
 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

6

Problem 1.4

a. Not enough data

The reason is that the total execution time (in cycles) is not given.

b. The clock cycle of M2 is 1.25 times the clock cycle of M1. But the improvement for all Multi-

plies is a factor 20.

Time M2 = 1.25*(0.8*TimeM1 + 1/20*0.2*TimeM1)= 1.0125 TimeM1

Therefore,

M2 is 1.25% slower than M1. Thus the proposal is not an improvement.

c.This is caused by a simulation bug. According to Amdahl’s law, the maximum speedup cannot be

than 1.

Problem 1.5

a. Average CPIbase = 0.4*1 + 0.25*2+0.1*1 + 0.08*1 + 0.12*3+0.05*1 = 1.49

b. Branch instructions including taken and untaken are 20% of the Instruction Count of the base

machine. Therefore, 10% of Instruction Count is removed from the Instruction Count of the base

machine and

 ICnew = 0.9*ICbase

We also need to get the new fraction of execution of each instruction class in order to compute

CPInew. For every instruction inst the new fraction of instructions of type inst left in the code is:

finst_new = ICinst / ICnew

Because SLT is an Arithmetic/Logic instruction, only ICALU (the instruction count of Arithmetic/

Logic) is changed, and other ICinst are unchanged. Each ICinst can be obtained from Table 1.6.

For Arithmetic/Logic instructions,

ICALU_new = (0.4-0.1)*ICbase

For other instructions,

ICinst = finst_base * ICbase

For ALU instructions, the new frequency is:

fALU_new = ICALU_new / ICnew = (0.4-0.1)*ICbase / (0.9*ICbase) = 0.33

For instructions other than ALU instructions, the frequency is:

finst_new = ICinst/ICnew = finst_base * ICbase / (0.9*ICbase) = finst_base /0.9

Hence, the new CPI is

CPInew = fALU_new*1+fLoad_new*2+fStores_new*1+fBr_nt_new*1+fBr_t_new*3+fmisc_new*1

= 0.33*1 + fLoad_base*2+fStores_base*1+fBr_nt_base*1+fBr_t_base*3+fmisc_base*1

TimeM2

TimeM1

------------------- 1.0125=

Speedup
TimeM1

TimeM3

1

0.8
0.2

s
-------+© ¹

§ · 1.25u

--- 1d= =

CPINew

1

0.9
------- 0.4 0.1–� � 1u 0.25 2 0.1 1 0.08 1 0.12 3 0.05 1u+u+u+u+u+� � 1.544= =

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

7

c. Yes, this is a good idea. Comparing the execution times of the base machine and of the new

machine with BLT-type instructions, the new machine is better than the base machine. Even though

the CPI and the cycle time of the new machine are raised, the number of instructions (IC) is

reduced. Therefore, the execution time of the new machine is shorter than the base machine.

Problem 1.6

Since the data is related to the new machine, we have to find the data for the base machine without

improvements to obtain the speedup.

The fraction of time that the new machine with 16 cores runs a single core is 25%. During that time

30% is used for floating point operations, which are 4 times faster than on the base machine. The

fraction of time on the new machine is 0.25x.3=.075.

The fraction of time with a single core and no floating point operation is 0.25x.7=.175.

The fraction of time the new machine runs 16 cores is 75%. During that time each core runs floating

point operations 30% of the time. Thus the fraction of time on the new machine is 0.75x.3=.225

The fraction of time with 16 cores and no floating point operation is 0.75x.7=.525.

First consider the upgrade to a 16-way CMP, with no fp unit. Let T16_nofp be the execution time on

this new machine and Tbase the execution time on the base machine. In the phases when the 16-core

machine executes 16 threads in parallel, the base machine must executed them one at a time.

Tbase_nofp= (.25+.75x16)xT16_nofp=12.25xT16_nofp

Now consider adding the floating point units.

Tbase_fp=(.3x4+.7)xTbase_nofp= 1.2x12.25xT16_nofp=14.7xT16_nofp

Therefore the speedup is 14.7.

ExTimebase ICbase CPIbase Tcbaseuu=

ExTimenew ICnew CPInew Tcnewuu 0.9 ICbase

1.544

1.49
------------- CPIbase 1.05 Tcbaseuuuuu= =

0.98 ExTimebaseu=

