
 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

50

instead. This way all dependent instructions (in this case I3) will get the right value and will become

ready and issue. Of course this solution makes the pipeline more complex and one can wonder

whether it is justified. May be you have another, better solution???

Problem 3.22

a.

If there is no forwarding at all, the dependent instruction can be in ID stage in the cycle right after

the parent instruction has left the WB stage.

With register forwarding, a dependent instruction can be in the decode stage in the same cycle when

its parent instruction is in the WB stage.

With full forwarding, a dependent instruction can enter execution after the cycle when its parent

instruction has completed execution.

The one exception is when the dependent instruction is a conditional branch, because branches are

executed in the ID stage and therefore cannot take advantage of the forwarding paths, they can only

take advantage of register forwarding. Thus the latency TO a branch is the same for full forwarding

as it is for register forwarding.

With full forwarding, the forwarding paths are indicated below:

from ME1/WB1 to EX1, EX2, EX3, and EX4

from ME2/WB2 to EX1, EX2, EX3, and EX4

from EX3/WB3 to EX1, EX2, EX3, and EX4

from EX4/WB4 to EX1, EX2, EX3, and EX4

b. Because the result of CMOVZ instruction is used in the next iteration, there is a data dependency

on R1 register even though we unroll the loop three times. Therefore, R1 is not renamed.

In the scheduled code below, the last CMOVZ instruction is executed whether the branch is taken or

not because the branch is delayed by one instruction.

Table 35: Latency of operation under various forwarding assumptions

Source Destination No Forwarding Register Forwarding Full Forwarding

L.W INT 3 2 1

L.W S.W (on the memory operand

and the address register)

3 2 1

INT L.W or S.W (on the address register) 2 1 0

INT Branch (on register) 2 1 1

L.W Branch (on register) 3 2 2

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

51

No forwarding at all:

Table 36: unrolling the loop three times

Unroll 3 times Rename Schedule

LW R5,0(R3)

SUB R6,R5,R2

ADDI R7,R1,#1

CMOVZ R1,R7,R6

LW R5,0(R3)

SUB R6,R5,R2

ADDI R7,R1,#1

CMOVZ R1,R7,R6

LW R5,0(R3)

SUB R6,R5,R2

ADDI R7,R1,#1

CMOVZ R1,R7,R6

ADDI R3,R3,#12

BNE R4,R3,SEARCH

LW R5,0(R3)

SUB R6,R5,R2

ADDI R7,R1,#1

CMOVZ R1,R7,R6

LW R8,4(R3)

SUB R9,R8,R2

ADDI R10,R1,#1

CMOVZ R1,R10,R9

LW R11,8(R3)

SUB R12,R11,R2

ADDI R13,R1,#1

CMOVZ R1,R13,R12

ADDI R3,R3,#12

BNE R4,R3,SEARCH

LW R5,0(R3)

LW R8,4(R3)

LW R11,8(R3)

ADDI R7,R1,#1

SUB R6,R5,R2

SUB R9,R8,R2

SUB R12,R11,R2

CMOVZ R1,R7,R6

ADDI R10,R1,#1

ADDI R3,R3,#12

CMOVZ R1,R10,R9

ADDI R13,R1,#1

BNE R4,R3,SEARCH

CMOVZ R1,R13,R12

Table 37: VLIW program after unrolling the loop 3 times w/o forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

Search: LW R5,0(R3) LW R8,4(R3) NOOP NOOP

2 LW R11,8(R3) NOOP NOOP NOOP

3 NOOP NOOP ADDI R7,R1,#1 NOOP

4 NOOP NOOP NOOP NOOP

5 NOOP NOOP SUB R6,R5,R2 SUB R9,R8,R2

6 NOOP NOOP SUB R12,R11,R2 NOOP

7 NOOP NOOP NOOP NOOP

8 NOOP NOOP CMOVZ R1,R7,R6 NOOP

9 NOOP NOOP NOOP NOOP

10 NOOP NOOP NOOP NOOP

11 NOOP NOOP ADDI R10,R1,#1 ADDI R3,R3,#12

12 NOOP NOOP NOOP NOOP

13 NOOP NOOP NOOP NOOP

14 NOOP NOOP CMOVZ R1,R10,R9 NOOP

15 NOOP NOOP NOOP NOOP

16 NOOP NOOP NOOP NOOP

17 NOOP NOOP ADDI R13,R1,#1 NOOP

18 NOOP NOOP NOOP NOOP

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

52

Register Forwarding only:

Full forwarding:

19 NOOP NOOP NOOP BNE R4,R3,SEARCH

20 NOOP NOOP CMOVZ R1,R13,R12 NOOP

Table 38: VLIW program after unrolling the loop 3 times w/ Register Forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

Search: LW R5,0(R3) LW R8,4(R3) NOOP NOOP

2 LW R11,8(R3) NOOP NOOP NOOP

3 NOOP NOOP ADDI R7,R1,#1 NOOP

4 NOOP NOOP SUB R6,R5,R2 SUB R9,R8,R2

5 NOOP NOOP SUB R12,R11,R2 NOOP

6 NOOP NOOP CMOVZ R1,R7,R6 NOOP

7 NOOP NOOP NOOP NOOP

8 NOOP NOOP ADDI R10,R1,#1 NOOP

9 NOOP NOOP NOOP NOOP

10 NOOP NOOP CMOVZ R1,R10,R9 NOOP

11 NOOP NOOP NOOP ADDI R3,R3,#12

12 NOOP NOOP ADDI R13,R1,#1 NOOP

13 NOOP NOOP NOOP BNE R4,R3,SEARCH

14 NOOP NOOP CMOVZ R1,R13,R12 NOOP

Table 39: VLIW program after unrolling the loop 3 times w/ Full Forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

Search: LW R5,0(R3) LW R8,4(R3) NOOP NOOP

2 LW R11,8(R3) NOOP ADDI R7,R1,#1 NOOP

3 NOOP NOOP SUB R6,R5,R2 SUB R9,R8,R2

4 NOOP NOOP SUB R12,R11,R2 CMOVZ R1,R7,R6

5 NOOP NOOP ADDI R10,R1,#1 ADDI R3,R3,#12

6 NOOP NOOP CMOVZ R1,R10,R9 NOOP

7 NOOP NOOP ADDI R13,R1,#1 BNE R4,R3,SEARCH

Table 37: VLIW program after unrolling the loop 3 times w/o forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

 Copyright � 2012 Michel Dubois, Murali Annavaram and Per Stenström

53

c. The major limitation of loop unrolling is the number of available architectural registers. We have

32 general purpose registers. Five registers are reserved for various reasons and cannot be used for

renaming: R0, R1, R2, R3, and R4. Thus 27 registers remain for renaming. Each loop unroll con-

sumes 3 rename registers. Thus the loop can be unrolled 9 times. The problem is: is it useful?

Looking at the 3 pieces of code, we observe that the dependency chain between the CMOVZ and

the increment of R1, limits the possible code compression. The minimum execution time of the

loop unrolled N times is:

latency_of_Load_to_SUB + latency_of_SUB_to_CMOVZ

+(N-1) x (latency_CMOVZ_to_ADDI + latency_of_ADDI_to_CMOVZ)

Because unrolling the loop increases the code size, it is not advisable to unroll the loop more than 3

times.

Problem 3.23

In this problem, instruction scheduling is speculative.

a. Conservative policy without store-to-load forwarding

The addresses of loads I1 and I2 are both in the L/S queue after clock 5. Store I5 reaches the L/S

queue at the end of clock 12. By that time all previous memory access addresses are known and

load I2 with the same address has retired. Moreover store I5 reaches the top of the ROB at clock 13

when I3 retires. Therefore all conditions are met for store I5 to access the cache at clock 13.

The address of load I8 is known at the end of clock 11. It is different from the address of store I5

known by the end of clock 7. Thus load i8 can access the cache at clock 12, ahead of store I5.

Store I11 reaches the L/S queue at the end of clock 19. By that time all previous memory accesses

have retired and store I11 is at the top of the ROB in clock 20, when I9 retires. Thus store I11 can

access the cache in clock 20.

8 NOOP NOOP CMOVZ R1,R13,R12 NOOP

Table 40: Tomasulo algorithm with speculation and speculative scheduling

Dispatch Issue Register
Fetch

Exec
start

Exec
complete

Cache CDB Retire Comments

I1 L.D F0,0(R1) 1 2 3 (4) 4 (5) (6) 7

I2 L.D F2,-8(R1) 2 3 4 (5) 5 (6) (7) 8

I3 ADD.D F0,F2,F0 3 5 6 (7) 11 -- (12) 13 wait for F2

I4 S.D-A F0,-8(R1) 4 5 6 (7) 7 -- -- --

I5 S.D-C F0,-8(R1) 5 10 11 (12) 12 (13) -- 14 wait for F0

I6 SUBI R1,R1,#8 6 7 8 (9) 9 -- (10) 15

I7 BNEZ R1,R2, 7 8 9 (10) 10 -- (11) 16

I8 L.D F2,-8(R1) 8 9 10 (11) 11 (12) (13) 17

I9 ADD.D F0,F2,F0 9 11 12 (13) 18 -- (19) 20 wait for F2

I10 S.D-A F0,-8(R1) 10 11 12 (13) 13 -- -- --

I11 S.D-C F0,-8(R1 11 17 18 (19) 19 (20) -- 21 wait for F0

I12 SUBI R1,R1,#8 12 13 14 (15) 15 -- (16) 22

I13 BNEZ R1,R2, 13 14 15 (16) 16 -- (17) 23

Table 39: VLIW program after unrolling the loop 3 times w/ Full Forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

