Problem 1.4

a. Not enough data
The reason is that the total execution time (in cycles) is not given.

b. The clock cycle of M2 is 1.25 times the clock cycle of M1. But the improvement for all Multi-
plies is a factor 20.
Time yp = 1.25%(0.8*Timeyy; + 1/20%0.2*%Timey;)= 1.0125 Timeyy;
Therefore,
Timey,,

= 1.0125
Time,,,

M2 is 1.25% slower than M 1. Thus the proposal is not an improvement.

c.This is caused by a simulation bug. According to Amdahl’s law, the maximum speedup cannot be
than 1.

Time
Speedup = — M1 _ 1 <1
Times (08+%2) x 125
. . .

Problem 1.5
a. Average CPI; . = 0.4*1 + 0.25%2+0.1*%1 + 0.08*1 + 0.12*3+0.05%1 = 1.49

b. Branch instructions including taken and untaken are 20% of the Instruction Count of the base
machine. Therefore, 10% of Instruction Count is removed from the Instruction Count of the base
machine and

IC ew = 0.9%ICp a6

We also need to get the new fraction of execution of each instruction class in order to compute

CPI, .- For every instruction inst the new fraction of instructions of type inst left in the code is:
finst_new = ICinst / IChew

Because SLT is an Arithmetic/Logic instruction, only IC 4y {; (the instruction count of Arithmetic/

Logic) is changed, and other IC;, are unchanged. Each IC;,; can be obtained from Table 1.6.

For Arithmetic/Logic instructions,
ICALU new = (0.4-0.1)*ICppqe
For other instructions,

ICipst = finstfbase * IChase
For ALU instructions, the new frequency is:
fALU new = ICALU new / IChew = (0.4-0.1)*ICpyqe / (0.9%1Cy,q.) = 0.33
For instructions other than ALU instructions, the frequency is:
finst_new = G/ ICew = inst_base * IChase / (0.9%ICh,6e) = finst_base /0.9

Hence, the new CPI is

CPInew = fALU_nc;—:w>I< 1"'fLoad_new=k2"'fSt0res_new>I< 1+fBr_nt_new* 1'*'fBr_t_new*?""fmisc_newﬁ< 1
=0.33*1 + fLoad_base>k2"'fStores_base>l< 1"'fBr_nt_base>|< 1"'fBr_t_basc;-:*3"'fmisc_base>|< 1

CPIy,, = é((0.4—0.1)x1+0.25x2+0.1 x140.08x1+0.12x3+0.05x 1) = 1.544

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom

c. Yes, this is a good idea. Comparing the execution times of the base machine and of the new
machine with BLT-type instructions, the new machine is better than the base machine. Even though
the CPI and the cycle time of the new machine are raised, the number of instructions (IC) is
reduced. Therefore, the execution time of the new machine is shorter than the base machine.

EXTimehase = chase x CP[base X Tchase

wx CPI x Tc = 0.9><1Chasex%><CPlhmex 1.05x Tcy,,

new new 1 .49

ExTime,,, = IC

he

= 0.98 x ExTime,

Problem 1.6

Since the data is related to the new machine, we have to find the data for the base machine without
improvements to obtain the speedup.

The fraction of time that the new machine with 16 cores runs a single core is 25%. During that time
30% is used for floating point operations, which are 4 times faster than on the base machine. The
fraction of time on the new machine is 0.25x.3=.075.

The fraction of time with a single core and no floating point operation is 0.25x.7=.175.

The fraction of time the new machine runs 16 cores is 75%. During that time each core runs floating
point operations 30% of the time. Thus the fraction of time on the new machine is 0.75x.3=.225
The fraction of time with 16 cores and no floating point operation is 0.75x.7=.525.

First consider the upgrade to a 16-way CMP, with no fp unit. Let T4 ., be the execution time on
this new machine and Ty, the execution time on the base machine. In the phases when the 16-core
machine executes 16 threads in parallel, the base machine must executed them one at a time.
Thase_nofp= (-25+.75x16)XT 6_n0p=12.25XT16_nofp

Now consider adding the floating point units.

Toase_fp=(-3%4+.7)XTpyse_nofp= 1.2x12.25xT 6_nop=14.7XT16_notp

Therefore the speedup is 14.7.

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom

