* Integer arithmetic/logic/Store instructions (inputs: two integer registers) and all Load instructions
(input: one integer register)

* Floating-point arithmetic instructions (inputs: two floating-point registers)

* Floating-point Stores (inputs: one integer and one floating-point registers).

All values are forwarded as early as possible. Both register files are internally forwarded. All data
hazards are resolved in the ID stage with a hazard detection unit (HDU). ID fetches registers from
the integer and/or from the floating-point register file, as needed. The opcode selects the register
file from which operands are fetched (S.D fetches from both)

a. To solve RAW data hazards on registers (integer and/or floating-point), hardware checks (inter-
locks) between the current instruction in ID and instructions in the pipeline may stall the instruction
in ID. List first all pipeline registers that must be checked in ID. Since ME/WB may have two
destination registers list them as ME/WB(int) or ME/WB(fp). Please don’t list pipeline stages, list
pipeline registers. Please make sure that the set of checks is minimum.

b. To solve WAW hazards on registers, we check the destination register in ID with the destination
register of instructions in various pipeline stages. Please list the pipeline registers that must be
checked. Make sure that the set of checks is minimum. IMPORTANT: remember that there is a
mechanism in ID to avoid structural hazards on the write register ports of both register files.

Your solutions specifying the hazard detection logic should be written as follows for both RAW
and WAW hazards:

--If Integer arithmetic/logic/Store/Load instruction in ID check <pipeline registers>
--If FP Load instruction in ID check <pipeline registers>

--If FP arithmetic instruction in ID check <pipeline registers>

--If FP Store instruction in ID check <pipeline registers>

Problem 3.9

Repeat Problem 3.8 for the superpipelined architecture in Figure 3.10. Assume forwarding for all
instructions including FP Stores. Note that both floating-point and integer values can now be for-
warded from both ME1/ME2 and ME2/WB.

Your solutions specifying the hazard detection logic should be written as follows for both RAW
and WAW hazards:

--If Integer arithmetic/logic/Store instruction or Load instruction in ID check <pipeline registers>
--If FP Load instruction in ID check <pipeline registers>

--If FP arithmetic instruction in ID check <pipeline registers>

--If FP Store instruction in ID check <pipeline registers>

Problem 3.10

In the pipeline of Figure 3.9 WAW data hazards on registers are eliminated and exceptions can be
handled in the WB stage where instructions complete in process order as in the classic 5-stage pipe-
line. As always values are forwarded to the input of the execution units.

a. List all required forwarding paths from pipeline registers to either EX or FP1 to fully forward
values for all instructions. List them as source-->destination (e.g, FP2/FP1-->FP1)

Chapter 3-85

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

b. Given those forwarding paths, indicate all checks that must be done in the hazard detection unit
associated with ID to solve RAW hazards.

Your solutions specifying the hazard detection logic should be written as follows for RAW hazards
on registers:

--If Integer arithmetic/logic/Store or Load instruction in ID check <pipeline registers>
--If FP arithmetic instruction in ID check <pipeline registers>
--If FP Store instruction in ID check <pipeline registers>

c. This architecture still has a subtle problem with respect to exception handling. Namely Stores are
executed early and modify memory before they retire in the write-back stage. What is the problem.
Can you propose a solution to this problem? (Please do not propose the solution of saving the mem-
ory value and then restoring it upon an exception.)

Problem 3.11

Consider the superscalar architecture of Figure 3.45. Two consecutive instructions are fetched at a
time, incrementing PC by 8. To simplify pipeline interlocks, we split the decode stage into two
stages ID1 and ID2. A switch with two settings (straight and across) separates ID1 and ID2. Upper
ID2 must be an integer/branch instruction or an FP Load/Store. Lower ID2 must be an arithmetic
FP instruction.

HDU

IF ID1 ID2 EX ->|—> ME [}
w8
IF ID1
Ib2 FP1 >|_> FP2«>|—> FP3>|—> FP4 >I > Fps5

Figure 3.45. Two-way superscalar CPU

Let 11 be the upper instruction and 12 be the lower instruction in ID1. I1 must proceed to 1D2
before or at the same time as 12 is allowed to proceed in order to adhere to process order. The fol-
lowing is done in ID1:

« IfI1 is an integer/branch instruction or an FP Load/Store or a NOOP and 12 does not depend on I1
(the expected case) then set switch to straight.

« If I1 is an FP Load and I2 is an instruction using the value returned by the Load, stall 12 in ID1
and move I1 to ID2 with switch set to straight (Lower ID2 is NOOPed).

* If I1 is an FP arithmetic instruction, stall 12, and move I1 to ID2 with switch set to across (Upper
ID2 is NOOPed).

* IfI1 and 12 are both an integer/branch instruction or an FP Load/Store, stall 12 in ID1 and move I1
to ID2 with switch set to straight.(Lower ID2 is NOOPed)

* If 12 is an integer/branch instruction or an FP Load/Store and I1 is a NOOP, move 11, 12 to ID2
with switch set to across.

Thus if the two fetched instructions are dependent or are the wrong pair, they are serialized in ID1.
Instructions in ID2 are subject to stalls due to pipeline hazard as in the single issue processor and
proceed if they have no data hazard with previous instructions still in the pipeline. We deploy the
same forwarding paths as in Figure 3.8. When instruction(s) are stalled in ID2, then instructions in
IF and ID1 are stalled as well.

a. Describe briefly the function of the HDU associated with ID2

Chapter 3-86

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

b. Explain how a branch is processed (consider both cases when the branch is upper or lower in
ID1), assuming that branches are always predicted untaken by the hardware.

c. Consider the following code:

LOOP L.D F2,0(R1)
ADD.D F4,F2,F4
L.D F6, -8(R1)
ADD.D F8,F6,F4
S.D F8, 0(R1)
SUBI R1,R1,16
BNEZ R1, LOOP

Compare the execution times of one iteration of this loop (not the last iteration) on this machine
and the machines of Problem 3.8 and 3.9. For the machine of Problem 3.9 assume that branches can
be resolved in EX1.

Problem 3.12

It would seem that superpipelining is a scalable solution to providing higher performance by deeply
pipelining and increasing the clock rate. However there are three impediments to this:

* As the number of stages increases the functional logic delay decreases proportionally but the
delay of the pipeline registers does not change

* The penalties (bubbles) in cycles caused by data dependencies increase

» The number of stages to flush on a mispredicted branch increases

* The penalty of cache misses increases as memory is not improved by deeper pipelines.

We model these effects as follows. Let T be the clock period of the single-cycle CPU. Let K be the
number of stages in the pipeline. The clock cycle of the pipelined CPU with K stages is modeled
as:

T 1
T, = —+¢t = —
K K [fK
where ¢, is the time needed to latch the output of each stage (setup time).

The penalty per instruction (in cycles) due to data hazards is modeled as:

K
Adata = O“dg

Similarly the penalty per instruction due to mispredicted branches (control hazards) is modeled as:

K
Abranches =2 Ay g

Finally, cache miss penalty also affects the speedup of deep pipelines because more cycles are
needed to resolve cache misses. This can be modeled as:

K

memory = amg

A

a,1s approximately the average number of stalls per instruction in ID because of data hazard in the
5 stage pipeline, ¢, is the fraction of instructions that are mispredicted branches (assuming a 2
clock penalty in the 5-stage pipeline), and ¢, is the average number of cycles wasted by cache
misses per instruction in the 5-stage pipeline.

Chapter 3-87

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

a. Explain the rationale for these models (Hint: they are roughly based on the penalties in a 5-stage
pipeline.)

b. Show an equation for the expected instruction throughput as a function of the number of stages
K

c. Is there an optimum pipeline depth with optimum throughput? If so, what is the optimum pipe-
line depth, as a function of 7, &, ¢, and «,,?

d. Take a practical case, with o;=0.2 (one out of every 5 instructions has a 1 cycle delay due to raw
hazards on registers), oy, = 0.06 (one out of 5 instructions is a branch and the static branch predic-
tion success rate is 70%), and «,,=0.5 (0.05 Misses_Per_Instruction and 10 cycle miss penalty).
Assume also that T, the instruction latency time in the single cycle CPU is 10nsec and the pipeline
register overhead is 100ps. What is the optimum pipeline depth? What is the throughput of this
optimum pipeline depth and how does it compare with the 5-stage pipeline, under the same
assumptions?

Problem 3.13

In this problem we compare the performance of three dynamically scheduled processor architec-
tures on a simple piece of code computing Y=Y *X+Z, where X,Y and Z are (double-precision--
8bytes) floating-point vectors.

Using the core ISA of Table 3.3 in the notes, the loop body can be compiled as follows:

LOOP L.D F0,0(R1) /¥X[1] loaded in FO
L.D F2,0(R2) /Y[1i] loaded in F2
L.D F4,0(R3) /Z[1] loaded in F4
MUL.D F6,F2,F0 /Multiply X by Y
ADD.D F8,F6,F4 /Add Z
ADDI R1,R1,#8 /update address registers

ADDI R2,R2,#8

ADDI R3,R3,#8

S.D F8, -8(R2) /store in Y[i]

BNE R4,R2,LOOP/ /(R4)-8 points to the last element of Y

The initial values in R1, R2, and R3 are such that the values are never equal during the entire exe-
cution (This is important for memory disambiguation.) The architectures are given in Figures 3.15,
3.23 and 3.27 and the same parameters apply. Branch BNE is always predicted taken (except in
Tomasulo, where branches are not predicted at all and stall in the dispatch stage until their outcome
is known).

Please keep in mind the following important rules (whenever they apply):
* Instructions are always fetched, decoded and dispatched in process order
* In speculative architectures, instructions always retire in process order
* In speculative architectures, Stores must wait until they reach the top of the ROB before they
can issue to cache.

a. Tomasulo algorithm--no speculation. Please fill Table 3.24 clock by clock for the first iteration
of the loop. Each entry should be the clock number when the event occurs, starting with clock 1.
Add comments as you see fit (This helps understand your thinking.)

b. Tomasulo algorithm with speculation. Please fill Table 3.25 clock by clock for the first itera-

Chapter 3-88

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Table 3.24 Tomasulo algorithm--no speculation

Dispatch | Issue | Exec/ Exec/ Cache | CDB | COMMENTS
start complete

" L.D FO,0(R1)
12 L.D F2,0(R2)

tion of the loop. Each entry should be the clock number when the event occurs, starting with clock
1. Please be attentive to the fact that (contrary to Tomasulo with no speculation) Stores cannot exe-
cute in cache until they reach the top of the ROB. Also branches are now predicted taken.

Table 3.25 Speculative Tomasulo algorithm

Dispatch | Issue Exec Exec Cache | CDB | Retire | COMMENTS
start complete

11 L.D FO,0(R1)

12 L.D F2,0(R2)

c. Speculative scheduling. Please fill Table 3.26 clock by clock for the first iteration of the loop,.
Each entry should be the clock number when the event occurs, starting with clock 1.

Table 3.26 Speculative scheduling

fetch start | complete

L.D FO,0(R1)

L.D F2,0(R2)

d. Compute the minimum possible execution time given by the delay of the critical path in the data-
flow graph of one iteration. Each node of the data flow graph is one instruction of the loop itera-
tion. Nodes in the data flow graph are connected by directed edges. Each directed edge corresponds
to a RAW dependency between two instructions, a parent and a child. An edge is labelled by the
execution time of the parent instruction (in cycles). Only data dependencies are considered (assum-
ing infinite amount of hardware resources, 100% cache hit rate and perfect branch prediction).

Draw the dataflow graph for the code of one iteration. Identify the critical path in the graph and
compute the best possible execution time given by the data flow graph. Compare it with the execu-
tion times of the first iteration of the loop in all three cases above. To compute the execution time
of the loop you can take the difference between the clock cycles when the first load issues in both
iterations.

Problem 3.14

This problem is complex because we now deal with aspects of speculative execution not dealt with
before, including multiple instruction dispatch, and structural hazards on the ROB.

To simplify, we use the same architecture as in Problem 3.13, part b, i.e., Tomasulo with specula-
tion, in which the role of the ROB is to hold speculative values and track the thread order of
instructions.

We dispatch two instructions per clock.

The ROB’s size is 8 entries. When the ROB is full, dispatch is stalled. Dispatch waits until two
entries are freed in the ROB before it dispatches its two instructions, so that instructions are always
dispatched in pairs.

Chapter 3-89

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Dispatch | Issue | Register | Exec Exec Cache | CDB | Retire | COMMENTS

Table 3.27 Tomasulo algorithm with speculation (two way superscalar)

Dispatch | Issue | Exec Exec Cache CcDB Retire Comment
start complete
11 L.D FO,0(R1) 1(7) 2 (3) 3 4) 5)
12 L.D F2,0(R2) 1(6) 3 @) 4 (5) (6)
In the dispatch column, show the number of entries left in the ROB AT THE END OF THE
CYCLE when it is dispatched between parentheses, just after the clock cycle number. An ROB
entry is occupied in the cycle after a new instruction has dispatched. An ROB entry is freed in the
same cycle an instruction enters the retire stage, and is available to a new instruction in the same
cycle.
To see the effects of ROB hazards, we track two loop iterations. Please fill Table 3.27. The first two
rows have been filled.
As in the previous problem, estimate the loop iteration time by the difference in cycle times
between the issue clocks of the first load of the second iteration and of the first load of the third
iteration. Does dual dispatch improve performance? Where are the bottlenecks?
Problem 3.15
In this problem we explore the effect of memory disambiguation using a very simple move in
memory:
for (i=0;1i<100;1i++)
A[i] = B[i];
In this code vector A and B are in different areas of memory so that they don’t have common ele-
ments. The assembly code is:
LoOP L.D F2,0(R1)
ADDI R1,R1,#8
ADDI R2,R2, #8
S.D F2,-8(R2)
BNEQ R1,R3,LOOP
The architecture is the architecture of Problem 3.14 (Tomasulo with speculation and two-way dis-
patch). Fill Table 3.28. Fill the table for two cases: 1) Conservative (a Load is not issued to cache
until the addresses of all previous Stores are known and 2) Speculative (a Load is issued to cache
optimistically when addresses of prior Stores are unknown). Remember that Stores can only issue
to cache once they are at the top of the ROB.
Table 3.28 Tomasulo algorithm with speculation (two way superscalar)
Dispatch | Issue | Exec Exec Cache CcDB Retire Comment
start complete
11 L.D F2,0(R1) 1(7) 2 (3) 3 (4) (5)
12 ADDI R1,R1,#8 1(6) 2 3) 3 - ()
119 L.D F2,0(R1)

Chapter 3-90

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Problem 3.16

Consider the following code segment for a loop:

if (x is odd) then <-(branch bl)
increment a <- (bl untaken)
if (x is a multiple of 5) then <-(branch b2)
increment b <- (b2 untaken)

Assume that the following list of 9 values of x is processed by 9 iterations of this loop:
8,9,10,11,7,20,29, 30, 31.

Branch Prediction Buffer 1

b1 (0 Ye——(1)
0 0 1=T

b2

(a) BPB with 1-bit predictor

9=0 g=1
b2 b2

(b) BPB with 1-bit predictors and 1-bit global history

Figure 3.46. Branch prediction Buffers

a. Assume that a one-bit state machine (see Figure 3.46(a)) is used as the prediction algorithm for
predicting the execution of the two branches in this loop.

Show the predicted and actual branch directions of both b1 and b2 branch instructions for each iter-
ation of this loop. Assume the initial state is 0, i.e. NT (not taken), for the predictor.

What are the prediction accuracies for bl and for b2?

What is the overall prediction accuracy for both branches?

b. Assume now a two-level branch prediction scheme is used. In addition to the one-bit predictor, a
one-bit global history register (g) is used. g stores the direction of the last executed branch (which
may or may not be the same branch as the branch currently being predicted) and is used to index
into two separate one-bit predictor tables as shown Figure 3.46(b).

Depending on the value of g, one of the two predictor table is selected and used for the normal one-
bit prediction. Again, fill in the predicted and actual branch directions of b1l and b2 for nine itera-
tions of the loop. Assume the initial value of g=0, i.e. NT. For each prediction, depending on the
current value of g, only one of the two predictor tables is accessed and updated.

For each iteration of the loop show the value of g, the predicted and the actual branch directions of
both bl and b2 branch instructions. The initial state of the predictor tables is all 0’s.
What are the prediction accuracies for bl and b2?

What is the overall prediction accuracy?

c. What is the prediction success rate for branch b2 when g=0? Explain why this is.

Chapter 3-91

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

