphics/tiff, May 1999.

[17] Aladdin Software. Aladdin Ghostscript, http://
www.cs.wisc.edu/~ghost/aladdin, April 2000.

[18] International Telecommunication Union. Global
Standard for Mobile Communication, http://www.itu.int,
February 2000. .
[19] International Telecommunication Union.

Recommendation G.726 (12/90) - 40, 32, 24, 16 kbit/s Adaptive
Differential Pulse Code Modulation (ADPCM), http:/
www.itu.int, December 1990.

[20) D.C. Burger and T.M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin-Madison, June 1997.

[21] R. Sugumar and S. Abraham. cheetah - Single-pass
simulator for direct-mapped, set-associative and fully associative
caches, Unix Manual Page, 1993.

[22) Intel Corporation, “SA-110 Microprocessor Technical
Reference Manual,” ftp://download.intel.com/design/strong/
applnots/27819401 .pdf.

[23] Intel Corporation, “The Intel XScale Microarchitecture
Technical Summary,” _ftp://download.intel.com/design/
intelxscale/XScaleDatasheet4.pdf.

{24] Intel Corporation, “Intel StrongARM SA-110
Microprocessors Instruction Timing,” ftp://download.intel.com/
design/strong/applnots/27819401.pdf.

{25] Rebel.com, NetWinder Family, http:/www.rebel.com/
netwinder.

