c. First-Level Cache

The first level cache is a virtually indexed, physically tagged 3-way cache.

First-level Cache size: 96KB

Block size: 16bytes

Set size: 3 blocks per set

The width of each data ram column is 64 bits.

1. Which bits of the virtual address are used to index the tag RAM of the directory?

2. Which bits of the virtual address are used to index the data RAM of the directory?

3. Which bits of the physical address are matched against the tags in the Tag RAMs?

4. In this first-level cache, there are consistency problems due to synonyms. One solution is to
search all the sets that could contain the block on every miss. How many sets should be searched?
5. Another solution to solve the synonym problem is page coloring. What are the bits defining the
color of the page?

Problem 4.3

This problem is about the structure of page tables to support large virtual address spaces. Assume a
42-bit virtual address space per process in a 64-bit machine and 512 MByte of main memory. The
page size is 4KBytes. Page table entries are 4 byte in every table. Various hierarchical page table
organizations are envisioned: 1, 2, and 3 levels. The virtual space to map is populated as shown in
Figure 4.21. Kernel space addresses are not translated because physical addresses are identical to
virtual addresses. However virtual addresses in all other segments must be translated.

0
kernel (8MB)
228
code (64KB)
data-dynamic (2MB)
data--static (4MB)
242,

Figure 4.21. Virtual address space mapping

Please answer the following questions:

1. What would be the size of a single-level page table?

2. Assume now a 2-level page table. We split the 30 bits of virtual page number into two fields of
15-bits each? How many page tables would we have? What would be their total size?

3. Repeat 2. for a 3-level page table splitting the 30 bits of virtual page number into 3 fields of 10
bits each.

Problem 4.4

What is pseudo-LRU? Search online for a paper describing pseudo LRU, describe how it works for
a cache of 4 lines and explain its advantages over pure LRU.

Chapter 4-31

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Problem 4.5

In this problem, we explore cache mapping and cache replacement policies when memory refer-
ences are cyclic or periodic. Such type of reference streams are common in accesses to instructions
(loops) or in strided accesses to data.

First-level instruction caches are often direct-mapped, not only because direct-mapped caches are
faster on a hit but also because they are better at handling loops than set-associative caches.

Let’s assume a cache with four lines (0,1,2 and 3) and a cyclic (periodic) block reference string
with block addresses (0,1,2,3,4,5)10. This notation means that the reference string has a periodic
pattern of accesses to block addresses 0,1,2,3,4, and 5 repeated 10 times. We classify misses into
cold, capacity, and conflict misses. Capacity misses are counted in a FA cache with LRU replace-
ment policy. In all cases the caches are empty at the beginning of the string.

a. Count the total number of misses in the following caches: direct-mapped, FA with LRU replace-
ment, FA with FIFO replacement, FA with LIFO (Last In First Out) replacement, and a 2-way SA
cache with LRU in each set.

b. Based on your results in a., what is the number of cold, capacity and conflict misses for each
cache.

c. Consider now the optimum replacement policy in the FA cache. An optimum policy is guaran-
teed to give the maximum hit rate, although it is not feasible in practice. The optimum policy
replaces the block in cache which will be referenced the farthest away in the future. We define the
forward distance of a block i as the number of distinct block numbers between the current reference
and the next reference to the block. Thus we replace the block that has largest forward distance.
Imagine that all blocks are referenced one extra time at the end of the trace. If the forward distances
of several blocks are equal, pick anyone of them for replacement. Thus there may be different
sequences of replaced blocks but they will all have the same miss rate. What is the number of
misses in the FA cache with OPT replacement?

d. For all the caches in a., compute the number of conflict misses when the FA cache used in the
count of capacity misses is the FA cache with OPT replacement.

Problem 4.6

In this problem we compare cache replacement policies for a given trace of accesses to a set. A
trace is made of consecutive block addresses dynamically accessed by a program.
Take the following trace, where each letter is a block address:

aabcaadeffefefefabgcaef

a. Assume that the fully associative cache of size 4 lines is cold at the beginning. What is the miss

rate under the following replacement policies:

* LRU

e FIFO (First in first out)

* Pseudo-LRU (find out what that is online)

e LFU (Least Recently used). In this policy, the replacement policy counts the number of
accesses to each block. The block with the least number of references is replaced. In case of a
tie, any one of the LFU blocks is picked at random. To make the solution uniform, pick the
LRU block among the LFU blocks.

e Optimum

b. What is the number of conflict misses for each cache in the following cases:
e The number of capacity misses is counted for a FA cache with LRU

Chapter 4-32

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

* The number of capacity misses is counted for a FA cache with OPT

Problem 4.7

Most scientific applications involve matrix operations. The most common operations is matrix
multiply:

X = Y*z
where X, Y, and Z are N-by-N matrices.

If the elements of X are computed row-by-row and the L1 cache is too small to hold Z, the entire
matrix Z must be reloaded in cache (capacity misses) for each row of X, resulting in a total number
of cache misses of the order of N°. To reduce the miss rate in the cache the compiler can block the
matrix multiply.

Assume a fully associative data cache with a LRU (least recently used) replacement policy. Matrix
sizes are 256x256. Each element is a double precision floating point number (8 bytes). To simplify,
assume that the cache block size is 8 bytes as well and that operands are aligned.

1. Compute the total number of misses in the data cache, assuming that the data cache size is
128KB. To compute the data cache miss rate, we neglect all integer accesses in the program execu-
tion and focus on the floating point accesses. Also compute the total number of operations (FP
ADDs and FP MULT).

2. To reduce the miss rate, a PhD student decides that restructuring the algorithm would be a good
idea. The student believes that by blocking the matrix multiply into operations on submatrices of
size N/k by N/k (k is a power of 2), the miss rate and the execution time will be much improved
because several submatrices easily fit in the cache now.

For instance, when k=2, the blocked matrix multiply becomes a set of multiple multiplications and
additions of N/2xN/2 matrices:

xux2| _ [vivi2] | [z zi2
x21 x22| |v21 22| |z21 7222
{Xll Xlz} _ {Y11x211+Y12x221 YllelZ—l—YleZZZ}

X21 X22 Y21xZ11 + Y22xZ21 Y21xZ12 + Y22xZ22

Assuming again that the cache size is 128KB, describe the blocking algorithm that should be
employed to minimize the number of misses, and compute the overall number of misses. Also com-
pute the total number of operations (FP ADDs and FP MULT).

3. Considering both the amount of chip I/O due to cache misses and the total amount of compute
operations, discuss whether it is a good idea to listen to that PhD student?

Problem 4.8
A simple program that accumulates values from a vector in memory is used in this problem:
LOOP : LW R4,0(R3)
ADDI R3,R3,stridex4 /stridexd4: stride multiplied by 4

ADD R1,R1,R4
BNE R3,R5,LOOP

Chapter 4-33

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

The stride is the difference between the indexes of two consecutive vector elements. It is multiplied
by 4 to find the address of consecutive vector components.

We examine the efficiency of this loop on the 5-stage pipeline with a blocking and a nonblocking
data cache. The branch flushes the I-fetch and I-decode stages whenever it is taken.

Throughout this problem the data cache is direct-mapped and is empty at the start and its block size
is 64bytes. Assume that the number of iterations of this loop is extremely large (the number of
components to add is in the millions).

At first let the latency of an L1 miss be 30 clocks. Remember that the LW is first tried in the cache.
If it misses, the pipeline “freezes” for 30 clocks and then the pipeline is restarted.

a. Consider first that the cache is blocking. Find the average execution time (in cycles) of each iter-
ation of the loop (i.e., the average time taken by each accumulation) as a function of the stride.

b. The next idea we explore is that of a very simple lock up free (non blocking) cache, which can
execute a load hit while a (non-blocking) prefetch miss is pending in the cache. A prefetch executes
like a Load in the pipeline except that 1) it does not return a value and 2) it never blocks the pipe-
line even on a cache prefetch miss. Now, whenever a Load misses, the pipeline freezes until the
miss is resolved or a pending missing prefetch is returned in the cache. At that time the load is
retried. The new prefetch instruction is PW d(R), where d is the displacement and R is a base
address. Whenever a prefetch is a primary miss, the cache controller fetches the block from the next
cache level. Whenever a prefetch hits in cache or is a secondary miss, the cache controller drops the
prefetch. All prefetches meeting an exception are also dropped.

The following code is proposed:

LOOP : LW R4,0(R3)
PW stridex4 (R3)
ADDI R3,R3,stridex4
ADD R1,R1,R4
BNE R3,R5,LOOP

Find the average execution time (in cycles) of each iteration of the loop (i.e., the average time taken
by each accumulation) as a function of the stride.

c. Is it possible to find out when the prefetch is effective, as a function of the stride, the block size
and the miss latency? What is the breakeven point in general?

d. Let’s assume that the stride is 1 word (4 bytes). The following code prefetches when the address
is a multiple of 64

ﬁ Shauld be 00111111

binary mamber i

LOOP : LW R4,0(R3)

ANDI R10,R3,0x01000000 el of ¢4 %"

cloald bo BET <« BNEZ R10, prefetch fust 6 wob s are T
ADDI R3,R3,#4
ADD R1,R1,R4
BNE R3,R5, LOOP

prefetch: PW 64 (R3)
ADDI R3,R3,#4
ADD R1,R1,R4
BNE R3,R5, LOOP
Can this code be better than the code in part b? When?

n“ Al the

Chapter 4-34

Copyright © 2011 Michel Dubois, Murali Annavaram and Per Stenstrém

Mehrzad

Mehrzad

Mehrzad

