the potential speedup of superpipelining the 5-stage pipeline is quite small.

Problem 3.13

a. Tomasulo algorithm--no speculation.

Table 17: Tomasulo algorithm--no speculation

Dispatch | Issue | Exec Exec Cache CDB COMMENTS
start | complete

11 L.D FO,0(R1) 1 2 (3) 3 (4) (5)

12 L.D F2,0(R2) 2 3 (4) 4 (5) (6)

13 L.D F4,0(R3) 3 4 (5) 5 (6) (7

14 MUL.D F6,F2,FO 4 7 (8) 12 - (13) wait for F2
15 ADD.D F8,F6,F4 5 14 (15) 19 - (20) wait for F6
16 ADDI R1,R1,#8 6 7 (8) 8 - (9)

17 ADDI R2,R2,#8 7 (9) 9 - (10)

18 ADDI R3,R3,#8 8 (10) 10 . (11)

19 S.S-A F8,-8(R2) 9 11 (12) 12 -- -- wait for R2
110 S.S-D F8,-8(R2) 10 21 (22) 22 (23) . wait for F8
111 | BNE R4,R2,LOOP 1 12 (13) 13 - (14)

112 L.D FO,0(R1) 15 16 17) 17 (18) (19) Yrv1aci1t| ngg tlé

The values between parentheses show resources reserved by an instruction at the time of dispatch.
Store 110 can issue to cache at clock 23 because no memory instruction is pending in the L/S queue.
Load 112 can issue to cache at clock 18 because the only preceding and pending memory instruction
is the store 110 and the address of the store is known at the end of clock 12. Load 112 cannot dis-
patch until it knows the outcome of branch 111, at the end of clock 14.

b. Tomasulo algorithm with speculation.

Table 18: Tomasulo algorithm with speculation

Dispatch | Issue | Exec Exec Cache CcbhB Retire COMMENTS
start | complete
1 L.D FO,0(R1) 1 2 (3) 3 (4) (5) 6
12 L.D F2,0(R2) 2 3 (4) 4 (5) (6)
13 L.D F4,0(R3) 3 4 (5) 5 (6) )
14 MULT.D F6,F2,FO 4 7 (8) 12 - (13) 14 wait for F2
15 ADD.D F8,F6,F4 5 14 (15) 19 . (20) 21 wait for F6
16 ADDI R1,R1,#8 6 7 (8) 8 - 9) 22
17 ADDI R2,R2,#8 7 (9) 9 - (10) 23
18 ADDI R3,R3,#8 8 (10) 10 . (11) 24
19 S.D-A F8,-8(R2) 9 1 (12) 12 - - . wait for R2
110 S.D-D F8,-8(R2) 10 21 (22) 22 24 - 25 wairt Jgé rl]:tso, 6h§nRV\C/)aét to
111 | BNE R4,R2,LOOP 11 12 (13) 13 . (14) 26
112 L.D FO,0(R1) 12 13 (14) 14 (15) (16) 27 Jddress of %t)(l)crleé s,
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Store 110 reaches the L/S queue at the end of clock 22. To proceed to cache it must verify that it is at
the top of the ROB. The previous instruction in process order is 18 and it retires at clock 24. There-
fore the store is at the top of the ROB during clock 24 and it may issue to cache in clock 24. Note
that now load 112 can dispatch before it knows the outcome of branch 111.

¢. Speculation with speculative scheduling

Table 19: Tomasulo algorithm with speculation and speculative scheduling

Dispatch | Issue | Register | Exec Exec Cache CDB Retire Comments
Fetch start | complete
11 L.D FO,0(R1) 1 2 3 4) 4 (5) (6)
12 L.D F2,0(R2) 2 3 4 (5) 5 (6) (@)
13 L.D F4,0(R3) 3 4 5 (6) 6 7 8)
14 MULT.D F6,F2,FO 4 5 6 ) 11 - 12) 13
15 ADD.D F8,F6,F4 5 10 11 (12) 16 - @a7) 18 wait for F6
16 ADDI R1,R1,#8 6 7 8 9) 9 - (10) 19
17 ADDI R2,R2,#8 7 8 9 (10) 10 - (11) 20
18 ADDI R3,R3,#8 8 10 11 (12) 12 - 13) 21 CDB comlictwith
19 S.D-A F8,-8(R2) 9 10 11 (12) 12
110 S.D-D F8,-8(R2) 10 15 16 17 17 21 - 22 Vv\\llgditttfgrrggc,ﬁr{gg
of ROB
111 BNE R4,R2,LOOP 11 12 13 (14) 14 - 15) 23
112 L.D FO,0(R1) 12 14 15 (16) 16 a7 (18) 24 CDB copsﬂict with

Because of speculative scheduling the MULT instruction 14 does not have to wait for F2 anymore
because F2 is forwarded right on time through the common data bus in clock 7. By issuing 14 ahead
of time, the forwarded F2 value is the input to the FP unit at the beginning of cycle 7. Instruction 18
cannot issue in clock 9, although it has no hazards with prior instructions because it cannot reserve
the CDB for clock 12 (because it was reserved at clock 5 by 14). Store 110 waits for F8 to issue. F8
is put on the CDB in clock 17 and the store can execute in the AGU in clock 17 and is issued spec-
ulatively at clock 15. Then the store reaches the L/S queue where it waits to reach the top of the
ROB, in clock 21. At the beginning of clock 21 the store is at the top of the ROB because the pre-
ceding instruction (18) is in the retirement unit in clock 21.

d.
Each instruction in the data-flow graph is labeled as follows.
11 L.D FO,0(R1) /X[1] loaded in FO
12 L.D F2,0(R2) /Y[i] loaded in F2
13 L.D F4,0(R3) /Z[i] loaded in F4
14 MUL.D F6,F2,FO /Multiply X by Y
15 ADD.D F8,F6,F4 /Add Z
16 ADDI R1,R1,#8 /Update address registers
17 ADDI R2,R2,#8
18 ADDI R3,R3,#8
19 S.D F8, -8(R2) /store in Y[i]
110 BNE R4,R2,LOOP /(R4)-8 points to the last element of Y

25

Copyright © 2012 Michel Dubois, Murali Annavaram and Per Stenstrom




The data-flow graph is given in Figure 2. The critical path in the data-flow graph is shown in bold
(11->14->15). The store 19 is off the critical path because there is no RAW memory dependencies on
memory, either within one iteration or across iterations of the loop.

Table 20: Execution time comparisons

Execution time metric | Tomasulo w/o spec | Tomasulo with spec | Spec scheduling Data-flow
Issue-to-issue 16-2=14 13-2=11 14-2=12 7
Execution-to-execution 17-3=14 14-3=11 15-3=12 7
Retirement 27-6=21 24-7=17 7

Figure 2Data-flow graph

It is a challenge to figure out the exact execution rate in a single iteration of a loop. The exercise
asks to measure execution time from issue to issue of the first load. The results are shown in the
first row of Table 20. Speculative execution is better than execution with no speculation. This is
because of the delay needed to obtain the branch outcome. For this particular code speculative exe-
cution with speculative scheduling is slightly worse than without speculative scheduling. Looking
at the schedule speculative scheduling for this particular code causes two conflicts on the CDB.
Table 20 also shows two other possible measures. The first one is between the starts of execution of
the two loads. The numbers are unchanged. The second measure is the time between retirement of
the two loads. This metric may be better because it only considers instructions that are non-specula-
tive. In this case the store is included in the critical path. Under this metric, speculative scheduling
improves on speculative execution without speculative scheduling.
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Dispatch | Issue | Exec Exec Cache CDB Retire COMMENTS
start | complete

122 BNE R4,R2,LOOP 28(0) 31 32) 32 - (33) 45 wait to get 2 ROB
entries, wait for

R2, and CDB
conflict with 115
123 L.D FO,0(R1) 33(1) 34 (35) 35 (36) 37) 46 wait to get 2 ROB

entries

124 L.D F2,0(R2) 33(0) 35 (36) 36 37) (38) 47 wait to get 2 ROB

entries and con-
flict with 123

Execution Time per Iteration (issue-to-issue; second iteration) = 34 - 11 = 23 cycles. Comparing
this to the execution time in part b (single dispatch) of Exercise 3.13 (11 cycles), we find that dual
dispatch degrades the performance significantly. The main bottleneck is the number of ROB entries
available, compounded by the fact that the machine waits until two instructions are structural haz-

ard free to dispatch. This machine definitely needs more ROB entries.

Also, since there are a lot of data dependencies between instructions, the machine stalls instructions
in issue queues while waiting for their operands and this reduces the benefits of dual dispatch. The
last bottleneck is structural hazards on functional units (ALU’s, cache ports, FP units), and on the

single CDB.

Problem 3.15

a. Conservative Disambiguation;

Table 22: Tomasulo algorithm with speculation (two-way superscalar)-Conservative disambiguation

Dispatch | Issue | Exec Exec Cache CDB Retire Comment
start | complete
11 L.D F2,0(R1) 1(7) (3) 3 (4) (5)
12 ADDI R1,R1,4#8 1(6) ) 3 - 4
13 ADDI R2,R2,#8 2(5) (5) 5 - 6 CDB colnlflict with
14 S.D-AF2,-8(R2) 2(5) (8) 8 - - - wait for R2
15 S.D-D F2,-8(R2) 3(4) @) 7 9 -- 10 wait for F[f and
wait for address
16 | BNEQ R1,R3,LOOP 3(3) (6) - (7 11 wait for R1
17 L.D F2,0(R1) 4(2) 6) 6 10 11 12 wait for address
of rewous store
B conflict
Wlt 19
18 ADDI R1,R1,#8 4(2) 7 (8) 8 -- 9) 13 FUé:onfhct witl I6
CDI% conf
I7
19 ADDI R2,R2,#8 5(0) 8 9) 9 - (10) 14 CDB conflict with
I7and FU conflict
with I8
110 S.D-AF2,-8(R2) 5(0) 1 (12) 12 - - - wait for R2
111 S.D-D F2,-8(R2) 7(2) 12 (13) 13 (14) - 15 wait to get 2 ROB
entries, wait for
112 | BNEQ R1,R3,LOOP 7(0) 10 (11) 11 - (12) 16 wait for R1
113 L.D F2,0(R1 10(1 13 14 14 15 16 17 ait to get 2 ROB
(RD) @ (14) (15) (16) Vgnltnesgand AGU
conflict W|th 110 &
114 ADDI R1,R1,4#8 10(0) 11 (12) 12 - (13) 18 wait to get 2 ROB
entries
28
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Table 22: Tomasulo algorithm with speculation (two-way superscalar)-Conservative disambiguation

Dispatch | Issue | Exec Exec Cache CDB Retire Comment
start | complete
115 ADDI R2,R2,#8 11(0) 12 (13) 13 - (14) 19
116 S.D-A F2,-8(R2) 11(0) 15 (16) 16 - - - wait for R2
117 S.D-D F2,-8(R2) 13(1) 17 (18) 18 (19) - 20 wait to get 2 ROB
entries, wait for
F2
118 | BNEQ R1,R3,LOOP 13(0) 15 (16) 16 - a7 21 wait to get 2 ROB
entries and CDB
conflict with 113
119 L.D F2,0(R1) 15(1) 16 a7) 17 (18) (19) 22 wait to I%)e,t 2 ROB
entries
At the time of issue, load 17 reserved the cache for clock 7 and the CDB for clock 8. However, the
load must wait in the L/S queue until the address of the previous store is known, at the end of clock
8. However if the load issues to cache in clock 9, it will conflict with 19 at clock 10. Therefore 17
must wait one more clock to issue to cache, at clock 10. Meanwhile 18 cannot issue at clock 5
because 16 has already reserved the integer unit for clock 6. It also cannot issue at clock 6 because
load 17 has reserved the CDB for clock 8 (a false conflict and a CDB cycle that is lost). Similarly 19
fails to issue at first in clock 6 because of the CDB conflict with 17. Then it cannot issue at clock 7
because of the conflict with I8 on the integer unit.
b. Speculative Disambiguation:
Table 23: Tomasulo algorithm with speculation (two-way superscalar)-Speculative disambiguation
Dispatch | Issue | Exec Exec Cache CDB Retire Comment
start | complete
11 L.D F2,0(R1) 1(7) 2 3 3 4
12 ADDI R1,R1,#8 1(6) 2 3 3 - 4
13 ADDI R2,R2,#8 2(5) 4 5 5 - 6 8 CDB colnlflict with
14 S.D-A F2,-8(R2) 2(5) 7 8 8 - - -- wait for R2
15 S.D-D F2,-8(R2) 3(4) 6 7 7 9 -- 10 wait for F2 and
walt for address
16 | BNEQ R1,R3,LOOP 3(3) 5 6 6 - 7 1 wait for R1
17 L.D F2,0(R1) 4(2) 5 6 6 7 8 12
18 ADDI R1,R1,#8 4(1) 7 8 8 - 9 13 FU conflict with 16
and CDB conflict
with 7
19 ADDI R2,R2,#8 5(0) 8 9 9 - 10 14 CDB conflict with
17 and FU conflict
with I8
110 S.D-A F2,-8(R2) 5(0) 11 12 12 - - - wait for R2
111 S.D-D F2,-8(R2) 7(2) 9 10 10 14 -- 15 wait to get 2 ROB
entries, wait for
F2, then wait to
reach top of ROB
112 | BNEQ R1,R3,LOOP 7(0) 10 11 11 - 12 16 wait fo get 2 ROB
entries then wait
for R1
113 L.D F2,0(R1) 10(1) 12 13 13 14 15 17 wait to get 2 ROB
entries and AGU
conflict with 110
114 ADDI R1,R1,#8 10(0) 11 12 12 -- 13 18 wait to r%)e_t 2 ROB
entries
115 ADDI R2,R2,#8 11(0) 12 13 13 - 14 19
116 S.D-A F2,-8(R2) 11(0) 15 16 16 - - - wait for R2
29
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Table 23: Tomasulo algorithm with speculation (two-way superscalar)-Speculative disambiguation

Dispatch | Issue | Exec Exec Cache CDB Retire Comment
start | complete

117 S.D-D F2,-8(R2) 13(1) 16 17 17 19 -- 20 wait to get 2 ROB
entrle%s, then wait

or F2
118 | BNEQ R1,R3,LOOP 13(0) 14 15 15 - 16 21 wait to Ig}ge,t 2 ROB

entries
119 L.D F2,0(R1) 15(1) 17 18 18 19 20 22 wait fo get 2 ROB
entries and AGU
conflict with 117

Looking again at load 17, the load is (successively) issued to cache speculatively at clock 7. This
avoids load delays, and eliminates the wasted cycle on the CDB.

Problem 3.16

a. With one-hit state machine, 0 is not taken (NT) and 1 is taken (T).
The values are: 8,9,10,11,7,20,29,30,31

b1: TU,TUUTUTU

b2: TTUTTUTUT

Table 24: 1-bit predictor

Iteration 1 2 3 4 5 6 7 8 9

B1(Prediction/Actual | 0/1 1/0 0/1 1/0 0/0 0/1 1/0 0/1 1/0
Branch Direction)

B2(Prediction/Actual | 0/1 1/1 1/0 0/1 1/1 1/0 0/1 1/0 0/1
Branch Direction)

If a prediction and the actual branch direction are the same in a given entry of Table 24, it means
that the branch prediction is correct, and these cases are in bold in the table above.

Also the branch direction in the iteration is the prediction in the next iteration.

Therefore, the prediction accuracy for bl is 1/9 = 11%

The prediction accuracy for b2 is 2/9 = 22%.

The overall prediction accuracy for both branches is 3/18 = 1/6 = 16.67%

b. 2-level branch prediction scheme.

If the previous branch, either b1 or b2, is taken, g is set to 1. If the previous branch is not taken, then
g is 0 in the history register. If a prediction and an actual branch direction are same, they are shown
in bold in Table 25.

Thus, the prediction accuracy for bl is 4/9 = 44.4%.

The prediction accuracy for b2 is also 6/9=66.7%.

The overall accuracy is 55.5%.

C.
The prediction success rate for b2 when g=0 is 4/5 = 80%.

For b2, g is equal to 0 when the previous branch, b1, is not taken. That means the value is odd. In
the given 9 values, there is no odd number which is also a multiple of 5. Therefore, once the branch
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predictor is warmed-up, b2 branch with g=0 is highly predictable.

Table 25: Two-level branch prediction scheme

Iteration 1 2 3 4 5 6 7 8 9
B1 (g/Prediction/ 0/0/1 | 1/0/0 | 1/0/1 | O/1/0 | 1/1/0 | 1/0/1 | O/O/0 | 1/1/1 | 0/0O/O
Actual Branch Direction)
B2 (g/Prediction/ 1/0/1 | o/o/1 | 1/1/0 | O/1/1 | O/1/1 | 1/0/0 | O/1/1 | 1/0/0 | O/1/1
Actual Branch Direction)

The values are: 8,9,10,11,7,20,29,30,31

bl: TUTUUTUTU
bh2: TTUTTUTUT
Problem 3.17

First, let’s think about the possible aliasing for private table access. Branchl and Branch2 are sepa-
rated by 1 instruction and their PC values differ by 8. Branch2 and Bbranch3 are separated by 2
instructions and their PC values differ by 12. Branchl and Branch3 are separated by 4 instructions
and their PC values differ by 20. Since 10 bits of the branch PC are used, there is no possibility of

aliasing of branch addresses for the private tables for this piece of code.

1. GAg

The history pattern is global and the predictors are shared. In the following table, the first column
indicates the loop iteration and the 2nd column indicates branch. The pattern column shows the
global history and the value of the predictor. The action column shows the prediction, the actual

branch action, and the updated predictor value.

Table 26:
Iteration Branch Pattern Action
1 BNEZ R2, LAB1 0/0 NT/NT/O (Success)
1 BEQZ RO, LAB2 0/0 NT/T/1
1 BNEZ R1, LOOP | 1/0 NT/T/1
2 BNEZ R2, LAB1 1/1 T/T/1 (Success)
2 BNEZ R1, LOOP | 1/1 T/T/1 (Success)
3 BNEZ R2, LAB1 1/1 T/NT/O
3 BEQZ RO, LAB2 0/1 T/T/1 (Success)
3 BNEZ R1, LOOP | 1/0 NT/T/1
4 BNEZ R2, LAB1 1/1 T/T/1 (Success)
4 BNEZ R1, LOOP | 1/1 T/T/1 (Success)
5 BNEZ R2, LAB1 1/1 T/NT/O
5 BEQZ RO, LAB2 0/1 T/T/1 (Success)
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