
 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

54

b. Store-to-load forwarding cannot improve the execution of the first two iterations of the loop in

this problem. The only opportunity for forwarding would be between store I5 and load I8 (a store

followed by a load). However these two memory instructions have different addresses.

c. In the optimistic policy, a load can issue to cache as soon as its address is known, even if the

address of prior stores are still unknown. In the schedule of Table 40 all addresses of prior stores are

always known when a load reaches the L/S queue. Therefore an optimistic policy for memory dis-

ambiguation would not improve the schedule.

Problem 3.24

I1 LW R5,0(R1) /load A

I2 LW R6,0(R2) /load B

I3 LW R7,0(R3) /load C

I4 SLT R8,R5,R7 /A<C?

I5 SLT R9,R5,R6 /A<B?

I6 OR R9,R8,R9 /A>=C&&A>=B?

I7 (~R9) ADD R10,R6,R7 /Yes. Compute B+C in R10.

I8 (~R9) SW R10,0(R1) /execute if clause

I9 (~R9) ADDI R17,R0,#1 /set R17 to skip I17 and I18

I10 (R9) LW R11,0(R4) /No. Load D

111 (R9) ADD R12,R11,R7 /C+D in R12

I12 (R9) SLT R13,R11,R6 /B>D?

I13 (R9) SLT R14,R5,R12 /A<C+D?

I14 (R9) SLT R15,R12,R5 /C+D<A?

I15 (R9) OR R16,R14,R15 /C+D!=A?

I16 (R9) AND R17,R13,R16 /B>D&&A!=C+D??

I17 (~R17) SUB R18,R5,R7 /NO. Execute then clause. A-C in R18

I18 (~R17) SW R18,0(R2)

I19 exit

I9 is inserted to make sure that I17 and I18 are not executed when R9 is equal to 0.

Problem 3.25

a.

BB1: I1~ I5

BB2: I6 ~ I7

BB3: I8 ~ I10

BB4: I11 ~ I13

BB5: I14 ~ I15

BB6: I16 ~ I17

b. LOCAL SCHEDULING

There are 7 execution traces depending on the conditions:

Trace 1: BB1 -> BB2 -> BB3: (A>=C&&A>=B)

Trace 2: BB1 -> BB2 -> BB4 -> BB5 -> BB6: (A>=C&&A<B) and (B>D&&A=C+D)

Trace 3: BB1 -> BB2 -> BB4 -> BB5: (A>=C&&A<B) and (B>D&&A!=C+D)

Trace 4: BB1 -> BB2 -> BB4 -> BB6: (A>=C&&A<B) and (B<=D)

Trace 5: BB1 -> BB4 -> BB5 -> BB6: (A<C) and (B>D&&A=C+D)

Trace 6: BB1 -> BB4 -> BB5: (A<C) and (B>D&&A!=C+D)

Trace 7: BB1 -> BB4 -> BB6: (A<C) and (B<=D)

To compute the speedup, we first need to get the execution time without local scheduling. The orig-

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

55

inal code on the VLIW machine is given below. In this VLIW program, no instruction of the origi-

nal code can be scheduled before a prior instruction in process order. The VLIW program is shown

in Table 41.

The execution times of basic blocks are:

Table 41: VLIW program with no scheduling

BB INSTR LABEL LD/ST 1 LD/ST 2 INT INT/BRANCH

1 I1 LW R5,0(R1) LW R7,0(R3) NOOP NOOP

1 I2 NOOP NOOP NOOP NOOP

1 I3 LW R6,0(R2) NOOP SLT R8,R5,R7 NOOP

1 I4 NOOP NOOP NOOP NOOP

1 I5 NOOP NOOP NOOP BNEZ R8,else

1 I6 NOOP NOOP NOOP NOOP

2 I7 NOOP NOOP SLT R9,R5,R6 NOOP

2 I8 NOOP NOOP NOOP NOOP

2 I9 NOOP NOOP NOOP BNEZ R9,else

2 I10 NOOP NOOP NOOP NOOP

3 I11 NOOP NOOP ADD R10,R6,R7 NOOP

3 I12 SW R10,0(R1) NOOP NOOP NOOP

3 I13 NOOP NOOP NOOP J exit

3 I14 NOOP NOOP NOOP NOOP

4 I15 else LW R11,0(R4) NOOP NOOP NOOP

4 I16 NOOP NOOP NOOP NOOP

4 I17 NOOP NOOP SLT R12,R11,R6 NOOP

4 I18 NOOP NOOP NOOP NOOP

4 I19 NOOP NOOP NOOP BEQZ R12,else1

4 I20 NOOP NOOP NOOP NOOP

5 I21 NOOP NOOP ADD R13,R7,R11 NOOP

5 I22 NOOP NOOP NOOP NOOP

5 I23 NOOP NOOP NOOP BNE R5,R13,exit

5 I24 NOOP NOOP NOOP NOOP

6 I25 else1 NOOP NOOP SUB R14,R5,R7 NOOP

6 I26 SW R14,0(R2) NOOP NOOP NOOP

I27 exit

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

56

BB1: 6 clocks (I1-I6)

BB2: 4 clocks (I7-I10)

BB3: 4 clocks (I11-I14)

BB4: 6 clocks (I15-I20)

BB5: 4 clocks (I21-I24)

BB6: 2 clocks (I25-I26)

Thus the execution times of each trace is:

Trace 1: BB1 -> BB2 -> BB3: (A>=C&&A>=B): 6+4+4 = 14

Trace 2: BB1 -> BB2 -> BB4 -> BB5 -> BB6: (A>=C&&A<B) and (B>D&&A=C+D):

6+4+6+4+2 = 22

Trace 3: BB1 -> BB2 -> BB4 -> BB5: (A>=C&&A<B) and (B>D&&A!=C+D): 6+4+6+4 = 20

Trace 4: BB1 -> BB2 -> BB4 -> BB6: (A>=C&&A<B) and (B<=D): 6+4+6+2 = 18

Trace 5: BB1 -> BB4 -> BB5 -> BB6: (A<C) and (B>D&&A=C+D): 6+6+4+2 = 18

Trace 6: BB1 -> BB4 -> BB5: (A<C) and (B>D&&A!=C+D): 6+6+4 = 16

Trace 7: BB1 -> BB4 -> BB6: (A<C) and (B<=D): 6+6+2 = 14

Table 42 shows the VLIW program after local scheduling. Here instructions may be moved within

basic blocks but not across branches or jumps.

Table 42: VLIW program with local scheduling

BB INSTR LABEL LD/ST 1 LD/ST 2 INT INT/BRANCH

1 I1 LW R5,0(R1) LW R7,0(R3) NOOP NOOP

1 I2 NOOP NOOP NOOP NOOP

1 I3 LW R6,0(R2) NOOP SLT R8,R5,R7 NOOP

1 I4 NOOP NOOP NOOP NOOP

1 I5 NOOP NOOP NOOP BNEZ R8,else

1 I6 NOOP NOOP NOOP NOOP

2 I7 NOOP NOOP SLT R9,R5,R6 NOOP

2 I8 NOOP NOOP NOOP NOOP

2 I9 NOOP NOOP NOOP BNEZ R9,else

2 I10 NOOP NOOP NOOP NOOP

3 I11 NOOP NOOP ADD R10,R6,R7 J exit

3 I12 SW R10,0(R1) NOOP NOOP NOOP

4 I13 else LW R11,0(R4) NOOP NOOP NOOP

4 I14 NOOP NOOP NOOP NOOP

4 I15 NOOP NOOP SLT R12,R11,R6 NOOP

4 I16 NOOP NOOP NOOP NOOP

4 I17 NOOP NOOP NOOP BEQZ R12,else1

4 I18 NOOP NOOP NOOP NOOP

5 I19 NOOP NOOP ADD R13,R7,R11 NOOP

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

57

After applying local scheduling with delayed branch, the execution time of BB3 could be reduced

by two clocks. Other BBs have the same execution time. So only Trace 1 benefits from local sched-

uling and its execution time becomes 14-2 = 12.

Because of data dependencies, we cannot take advantage of local scheduling, and there is no proper

instruction that can be placed after the branch in basic blocks 1 and 3. The speedup for Trace 1 is

14/12=1.17. No speedup is achieved for the other traces.

c.

The student decided not to move stores up across branches. Why is this a good thing?

Since store instructions modify the value in memory, they cannot be executed speculatively. Hence,

store instructions cannot be moved up across a branch. The code with a check instruction is given

below (w/o branch/jump delay slots):
I1 LW R5,0(R1) /load A

I2 LW R7,0(R3) /load C

I3 SLT R8,R5,R7

I4 LW R6,0(R2) /Load B

I11 LW.s R11,0(R4) /Load D

I12 SLT R12,R11,R6

I14 ADD R13,R7,R11

I6 SLT R9,R5,R6

I8 ADD R10,R6,R7

I16 SUB R14,R5,R7

I5 BNEZ R8,then /test A<C

I7 BNEZ R9,then /test A<B

I9 SW R10,0(R1) /execute if clause

I10 J exit

then check.s R11,repair /inserted where I11 was

I13 BEQZ R12,then1 /test D<B

I15 BNE R5,R13,exit /test A==C+D

I17 then1 SW R14,0(R2) /execute then clause

I18 exit

The LW instruction is hoisted across a branch and a jump. Thus a check.s instruction is inserted at

the original location of the LW to guard against control hazards (unwanted exceptions). Although it

would seem that the LW is elevated across a SW, the flowchart reveals that the LW is never exe-

cuted when the SW is executed (and vice-versa). Thus there is no data hazard. The scheduled code

5 I20 NOOP NOOP NOOP NOOP

5 I21 NOOP NOOP NOOP BNE R5,R13,exit

5 I22 NOOP NOOP NOOP NOOP

6 I23 else1 NOOP NOOP SUB R14,R5,R7 NOOP

6 I24 SW R14,0(R2) NOOP NOOP NOOP

I25 exit

Table 42: VLIW program with local scheduling

BB INSTR LABEL LD/ST 1 LD/ST 2 INT INT/BRANCH

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

58

with the delayed branch (1 instruction) is shown in Table 43.

The execution times of basic blocks are:

BB1: 6 clocks (I1-I6)

BB2: 2 clocks (I7-I8)

BB3: 2 clocks (I9-I10)

BB4: 2 clocks (I11-I12)

BB5: 2 clocks (I13-I14)

BB6: 1 clocks (I15)

Thus the execution times of each trace are:

Trace 1: BB1 -> BB2 -> BB3: (A>=C&&A>=B): 6+2+2 = 10

Trace 2: BB1 -> BB2 -> BB4 -> BB5 -> BB6: (A>=C&&A<B) and (B>D&&A=C+D):

6+2+2+2+1 = 13

Trace 3: BB1 -> BB2 -> BB4 -> BB5: (A>=C&&A<B) and (B>D&&A!=C+D): 6+2+2+2 = 12

Trace 4: BB1 -> BB2 -> BB4 -> BB6: (A>=C&&A<B) and (B<=D): 6+2+2+1 = 11

Trace 5: BB1 -> BB4 -> BB5 -> BB6: (A<C) and (B>D&&A=C+D): 6+2+2+1 = 11

Trace 6: BB1 -> BB4 -> BB5: (A<C) and (B>D&&A!=C+D): 6+2+2 = 10

Trace 7: BB1 -> BB4 -> BB6: (A<C) and (B<=D): 6+2+1 = 9

When is the new code with speculative loads better?

The code with the speculative load performs always better than the original code without load spec-

ulation. The speedups are as follows:

Table 43: VLIW program with local scheduling

BB INST LABEL LD/ST 1 LD/ST 2 INT INT/BRANCH

1 I1 LW R5,0(R1) LW R7,0(R3) NOOP NOOP

1 I2 LW R6,0(R2) LW.s R11,0(R4) NOOP NOOP

1 I3 NOOP NOOP SLT R8,R5,R7 SUB R14,R5,R7

1 I4 NOOP NOOP SLT R12,R11,R6 ADD R13,R7,R11

1 I5 NOOP NOOP SLT R9,R5,R6 BNEZ R8,then

1 I6 NOOP NOOP ADD R10,R6,R7 NOOP

2 I7 NOOP NOOP NOOP BNEZ R9,then

2 I8 NOOP NOOP NOOP NOOP

3 I9 SW R10,0(R1) NOOP NOOP J exit

3 I10 NOOP NOOP NOOP NOOP

4 I11 then NOOP NOOP check.s R11,repair BEQZ R12,then1

4 I12 NOOP NOOP NOOP NOOP

5 I13 NOOP NOOP NOOP BNE R5,R13,exit

5 I14 NOOP NOOP NOOP NOOP

6 I15 then1 SW R14,0(R2) NOOP NOOP NOOP

I16 exit

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

59

Trace 1: 14/10 = 1.4

Trace 2: 22/13 = 1.69

Trace 3: 20/12 =1.67

Trace 4: 18/11 = 1.64

Trace 5: 18/11 = 1.64

Trace 6: 16/10 = 1.6

Trace 7: 14/9 = 1.56

Problem 3.26

a. The code for processing each strip of 64 components is given below:
LOOP: L.V V1,0(R2),R6 /load X; R6 contains the stride of 1.

L.V V2,0(R3),R6 /load Y; 0(R3) is the base address of Y

MUL.V V3,V2,V1 /Multiply two vector registers

ADD.V V4,V4,V3 /Partial sums accumulate in V4

ADDI R2,R2,#64 /This assumes that memory

ADDI R3,R3,#64 /addresses point to vector elements

ADDI R4,R4,#1

BNE R4,R5,LOOP

Partial vector sums accumulate in V4. At the end we simply have to add the components of V4. To

simplify we have assumed that memory addresses point to vector elements. If vector components

have 8 bytes (double precision) and memory is byte-addressable, then the increments on the address

registers should be 512.

Given that vector operations are chained, one iteration of the loop takes:

Tite = latency(L.V) + latency(MUL.V)+ latency(ADD.V) +(V.L)-1 = 30+10+5+64-1 = 108 cycles.

Since the loop has to iterate 16 times (16=1024/64), the total number of cycles taken by a dot-prod-

uct is 108*16 =1728 cycles (ignoring the scalar phase at the end).

b.

For the multiplication of two matrices, a component of the result matrix is obtained by a dot-prod-

uct of two vectors. Therefore, we need 1024*1024= 1048576 dot-products to multiply two

1024*1024 matrices. The matrix multiply takes 1728*1048576 = 1.812*109 cycles.

c. Unrolling the vector loop twice (after register renaming):
LOOP: L.V V1,0(R2),R6 /load X

L.V V2,0(R3),R6 /load Y

MUL.V V3,V2,V1 /Multiply two vector registers

ADD.V V4,V4,V3 /Partial-sum

ADDI R2,R2, #64

ADDI R3,R3, #64

L.V V5, 0(R2), R6 /load X

L.V V6, 0(R3), R6 /load Y

MUL.V V7,V5,V6 /Multiply two vector registers

ADD.V V8,V8,V7 / partial-sum

ADDI R2,R2,#64

ADDI R3,R3,#64

ADDI R4,R4,#2

BNE R4,R5,LOOP

Load and multiplication on each strip of 64 components of the vector are chained and run in paral-

lel. Partial sums are written in two different vector registers, V4 and V8. The scalar processor accu-

mulates the components of the partial sum vectors at the end. Ignoring the scalar phases, the one

iteration of the unrolled loop takes 108 cycles. Hence we can compute 128 elements of the vector in

each iteration, and the number of iterations for the vector with size of 1024 is halved and it is

8(=1024/128).Therefore, the total number of cycle to execute the dot-product is 108 * 8 = 864

