instead. This way all dependent instructions (in this case I3) will get the right value and will become
ready and issue. Of course this solution makes the pipeline more complex and one can wonder
whether it is justified. May be you have another, better solution???

Problem 3.22

Table 35: Latency of operation under various forwarding assumptions

Source Destination No Forwarding | Register Forwarding | Full Forwarding
LW INT 3 2 1
LW S.W (on the memory operand 3 2 1
and the address register)
INT L.W or S.W (on the address register) 2 1 0
INT Branch (on register) 2 1 1
LW Branch (on register) 3 2 2

If there is no forwarding at all, the dependent instruction can be in ID stage in the cycle right after
the parent instruction has left the WB stage.

With register forwarding, a dependent instruction can be in the decode stage in the same cycle when
its parent instruction is in the WB stage.

With full forwarding, a dependent instruction can enter execution after the cycle when its parent
instruction has completed execution.

The one exception is when the dependent instruction is a conditional branch, because branches are
executed in the ID stage and therefore cannot take advantage of the forwarding paths, they can only
take advantage of register forwarding. Thus the latency TO a branch is the same for full forwarding
as it is for register forwarding.

With full forwarding, the forwarding paths are indicated below:
from ME1/WBI1 to EX1, EX2, EX3, and EX4
from ME2/WB2 to EX1, EX2, EX3, and EX4
from EX3/WB3 to EX1, EX2, EX3, and EX4
from EX4/WB4 to EX1, EX2, EX3, and EX4

b. Because the result of CMOVZ instruction is used in the next iteration, there is a data dependency
on R1 register even though we unroll the loop three times. Therefore, R1 is not renamed.

In the scheduled code below, the last CMOVZ instruction is executed whether the branch is taken or
not because the branch is delayed by one instruction.

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom

50

Table 36: unrolling the loop three times

Unroll 3 times Rename Schedule
LW R5,0(R3) LW R5,0(R3) LW R5,0(R3)
SUB R6,R5,R2 SUB R6,R5,R2 LW R8,4 (R3)

ADDI R7,R1,#1
CMOVZ R1,R7,R6
LW R5,0 (R3)
SUB R6,R5,R2
ADDI R7,R1,#1
CMOVZ R1,R7,R6
LW R5,0 (R3)
SUB R6,R5,R2
ADDI R7,R1,#1
CMOVZ R1,R7,R6
ADDI R3,R3,#12
BNE R4,R3, SEARCH

ADDI R7,R1,#1
CMOVZ R1,R7,R6
LW RS, 4 (R3)

SUB R9,R8,R2
ADDI R10,R1,#1
CMOVZ R1,R10,R9
LW R11, 8 (R3)

SUB R12,R11,R2
ADDI R13,R1,#1
CMOVZ R1,R13,R12
ADDI R3,R3,#12
BNE R4,R3, SEARCH

LW R11, 8 (R3)
ADDI R7,R1,#1
SUB R6,R5,R2

SUB R9,R8,R2

SUB R12,R11,R2
CMOVZ R1,R7,R6
ADDI R10,R1,#1
ADDI R3,R3,#12
CMOVZ R1,R10,R9
ADDI R13,R1,#1
BNE R4,R3, SEARCH
CMOVZ R1,R13,R12

No forwarding at all:

Table 37: VLIW program after unrolling the loop 3 times w/o forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH
Search: LW R5,0(R3) LW R8, 4 (R3) NOOP NOOP
2 LW R11, 8 (R3) NOOP NOOP NOOP
3 NOOP NOOP ADDI R7,R1,#1 NOOP
4 NOOP NOOP NOOP NOOP
5 NOOP NOOP SUB R6,R5,R2 SUB R9,R8,R2
6 NOOP NOOP SUB R12,R11,R2 NOOP
7 NOOP NOOP NOOP NOOP
8 NOOP NOOP CMOVZ R1,R7,R6 NOOP
9 NOOP NOOP NOOP NOOP
10 NOOP NOOP NOOP NOOP
11 NOOP NOOP ADDI R10,R1,#1 ADDI R3,R3,#12
12 NOOP NOOP NOOP NOOP
13 NOOP NOOP NOOP NOOP
14 NOOP NOOP CMOVZ R1,R10,R9 NOOP
15 NOOP NOOP NOOP NOOP
16 NOOP NOOP NOOP NOOP
17 NOOP NOOP ADDI R13,R1,#1 NOOP
18 NOOP NOOP NOOP NOOP

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom

51

Table 37: VLIW program after unrolling the loop 3 times w/o forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH
19 NOOP NOOP NOOP BNE R4,R3, SEARCH
20 NOOP NOOP CMOVZ R1,R13,R12 NOOP

Register Forwarding only:

Table 38: VLIW program after unrolling the loop 3 times w/ Register Forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

Search: LW R5,0(R3) LW R8, 4 (R3) NOOP NOOP

2 LW R11, 8 (R3) NOOP NOOP NOOP

3 NOOP NOOP ADDI R7,R1,#1 NOOP

4 NOOP NOOP SUB R6,R5,R2 SUB R9,R8,R2

5 NOOP NOOP SUB R12,R11,R2 NOOP

6 NOOP NOOP CMOVZ R1,R7,R6 NOOP

7 NOOP NOOP NOOP NOOP

8 NOOP NOOP ADDI R10,R1,#1 NOOP

9 NOOP NOOP NOOP NOOP

10 NOOP NOOP CMOVZ R1,R10,R9 NOOP

11 NOOP NOOP NOOP ADDI R3,R3,#12

12 NOOP NOOP ADDI R13,R1,#1 NOOP

13 NOOP NOOP NOOP BNE R4,R3, SEARCH

14 NOOP NOOP CMOVZ R1,R13,R12 NOOP

Full forwarding:

Table 39: VLIW program after unrolling the loop 3 times w/ Full Forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

Search: LW R5,0(R3) LW R8, 4 (R3) NOOP NOOP

2 LW R11, 8 (R3) NOOP ADDI R7,R1,#1 NOOP

3 NOOP NOOP SUB R6,R5,R2 SUB R9,R8,R2

4 NOOP NOOP SUB R12,R11,R2 CMOVZ R1,R7,R6

5 NOOP NOOP ADDI R10,R1,#1 ADDI R3,R3,#12

6 NOOP NOOP CMOVZ R1,R10,R9 NOOP

7 NOOP NOOP ADDI R13,R1,#1 BNE R4,R3, SEARCH

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom

52

Table 39: VLIW program after unrolling the loop 3 times w/ Full Forwarding

LD/ST 1 LD/ST 2 INT INT/BRANCH

8 NOOP NOOP CMOVZ R1,R13,R12 NOOP

c¢. The major limitation of loop unrolling is the number of available architectural registers. We have
32 general purpose registers. Five registers are reserved for various reasons and cannot be used for
renaming: RO, R1, R2, R3, and R4. Thus 27 registers remain for renaming. Each loop unroll con-
sumes 3 rename registers. Thus the loop can be unrolled 9 times. The problem is: is it useful?
Looking at the 3 pieces of code, we observe that the dependency chain between the CMOVZ and
the increment of R1, limits the possible code compression. The minimum execution time of the
loop unrolled N times is:

latency_of_Load_to_SUB + latency_of_SUB_to_CMOVZ

+(N-1) x (latency_CMOVZ_to_ADDI + latency_of_ADDI_to_CMOVZ)

Because unrolling the loop increases the code size, it is not advisable to unroll the loop more than 3
times.

Problem 3.23

In this problem, instruction scheduling is speculative.
a. Conservative policy without store-to-load forwarding

Table 40: Tomasulo algorithm with speculation and speculative scheduling

Dispatch | Issue | Register | Exec Exec Cache CDB Retire Comments
Fetch start | complete

11 L.D FO,0(R1) 1 2 3 (4) 4 (5) (6) 7
12 L.D F2,-8(R1) 2 3 4 (5) 5 (6) @ 8
13 ADD.D F0,F2,FO 3 5 6 (7) 11 -- (12) 13 wait for F2
14 S.D-A F0,-8(R1) 4 5 6 @) 7 - - -
15 S.D-C F0,-8(R1) 5 10 11 (12) 12 (13) -- 14 wait for FO
16 SUBI R1,R1,#8 6 7 8 9) 9 - (10) 15
17 BNEZ R1,R2, 7 8 9 (10) 10 - (11) 16
18 L.D F2,-8(R1) 8 9 10 (11) 11 (12) (13) 17
19 ADD.D FO,F2,FO 9 11 12 (13) 18 - (19) 20 wait for F2
110 S.D-A FO0,-8(R1) 10 11 12 (13) 13 - - -
111 S.D-C F0,-8(R1 1 17 18 (19) 19 (20) - 21 wait for FO
112 SUBI R1,R1,#8 12 13 14 (15) 15 - (16) 22
113 BNEZ R1,R2, 13 14 15 (16) 16 - (17) 23

The addresses of loads I1 and 12 are both in the L/S queue after clock 5. Store IS5 reaches the L/S
queue at the end of clock 12. By that time all previous memory access addresses are known and
load 12 with the same address has retired. Moreover store 15 reaches the top of the ROB at clock 13
when I3 retires. Therefore all conditions are met for store I5 to access the cache at clock 13.

The address of load I8 is known at the end of clock 11. It is different from the address of store IS
known by the end of clock 7. Thus load i8 can access the cache at clock 12, ahead of store IS.

Store 111 reaches the L/S queue at the end of clock 19. By that time all previous memory accesses
have retired and store I11 is at the top of the ROB in clock 20, when I9 retires. Thus store I11 can
access the cache in clock 20.

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom

53

