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Abstract 
This paper examines a set of commercially 
representative embedded programs and compares them 
to an existing benchmark suite, SPEC2000. A new 
version of SimpleScalar that has been adapted to the 
ARM instruction set is used to characterize the 
pelformance of the benchmarks using configurations 
similar to current and next generation embedded 
processors. Several characteristics distinguish the 
representative embedded programs from the existing 
SPEC benchmarks including instruction distribution, 
memory behavior, and available parallelism. The 
embedded benchmarks, called MiBench, are freely 
available to all researchers. 

1. Introduction 
Performance based design has made benchmarking 

a critical part of the design process [l]. A wide variety 
of benchmarks have been proposed including 
Dhrystone [2], LINPACK [3], Whetstone [4], CPU2 
151, MediaBench [6] and many others. Most of these 
benchmarks are targeted towards specific areas of 
computation. Dhrystone, for example, is for system 
(integer) performance; LINPACK is for vectorizable 
computations; Whetstone and CPU2 are for numerical 
(floating point) intensive applications; and 
MediaBench is for multimedia applications. Other 
benchmarks are available to stress network TCP/IP 
stacks, data input/output and other specific tasks. 

The most widely used benchmarks are the Standard 
Performance Evaluation Corporation (SPEC) CPU 
benchmarks [7]. They are now in their third revision 
(SPEC2000). They characterize a workload for 
general-purpose computers by providing a self- 
contained set of programs and data divided into 
separate integer and floating-point categories. The 
popularity of the SPEC benchmarks as a measure of 
performance has heavily influenced the design of 
general-purpose microprocessors, particularly those 
employed in servers and high-end desktop systems. 

Among the common features of these 
microarchitectures are deep pipelines, significant 
instruction level parallelism, sophisticated branch 
prediction schemes, and large caches. 

Although this class of machines has been the chief 
focus of the computer architecture community, 
relatively few microprocessors are employed in this 
market segment. The vast majority of microprocessors 
are employed in embedded applications [8]. Although 
many are just inexpensive microcontrollers, their 
combined sales account for nearly half of all 
microprocessor revenue. Furthermore, the embedded 
application domain is the fastest growing market 
segment in the microprocessor industry. 

The wide range of applications makes it difficult to 
characterize the embedded domain. In fact, an 
embedded benchmark suite should reflect this by 
emphasizing diversity. The applications range from 
sensor systems on simple microcontrollers [9] to smart 
cellular phones that have the functionality of a desktop 
machine combined with support for wireless 
communications. Perhaps the only common 
denominators are: 1) that embedded processors often 
require power to be considered at the same time in the 
design process as performance [ 1 13; and 2) that there is 
not a significant legacy code base that would favor a 
standard instruction set architecture (ISA) and 
operating system, as has happened in the desktop 
world. This has led to a remarkable increase in the 
number of ISAs for embedded applications and this 
number continues to grow. 

There have been some efforts to characterize 
embedded workloads, most notably the suite developed 
by the EDN Embedded Microprocessor Benchmark, 
Consortium (EEMBC) [lo]. They have recognized the 
difficulty of using just one suite to characterize such a 
diverse application domain and have instead produced 
a set of suites that typify workloads in five embedded 
markets. Unfortunately, the EEMBC benchmarks, 
unlike SPEC, are not readily accessible to academic 
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researchers because of the high cost of joining the 
consortium. 

In this paper, we present a set of 35 embedded 
applications for benchmarking purposes called 
MiBench (pronounced “My Bench”). Following 
EEMBC’s model, these benchmarks are divided into 
six suites with each suite targeting a specific area of the 
embedded market. The six categories are Automotive 
and Industrial Control, Consumer Devices, Office 
Automation, Networking, Security, and 
Telecommunications. All the programs are available as 
standard C source code. Since many past embedded 
applications ’ have been written directly in assembly 
language, it has been difficult to collect a portable set 
of benchmarks for the embedded domain. However, 
the current trend in the embedded domain shows 
compilers being used for even the simplest 
microcontrollers and the highest performance DSPs. 
MiBench is thus portable to any platform that has 
compiler support. 

The rest of this paper is organized as follows. 
Section 2 describes the benchmarks and data sets in 
MiBench. Section 3 validates the microarchitecture 
model of the ARM SA-1 core; an important step that is 
often omitted from the discussion of benchmark 
performance on benchmarks. Section 4 provides an 
analysis of the MiBench benchmarks and compares 
them to the SPEC2000 benchmarks. As one would 
expect from the way they were selected, the MiBench 
programs exhibit a much wider variance in behavior 
across the set of suites as well as within individual 
domains. This suggests that SPEC is not the 
appropriate workload to drive the design of future 
microprocessors intended for many of the embedded 
application categories found in MiBench. Instruction 
distribution, branch predictability, and memory 
accesses are all examined. Section 5 provides a 
summary of the characteristics of embedded workloads 
found in our experiments. 

2. Benchmark Descriptions 
MiBench has many similarities to the EEMBC 

benchmark suite as described on their web site (http:// 
www.eembc.com). However, MiBench is composed of 
freely available source code. All web sites and authors 
are maintained with each package, but slight 
modifications may have been made to the source code 
to promote the portability of the benchmark and the 
extensibility of the data set. Where appropriate, we 
provide a small and large data set. The small data set 
represents a light-weight, useful embedded application 
of the benchmark, while the large data set provides a 
more stressful, real-world application. MiBench 

consists of six categories including: Automotive and 
Industrial Control, Network, Security, Consumer 
Devices, Office Automation, and Telecommunications. 
These categories offer different program characteristics 
that enable researchers in architecture and compilers to 
examine their designs more effectively for a particular 
market segment. 

2.1. Automotive and Industrial Control 

The Automotive and Industrial Control category is 
intended to demonstrate use of embedded processors in 
embedded control systems. These processors require 
performance in basic math abilities, bit manipulation, 
data input/output and simple data organization. Typical 
applications are air bag controllers, engine 
performance monitors and sensor systems. The tests 
used to characterize these situations are a basic math 
test, a bit counting test, a sorting algorithm and a shape 
recognition program. 

basicmath: The basic math test performs simple 
mathematical calculations that often don’t have 
dedicated hardware support in embedded processors. 
For example, cubic function solving, integer square 
root and angle conversions from degrees to radians are 
all necessary calculations for calculating road speed or 
other vector values. The input data is a fixed set of 
constants. 

bitcount: The bit count algorithm tests the bit 
manipulation abilities of a processor by counting the 
number of bits in an array of integers. It does this using 
five methods including an optimized 1-bit per loop 
counter, recursive bit count by nibbles, non-recursive 
bit count by nibbles using a table look-up, non- 
recursive bit count by bytes using a table look-up and 
shift and count bits. The input data is an array of 
integers with equal numbers of 1’s and 0’s. 

qsorr: The qsorr test sorts a large array of strings 
into ascending order using the well known quick sort 
algorithm. Sorting of information is important for 
systems so that priorities can be made, output can be 
better interpreted, data can be organized and the over- 
all run-time of programs reduced. The small data set is 
a list of words; the large data set is a set of three-tuples 
representing points of data. 

susan: Susan is an image recognition package. It 
was developed for recognizing corners and edges in 
Magnetic Resonance Images of the brain. It is typical 
of a real world program that would be employed for a 
vision based quality assurance application. It can 
smooth an image and has adjustments for threshold, 
brightness, and spatial control. The small input data is 
a black and white image of a rectangle while the large 
input data is a complex picture. 
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Table 1: MiBench Benchmarks 

Auto./Industrial 

basicmath 

Consumer Office Network Security Telecomm. 

jpeg ghostscript dijkstra blowfish enc. CRC32 

bitcount 

qsort 

Susan (edges) 

susan (comers) 

lame ispell Patricia blowfish dec. m 
mad rsynth (CRC32) PgP sign m 
tiff2bw sphinx @ha) PgP verify ADPCM enc. 

tiff2rgba stringsearch (blowfish) rijndael enc. ADPCM dec. 

2.2. Network 

The Network category represents embedded 
processors in network devices like switches and 
routers. The work done by these embedded processors 
involves shortest path calculations, tree and table 
lookups and data inputloutput. The algorithms used to 
demonstrate the networking category are finding a 
shortest path in a graph and creating and searching a 
Patricia trie data structure. Some of the benchmarks in 
the Security and Telecommunications category are also 
relevant to the Network category: CRC32, sha, and 
blowfish. However, they are separated for organization. 

dijkstra: The Dijkstra benchmark constructs a large 
graph in an adjacency matrix representation and then 
calculates the shortest path between every pair of nodes 
using repeated applications of Dijkstra’s algorithm. 
Dijkstra’s algorithm is a well known solution to the 
shortest path problem and completes in O(n2) time. 

Patricia: A Patricia trie is a data structure used in 
place of full trees with very sparse leaf nodes. 
Branches with only a single leaf are collapsed upwards 
in the trie to reduce traversal time at the expense of 
code complexity. Often, Patricia tries are used to 
represent routing tables in network applications. The 
input data for this benchmark is a list of IP traffic from ~ 

a highly active web server for a 2 hour period. The IP 
numbers are disguised. 

2.3. Security 

Data Security is going to have increased importance 
as the Internet continues to gain popularity in e- 
commerce activities. Therefore, Security is given its 
own category in MiBench. The Security category 
includes several common algorithms for data 
encryption, decryption and hashing. One algorithm, 
rijndael, is the new Advanced Encryption Standard 

Susan (smoothing) 

(AES) [ 121. The other representative security 
algorithms are Blowfish [13], PGP [15] and SHA [14]. 

blowfish encrypt/decrypt: Blowfish is a symmetric 
block cipher with a variable length key. It was 
developed in 1993 by Bruce Schneider. Since its key 
length can range from 32 to 448 bits, it is ideal for 
domestic and exportable encryption. The input data 
sets are a large and small ASCII text file of an article 
found online. 

sha: SHA is the secure hash algorithm that produces 
a 160-bit message digest for a given input. It is often 
used in the secure exchange of cryptographic keys and 
for generating digital signatures. It is also used in the 
well-known MD4 and MD5 hashing functions. The 
input data sets are the same as the ones used by 
blowfish. 

rijndael encrypt/decrypt: Rijndael was selected as 
the National Institute of Standards and Technologies 
Advanced Encryption Standard (AES). It is a block 
cipher with the option of 128-, 192-, and 256-bit keys 
and blocks. The input data sets are the same as the ones 
used by blowfish. 

pgp sigdverify: Pretty Good Privacy (PGP) is a 
public key encryption algorithm developed by Phil 
Zimrnerman. It allows you to communicate securely 
with people you’ve never met using digital signatures 
and the RSA public key cryptosystem. The input data 
for both the large and small tests is a small text file. 
This is because PGP is usually only used to securely 
exchange a key for a block cipher which can then 
encryptldecrypt data at a much faster rate. 

2.4. Consumer Devices 

The Consumer Devices benchmarks are intended to 
represent the many consumer devices that have grown 
in popularity during recent years like scanners, digital 
cameras and Personal Digital Assistants (PDAs). The 

GSM enc. tiffdither rijndael dec. 

tiffmedian sha GSM dec. 

typeset 
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category focuses primarily on multimedia applications 
with the representative algorithms being jpeg encoding/ 
decoding, image color format conversion, image 
dithering, color palette reduction, MP3 encode1 
decoding, and HTML typesetting. Several of the 
algorithms are from the SGI TIFF utilities [16]. All of 
the image benchmarks use small and large images as 
data input. 

jpeg encode/decode: JPEG is a standard, lossy 
compression image format. It is included in MiBench 
because it is a representative algorithm for image 
compression and decompression and is commonly used 
to view images embedded in documents. The input 
data are a large and small color image. 

t i f lbw: Ti f lbw converts a color TIFF image to 
black and white image. 

t i f lrgba:  Timrgba converts a color image in the 
TIFF format into a RGB color formatted TIFF image. 

tiffdither: Tiffdither dithers a black and white TIFF 
bitmap to reduces the resolution and size of the image 
at the expense of clarity. 

tiffmedian: Timedian converts an image to a 
reduced color palette by taking several medians of the 
current color palette. 

lame: Lame is a GPL’ed MP3 encoder that supports 
constant, average and variable bit-rate encoding. It uses 
small and large wave files for its data inputs. 

mad: Mad is a high-quality MPEG audio decoder. It 
currently supports MPEG-1 and the MPEG-2 extension 
to Lower Sampling Frequencies, as well as the so- 
called MPEG 2.5 format. All three audio layers (Layer 
I, Layer 11, and Layer I11 a.k.a. MP3) are fully 
implemented. It uses small and large MP3s for its data 
inputs. 

typeset: Typeset is a general typesetting tool, that 
has a front-end processor for HTML. The benchmark 
captures the processing required to typeset an HTML 
document, without any rendering overheads. This 
benchmark is representative of a core component of a 
web browser that might be used in a consumer device. 
The small and large inputs are a GCC release 
announcement and the Simplescalar main web page. 

2.5. Office Automation 
~ 

The Office applications are primarily text 
manipulation algorithms to represent office machinery 
like printers, fax machines and word processors. The 
PDA market mentioned in the Consumer category also 
relies heavily on the manipulation of text for data 
organization. 

ghostscript: Ghostscript [ 171 is a postscript 
language interpreter without its graphical interface. 
This benchmark is included to represent the growing 

importance of postscript capable embedded devices 
like printers. 

stringsearch: This benchmark searches for given 
words in phrases using a case insensitive comparison 
algorithm. 

ispell: Zspell is a fast spelling checker that is similar 
to the Unix spell, but faster. It supports contextual spell 
checking, correction suggestions, and languages other 
than English. The input consists of a small and large 
document from web pages. 

rsynth: Rsynth is a text to speech synthesis program 
that integrates several pieces of public domain code 
into a single program. The small and large input are 
excerpts from an online news article. 

sphinx: Sphinx is a speech decoder that operates on 
finite-length segments of speech or utterances, one 
utterance at a time. An utterance can be up to some 
tens of seconds long. The small and large inputs are a 
simple command and a long sequence of speech. 

2.6. Telecommunications 

Close beside the Consumer category for importance 
in modern embedded processors is the 
Telecommunications category. With the explosive 
growth of the Internet, many portable consumer 
devices are integrating wireless communication. The 
Telecommunication benchmarks are given a separate 
category to stress the importance of this step. These 
benchmarks consist of voice encoding and decoding 
algorithms, frequency analysis and a checksum 
algorithm. 

FFTIIFFT: This benchmark performs a Fast Fourier 
Transform and its inverse transform on an array of 
data. Fourier transforms are used in digital signal 
processing to find the frequencies contained in a given 
input signal. The input data is a polynomial function 
with pseudorandom amplitude and frequency 
sinusoidal components. 

GSM encode/decode: The Global Standard for 
Mobile (GSM) communications [18] is the standard for 
voice encodingldecoding in Europe and many 
countries. It uses a combination of Time- and 
Frequency-Division Multiple Access (TDMAIFDMA) 
to encodeldecode data streams. The input data is small 
and large speech samples. 

ADPCM encode/decode: Adaptive Differential 
Pulse Code Modulation (ADPCM) [19] is a variation 
of the well-known standard Pulse Code Modulation 
(PCM). A common implementation takes 16-bit linear 
PCM samples and converts them to 4-bit samples, 
yielding a compression rate of 4:l. The input data are 
small and large speech samples. 
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Figure 1: Dynamic Instruction Distribution for large data set. 
CRC32: This benchmark performs a 32-bit Cyclic 

Redundancy Check (CRC) on a file. CRC checks are 
often used to detect errors in data transmission. The 
data input is the sound files from the ADPCM 
benchmark. 

3. Microarchitecture Model Validation 
The Current configuration in Table 3 is modeled 

after Intel's SA-1 StrongARM pipeline [22], found in 
the SA-1 lxx series of embedded microprocessors. Intel 
has released few details of the SA-1 pipeline; our 
model was constructed using pipeline timing 
characteristics given in the SA-1 10 compiler writers' 
guide [24]. In addition, we used microbenchmarks to 
accurately measure fully exposed pipeline latencies 
such as branch mispredictions and cache misses. We 
validated our model against a Rebel Netwinder 
Developer workstation [25]. The Netwinder contains a 
275 MHz StrongARM SA-110 microprocessor, 128 . 
MB of DRAM, and an Ethernet interface. It runs the 
Linux operating system (version 2.2.13) with a 
standard GNU tool chain including GCC (version 
2.95.1). The run times of integer microbenchmarks, 
kernels (e.g.. FFT), and large benchmarks (e.g., bzip 
and GCC) were measured on the Netwinder and 
compared to their simulated performance on the SA-1 
ARM model. The simplicity of the SA-1 pipeline and 
memory system permitted us to construct an extremely 
accurate timing model with only a few modifications to 
the SimpleScaladARM performance simulator. The 

SPEC2ooO 

largest measured error in performance (CPI) was only 
3.2%. We were unable to fully validate our floating 
point co-processor model because the Netwinder does 
not include floating point support in hardware. We will 
address this validation effort when reference platforms 
and suitable floating point benchmarks become 
available. 

4. Benchmark Analysis 
All benchmarks in SPEC2000 and MiBench were 

compiled using GCC version 2.95.2 on a Debian Linux 
2.2.1 8 workstation with optimizations enabled. All the 
benchmarks were simulated using the Simplescalar/ 
ARM [20] performance simulator with a configuration 
similar to the Intel XScale microcontroller. Only the 
integer SPEC2000 benchmarks were used for 
comparison, because most embedded processors do not 
have significant floating point capabilities. A limited 
set of the integer SPEC benchmarks ran correctly on 
ARM, so these were used as data points. Up to 1 
billion dynamic instructions were simulated for all 
benchmarks. The reference data set was used for the 
SPEC input. The small data sets for MiBench are 
approximately 50 million dynamic instructions while 
the large data set has more than 750 million dynamic 
instructions as shown in Table2. Cache performance 
data was gathered by simulating the memory 
references of all the benchmarks using Cheetah [21]. 
Cheetah is able to simulate multiple cache 
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Table 2: Benchmark Sizes 

jpeg.encode 

lame 

mad 

tiff2bw 

tiff2rgba 

Small Instruction Large Instruction 
Count Benchmark 7 5 ; r t i o n  Benchmark 1 Largei:;;tion Count 

28,108,47 1 543,976,667 rijndaeLdecode 23,706,832 140,889,705 

175,190,457 544,05 7,7 3 3 rij ndael . encode 3,679,378 24,9 10,267 

25,501,771 272,657,564 sha 13,541,298 20,652,9 16 

34,003,565 697,493,266 CRC32 52,839,894 61,659,073 

36,948,939 1,000,000,000 FFTinverse 65,667,015 377,253,252 

typeset 

dijkstra 

tiffdither I 273,926,642 I 1,000,000,000 11 FFT I 52,625,918 I 143,263,412 

23,395,9 12 84,170,256 adpcm.encode 37,692,050 832,956,169 

64,927,863 272,657,564 gsm.decode 23,868,37 1 548,023,092 

tiffmedian I 141,333,005 I 817,729,663 1 1  adpcm.decode I 30,159,188 I 151,699,690 

Patricia 

ghostscript 

103,923,656 1,000,000,000 gsm.encode 55,361,308 472,171,446 

286,770,117 673,391,179 

configurations in a single pass. Branch prediction was 
simulated using sim-bpred. 

4.1. Instruction Distribution 

There are four main classes of instructions: control 
(unconditional and conditional branches), integer, 
floating point and memory (load and store). In 
embedded applications, there are computation 
intensive, control intensive and I/O intensive 
applications. Control intensive programs will have a 
much larger percentage of branch instructions. 
Computation intensive applications will have a larger 
percentage of integer or floating point ALU operations. 
I/O applications depend on how the data is manipulated 
during its transfer. Figure 1 shows the distribution of 
all the MiBench programs and SPEC2000. 

From the figure, the benchmark categories 
demonstrate some of these distinctive characteristics. 
The Telecommunication and Security benchmarks all 
have more than 50% integer ALU operations. These 

applications tend to find or generate entropy in a set of 
data and is done by repeated operations on a datum. 
Benchmarks like ADPCM encode/decode have 
approximately 80% integer ALU operations compared 
to a maximum of 57% for any of the SPEC 
benchmarks. The Consumer category has relatively 
few integer ALU operations, but performs many 
memory operations. This is because of the large image 
data that must be processed. The actual operation on 
each part of the image is relatively straightforward and 
few control instructions are needed. The Office 
Automation benchmarks have many control and 
memory operations. These programs use function calls 
to string libraries to manipulate ASCII data. Because 
the data is text, it occupies quite a bit of memory and 
many memory operations are needed to reference it. 
The SPEC benchmarks have approximately the same 
distribution for all the benchmarks. 

As shown previously, the MiBench categories are 
representative of djfferent embedded applications. The 
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Figure 2: Static basic block length of benchmarks. 

entire benchmark suite shows even more variation 
when considered as a whole. For example, the number 
of branches varies quite a bit in MiBench. Bitcount, 
ADPCM encode and several others also have fewer 
than 10% branch operations for a very computation 
intensive operation. Benchmarks like Blowfish, 
t i f lrgba and t i f ied ian have less than 6% branches. 
The largest number of branches come from the text 
benchmarks, stringsearch and ispell, and the 
telecommunication benchmark, CRC32, which have 
branches ranging from 18 to 20%. SPEC typically has 
greater than 15% branches except gzip00 which has 
only 9%. MiBench also has more variation in the 
memory operations. Some MiBench benchmarks, like 
GSM encode, tiflrgba and typset, contain more than 
50% memory operations, while others, like Bitcount 
and ADPCM encode, contain very few. Most of the 
SPEC benchmarks have about 40% memory 
operations. 

The distribution graph also shows that MiBench has 
a few floating point instructions in lame, rsynth and the 
FFT benchmarks. These are not intended to stress 
floating point operations, but they demonstrate typical 
situations in which some floating point calculations 
might be used to control road speed, a vector direction 
or other data needed to determine a control action. DSP 
and numerical intensive processors should use a 

0 

specific floating point benchmark to analyze the 
performance in detail. 

4.2. Branches 

MiBench has quite a variation in the number of 
branches. The number of branches is small for a 
number of benchmarks which leads us to Figure 2. This 
figure shows that the static basic block size in the 
MiBench programs is approximately 1 instruction 
longer than SPEC. SPEC’S basic block length is 
normally around 4.5 with twoljD0 being the exception 
at over 5.5. MiBench, however, has several programs 
above 6 and almost all are above 5.5. There are a few 
of the Consumer benchmarks that are below 5 like 
SPEC. 

Now that we have seen that MiBench has more 
variation than SPEC2000 in the frequency of branches, 
we can determine how well these branches can be 
predicted. Simulations were run using a not-taken 
prediction scheme, an 8k gshare predictor, an 8k 
bimodal predictor and an 8k combined bimodal/2-level 
predictor. The direction prediction rates are given in 
Figure 3. All predictors used a 2k BTB except the not- 
taken strategy. There was no appreciable increase in 
prediction misses due to address mispredictions by the 
BTB so this data is not shown. 

Like SPEC2000, MiBench has many correct 
prediction rates well over 90%. The branch predictors 
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are very large and, therefore, this shows that most 
branches in both benchmark suites are predictable. 
MiBench does have a few benchmarks with interesting 
branch characteristics though. The 
Telecommunications and Security benchmarks have 
fairly high miss rates due to randomness of data, but 
very few misses per thousand instructions due to the 
large number of integer ALU operations. The 
infrequency of branches dilutes the penalty due to 
mispredicted branches. The other categories like 
Automotive/Industrial look very similar to SPEC. 

4.3. Memory 
Besides instruction distribution and branch 

predictability, memory behavior is another important 
consideration when evaluating an embedded workload. 
Static memory size and memory cachability were 
compared with SPEC. In Figure 4, the text and data 
segment sizes of MiBench and SPEC2000 are shown. 
The two benchmark suites are similarly sized, but 
SPEC2000 has slightly larger segments in most cases. 
Again, though, MiBench contains more variation. It 
has a benchmark with a large 1 Mb text segment 
(Ghostscript) like the large 2 Mb text segment of 
gcc00. It also has several benchmarks with several 
megabyte data segments (typeset, sphinx, PGP). The 
largest SPEC data segment in these benchmarks is 
around 0.5 Mb (gzip00). It is not known why the lame 
segments are so large, but it may be that large tables 
are stored rather than recomputed during compression. 

The large variations in MiBench’s data segment is 
due to the large number of immediate values 
(constants) embedded in the source code. Embedded 
applications will sometimes have large data tables for 
lookups or interpolation. Generally though, embedded 
applications have small memory for both data and 
instruction segments which can be seen in the common 
case text and data segment sizes. Text sizes around 
175-200 kilobytes are very normal and mostly due to 
inclusion of C standard libraries. Data segments are 
generally even smaller at several kilobytes. 

As shown above, the benchmarks in MiBench have 
a variety of data set sizes. Because of this, MiBench 
will have similar cache miss rates on some benchmarks 
and much less cache miss rates on other benchmarks. 
Figure 5 and Figure 6 show the cache miss rates with 
varied associativity and number of sets for some 
benchmarks in MiBench. gzipOO’s miss rate (not 
shown) levels off at just over 0.11 while t i f lrgba 
levels off around 0.05. As mentioned previously, these 
are the maximum miss rates for any program simulated 
in the benchmark sets. Other benchmarks have fewer 
misses and look more like Figure 5. The most frequent 
miss rate plots have negligible miss rates with 
associativity greater than 4-way or size greater than 8 
kilobyte. 

Also from Figure 5, the miss rates drop drastically 
to less than 2% around 4 to 8 kilobytes for most of 
MiBench. Some SPEC2000 benchmarks have more of 
a capacity issue and don’t reduce miss rates to below 
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2% until around 16 to 32 kilobytes which is slightly 
larger. Some benchmarks like gccO0 and Patricia 
require more associativity due to random access 
patterns. These working sets require more associativity, 
but 8-way is sufficient to lower the miss rate 
substantially. 

Embedded processor caches are typically small 
except in multimedia applications. Embedded 
applications reuse data so that cache performance is 
good. Data sets are also typically either fixed or stream 
based. The 32-way cache used in the Current and Next 
Generation configurations is unnecessary for the 
benchmarks simulated. All the benchmarks in 
MiBench have very few misses with more than 4- or 8- 
way caches and the number of sets is sufficient at 256- 
5 12 as described previously. 

4.4. Benchmark Performance 

To do an analysis of IPC in MiBench, three 
different microarchitectures were simulated with 
SimpleScalar/ARM. The configurations of these 
machines are all shown in Table 3. The “Current” 
configuration is modeled after published information 
on the Intel ARM SA-1 microarchitecture [22]. 
Similarly, the “Next Generation” configuration is 
modeled after published information on the next 
generation Intel ARM Xscale microarchitecture [23] 
and the “High-end” configuration is modeled after the 
Compaq Alpha 21264 microarchitecture. 

The results of the simulations with each different 
configuration is shown in Figure 7. The greatest IPC 
values come from the image manipulation and 
multimedia related applications like fiflrgbu, JPEG 
decode, tiffmedian, gzip00 and mcflO. The lowest IPC 
values are Blowfish, typeset and CRC32, which have 
many data dependencies due to the nature of the 
encryption, encoding and hashing algorithms. 
Surprisingly, ADPCM and Sphinx do relatively well 
even though they should have similar dependencies. 
The High-end architecture does considerably better 
than the Current or Next Generation embedded 
architectures. It normally achieves 2 to 3 times the IPC 
of the Current and Next Generation configurations. 

The Current and Next Generation configurations 
have very similar performance on most of the 
benchmarks. The Next Generation architecture has a 
deeper pipeline, a Bimodal branch predictor and double 
the cache of the Current architecture. Since most of the 
branches in MiBench and SPEC are easily predictable, 
the Current configuration suffers a loss of parallelism 
by predicting not taken. This can be seen slightly in 
Figure 7, but it doesn’t account for the poor 
performance of the Next Generation system. As shown 
earlier, most of the benchmarks are easily cachable, 
therefore, the performance loss cannot be due to cache 
problems. The loss in performance must be due to the 
in-order execution and lack of functional units. Since 
most benchmarks in MiBench have large basic blocks 

Figure 4: Text and data segment sizes. prediction rates for several schemes. 
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Figure 5 :  Cache miss rates for Rijndael (top) and ispell (bottom) with 16 byte lines. 

and easily predictable branches, there is likely just not 5. Conclusions 
enough resources to execute all the parallel 
instructions. 

Embedded processor design requires knowledge of 
the embedded task to develop an efficient 
microarchitecture. MiBench shows considerably 
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Table 3: ARM Configurations 

2 4 

Not-taken 8k Bimodal, 2k 4-way BTB 

Current 1 Next Generation I 

Fetch & Decode width 

Issue width 

Functional units 

Instruction L1 Cache 

Data L1 Cache 

L2 Cache 

Memory (bus width, first 
block latency) 

1 1 

1 (In-order) 1 (In-order) 

1 int ALU, 1 FP mult, 1 FP 
ALU ALU 

16 k, 32-way 

16 k, 32-way 

None None 

4-byte, 12 cycle 

1 int ALU, 1 FP mult, 1 FP 

32 k, 32-way 

32 k, 32-way 

4-byte, 12 cycle 

High-end 

32 

Combining: 4k Bimodal, 4k 
Gshare, 1 k 4-way BTB 

4 
~ 

4 (Out-of-order) 

1 int ALU, 1 FP mult, 4 FP 
ALU 

64 k, 2-way 

64 k, 2-way 

512 k, 4-way, unified 

8-byte, 18 cycle 

different characteristics than the SPEC2000 
benchmarks when analyzing the static and dynamic 
characteristics of embedded processor performance. 
The dynamic instruction profile has more variation in 
the number of branch, memory, and integer ALU 
operations. It also has more variable text and data 
memory segment sizes, but the data tends to be more 
cachable. MiBench and SPEC2000 both have very 
predictable branches. The variation in the number of 
instructions per cycle also shows that the benchmarks 

fall into the expected control and data intensive 
categories. 

In the future, more benchmarks will be added to the 
MiBench benchmark suite. Future Automotive and 
Industrial benchmarks will include software pulse 
width modulation (PWM), virtual environment 
simulation and a real-time operating system scheduler. 
New Network benchmarks will include defragmenting 
TCP/IP packet streams and other packet manipulations. 
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Figure 7: Instructions per Cycle (IPC). 
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